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Executive Summary 

 

Continued development, expansion, and operation of wind energy installations must be managed in 
conjunction with effects on local wildlife, with special attention paid to protected avian and bat species that 
may be affected by wind turbine collisions [1]. Ongoing efforts to measure and mitigate wind turbine 
impacts on wildlife include improved pre-construction siting and post-construction monitoring, 
development of deterrent technologies and curtailment strategies, and improved quantitative assessment of 
wildlife mortality due to wind turbines [2]–[4]. 

This report summarizes the design, implementation, and test of an integrated system for automated 
detection and deterrence of eagles, with included wind turbine blade strike detection and imaging 
functionality. A machine learning approach was used in conjunction with a 360º camera system for 
automated detection and classification of golden eagles. This was developed using footage obtained from 
trained golden eagles and other raptors, in collaboration with wildlife biologists and professional bird 
handlers. Oregon State University developed a visual deterrent system, which uses inflatable 
anthropomorphic sculptures with random, kinetic motion to deter eagles, and conducted limited field testing 
on live eagles; the deterrent can be triggered by the visual detection of eagles using the vision system. 
Finally, a multi-sensor module was developed that is mounted at the turbine blade root. This module 
measures vibration and other motions to detect blade strikes, and an integrated on-blade camera captures 
an image of any impacting objects. Long-term, this blade strike detection system is intended to support an 
automatic monitoring and certification system for the eagle detection and deterent system. Independent 
field testing of each system component is described. 

Visual eagle detection testing was done in collaboration with the High Desert Museum in Bend, OR using 
trained birds, including both eagles and other raptors. The final eagle classification algorithm (eagle/non-
eagle) had a per-frame accuracy of 91.54% using the 360º 4K camera. 

Visual deterrent testing was conducted in two field tests with wild eagles near Klamath Falls, OR. The 
deterrent was deployed from the ground when an eagle flys overhead, and observers noted any perceived 
change in flight trajectory. Interactions were also recorded on video. Results were overall inconclusive due 
to the small number of eagles that were close enough to the field test for observed interactions. 

Testing of the integrated system on an operational wind turbine was conducted across three separate field 
tests. This includes multi-day fields tests on a General Electric 1.5MW wind turbine at the National 
Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) in Boulder, CO in 
October 2018 and July 2019; installation procedures, test procedures, and a summary of collected data are 
presented. A third multi-day on-turbine field test is also presented, which was performed using a General 
Electric 1.5MW wind turbine at the North American Wind Research and Training Center (NAWRTC) at 
Mesalands Community College, Tucumcari, NM in April 2019. Across these field tests, the vision system 
was demonstrated using unmanned aerial vehicles (UAV), and the eagle classification algorithm was not 
tested; the visual deterrent system was demonstrated, including automatic, remote deployment following 
surrogate visual detections; and, multi-sensor on-blade data was recorded across multiple wind turbine 
operational conditions and through more than 100 surrogate blade strikes using soft projectiles, including 
the successful demonstration of automatic image capture of striking objects. This data set was also used for 
offline development and validation of enhanced collision detection algorithms. 

As summarized in this report, the development and field validation of an integrated detection, deterrent, 
and blade collision detection system represents a critical proof of concept for future technology 
development of related detection and deterrent technologies, where both deterrent as well as collision 
detection recording devices are needed for future siting, monitoring, and operation of wind turbine 
installations, both onshore and offshore.  
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1. Project Overview 

 
Continued development, expansion, and operation of wind energy installations must be managed in 
conjunction with effects on local wildlife, with special attention paid to protected avian and bat species that 
may be affected by wind turbine collisions [1]. Ongoing efforts to measure and mitigate wind turbine 
impacts on wildlife include improved pre-construction siting and post-construction monitoring, 
development of deterrent technologies and curtailment strategies, and improved quantitative assessment of 
wildlife mortality due to wind turbines [2]–[4]. Building energy infrastructure that minimized negative 
impacts to wildlife safety is a key concern. The broad mission for this project is to improve technologies 
that will protect eagles sharing airspace with wind turbines by providing wind energy operators with cost-
effective technologies for reducing the impact of wind turbines on eagles and other species.  

Bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (BGEPA), and wind 
facilities must comply with state and federal laws protecting wildlife both for siting and for ongoing 
regulatory compliance. Moreover, developers and operators of wind energy facilities often must take 
measures to mitigate the potential impacts of their facilities on protected species. To address this problem, 
the present project is developing a system designed to automatically detect and classify eagles, with the 
intent of triggering a deterrent device to scare eagles away from turbine blades. An on-blade system is also 
incorporated for detecting and image capture of any objects colliding with a turbine blade. 

Three fundamental objectives were addressed through this project: 1) detection of eagles flying in proximity 
of wind turbines using automated image classification, 2) eagle deterrence using inflatable ground-based 
kinetic visual deterrents, and 3) automated blade collision detection and on-blade image capture for 
continuous monitoring of potential blade strikes. The latter addresses the fundamental needs of eagle impact 
minimization validation without human operators.  

Following the design, implementation, and standalone validation of each system component, the integrated 
smart sensor system was tested across two field tests on a 1.5MW GE wind turbine at the Northwest Wind 

 
Figure 1 Overview of integrated system for visual detection of wild eagles, deterrence using a visual kinetic 
deterrent system, and on-blade sensor and imaging system for automated collision detection and blade strike 
imaging. The combined system was tested both in parts and as a complete integrated system across multiple fields 
tests, including testing on operational wind turbines. 
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Technology Center (NWTC), National Renewable Energy Laboratory, Boulder, CO, and through a third 
on-turbine field test at the North American Wind Research and Training Center (NAWRTC), Mesalands 
Community College, NM. In addition, we partnered with the High Desert Museum, Bend, OR, to generate 
training videos of golden eagles and other raptors, which were used for training and testing of our automated 
eagle detection machine vision algorithms. This extensive and collaborative testing and validation plan was 
essential for demonstrating a field-ready solution for detection, deterrence, and collision monitoring for 
wind turbines.  

Across the field tests, the vision system was demonstrated using unmanned aerial vehicles (UAV); the 
visual deterrent system was demonstrated, including automatic deployment; and, multi-sensor on-blade 
data was recorded across multiple wind turbine operational conditions and through more than 100 surrogate 
blade strikes using soft projectiles, including the successful demonstrating automatic image capture of 
striking objects. This data set was also used for offline development and validation of enhance collision 
detection algorithms. 

This report is structured to correspond to the Statement of Project Objectives organization: development 
and standalone testing of the eagle detection vision system (Task 1.00), development and standalone testing 
of the visual deterrent system (Task 2.00), development and standalone testing of the on-blade collision 
detection system (Task 3.00), integration and testing of the combined detection, deterrent, and collision 
detection system (Task 4.00), and complete system field testing with operational wind turbines (Task 5.00). 

As summarized in this report, the development and field validation of an integrated detection, deterrent, 
and blade collision detection system represents a critical proof of concept for future technology 
development of related detection and deterrent technologies, where both deterrent as well as collision 
detection recording devices are needed for future siting, monitoring, and operation of wind turbine 
installations, both onshore and offshore. While designed for the detection and deterrence of golden eagles, 
the proposed system is broadly extensible to avian and bat species. 
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2. Summary of Technical Objectives and System Components 

 
 Eagle Detection System using 360º Imaging and Machine Learning (Task 1.00) 

 
Overview and Background 

A robust computer vision system was developed for detecting eagles using a 360º camera view in real time, 
leveraging modern machine learning approaches. The vision system is illustrated in Fig. 2 and consists of 
a video capture system, aimed at taking and streaming video footage, and software for video processing, 
aimed at detecting the moment and location an eagle appears in the field of view. The output of the vision 
system can be used in conjunction with other sensors for eagle detection for a timely triggering of the bird 
deterrents or for initiating curtailment in future systems. This section summarizes the design, training, and 
testing of the integrated visual detection system trained for classifying eagles. 

Visual detection hardware and system design   

To ensure a sufficient video resolution and wide field of view, the system was implemented using a 360º 
video camera with 4K resolution (Fly360). The camera captures a panoramic video with the 360-degree 
field of view, and a custom mounting apparatus was design for mounting the camera on the wind turbine 
nacelle. Initial training videos were recorded to the camera’s internal memory, and a real-time remote video 
feed was implemented for use in the final integrated system.  

Automated eagle detection algorithm overview 

A unified deep-learning framework was developed for eagle detection and trajectory estimation, as 
illustrated in Fig. 2.  The automated eagle detection and classification occurs in two stages: frame-by-frame 
feature extraction, and fusion of features across time intervals. The two-stage video processing is 
implemented using a deep-learning framework, following recent breakthroughs in computer vision and 
deep convolutional neural networks (CNNs). Deep CNNs have been shown as the most accurate and robust 
detectors of visual cues, since they are automatically trained on large datasets to achieve optimality, unlike 
traditional hand-designed approaches. For fusing the extracted features and final recognition, in the second 

 
Figure 2 A 360° camera is used to capture a panoramic video. Video processing consists of two stages: feature 
extraction identifies important visual cues from every frame, and the results of this local processing are fused over 
long-range time intervals for eagle detection and trajectory estimation. The local and central video processing will be 
specified as a cascade of deep convolutional neural networks (CNN). 
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stage of video processing, we will use a deep, recurrent neural network, called Long-Short-Term Memory 
(LSTM). LSTMs can reliably model complex appearance and motion behaviors of various objects, due to 
its capability to capture long-range statistical dependencies of patterns in space and time.  

Collection of training videos with trained eagles and other raptors 

Initial model design, training, and validation were completed using publicly available videos of birds in 
flight. By using a deep neural network that will analyze videos at multiple resolutions, from fine-scale to 
coarse, simultaneously, our approach is therefore scale-invariant (over a wide range of video resolutions). 
A summary of initial model training and validation is illustrated in Fig. 3. A total of 68 YouTube flight 
videos of three species of birds was collected, including eagles, falcons, and seagulls. The videos were split 
into 2/3 for training and 1/3 for testing. We have implemented a deep neural network architecture for 
identifying the bird species shown in the video. The deep architecture consists of the convolutional neural 
network (CNN) for analyzing every video frame, and Long-Short Term Memory network (LSTM) for 
fusing CNN’s outputs across all frames toward the final video classification. The CNN+LSTM architecture 
has been trained on the training videos, and then our classification accuracy has been estimated on the test 
videos. The table in Fig. 3 shows the initial video classification accuracy. 

Automated eagle detection algorithm initial training 

To generate videos of eagle flights using the selected 360º camera hardware, two video recording sessions 
were completed using trained raptors. The first session was completed at the High Desert Museum in Bend, 
Oregon in August 2017. In coordination with the museum, a number of flights were recorded using trained 
raptors. A total of 34 videos, including seven with a golden eagle (Aquila chrysaetos) and 23 with other 
raptors (Harris’s hawk, turkey vulture, barn owl, aplomado falcon, peregrine falcon) were recorded. In 
addition, a local master falconer works with a trained golden eagle in Vale, OR, where a recording session 
was conducted in September 2017. A total of 14 movies were recorded with different flight paths and 
backgrounds. For both recording sessions, videos were recorded using the 360º camera at a frame rate of 
30 f/s and 2880x2880 pixel resolution. Several videos were recorded by two 360º cameras simultaneously. 

Automated eagle detection algorithm development and training using 360º video images 

Using the recorded videos, software was implemented that addresses the following problem statement: 
given a 360-degree video, as shown in Figure 2, automatically label each video frame with one of the two 
classes “eagle” and “non-eagle”, where the class “eagle” is assigned to a frame if it shows a flying or static 

 
 

Figure 3 For initial classifier design and training, collected YouTube flight videos of three species of birds were 
collected, including eagles, falcons, and seagulls. We have implemented a deep neural network architecture for 
identifying the bird species shown in the video; the table summarizes initial video classification accuracy.  
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eagle, and the class “non-eagle” is assigned to a frame if it does not show an eagle but either some other 
static or flying birds (raptors) and objects in the background.  

First, video frames are processed with a deep convolutional neural network (CNN), whose numbers of 
convolutional filters in each layer, and the number of layers are specified in Fig. 4a. The CNN extracts a 
1000-dimensional deep-feature vector from every video frame.  

Second, the temporal sequence of CNN’s deep features extracted from video frames are input to the 
temporal convolutional neural network (TCNN) for labeling every frame with classes “eagle” or “non- 
eagle”. Figure 4b shows the TCNN. Note that the TCNN performs temporal segmentation of the video into 
intervals where an eagle is visible and intervals where an eagle is not visible.  

It is worth noting that this implementation differs from the initial approach. The prior model used a Long 
Short-Term Memory network (LSTM) as a part of the prospective approach. However, in initial 
experiments, it was found that the LSTM requires significantly more training data for robust learning than 
is available for this application. Due to the inherent difficulty in collecting example videos of eagles, our 
training dataset is limited, and thus required a modification of the proposed approach. The implemented 
TCNN is a good alternative, as it demonstrates better performance than the LSTM in our preliminary tests.  

Initial validation using all recorded videos with trained birds:  

The CNN and TCNN were specifically trained to classify ‘eagle’ and ‘non-eagle,’ as defined by the problem 
statement above. We manually annotated every frame of 54 video clips from both field recordings, with 
lengths spanning 10-30 seconds, with the two classes. In our video annotation, we faced the following 
challenges: a) Eagles and other birds are barely visible by a human eye when flying against cluttered 
background (e.g., trees of a forest); consequently, ground truth about eagle appearance cannot be well-
defined for such videos. (b) Manual annotation is time consuming; consequently, the sizes of training and 
test datasets are inherently limited, and do not meet standard requirements for robust training and testing of 
deep neural networks. Preliminary tests conducted during the software development demonstrated the 
following. Runtime is less than 0.1s per frame, which allows for real-time video processing once temporal 
subsampling is implemented in hardware (e.g., processing every 2nd or 3rd frame, instead of processing 
every frame). We used two random splits of 28 video clips for training and 26 video clips for testing and 
obtained the average two-class (“eagle” and “non-eagle”) frame-labeling accuracy of 89.36% and 79.47% 
on training and test data, respectively.  

  

(a)       (b) 

    
Figure 4 (a) Illustration of the deep convolutional neural network (CNN) used for extracting a 1000- dimensional 
deep-feature vector from every video frame. (b) Temporal convolutional neural network (TCNN). Input to the TCNN, 
X, are deep-feature vectors extracted from each video frame. Output of the TCNN, Y, are class labels assigned to 
every video frame.  
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Field-specific validation using mixed raptor videos:  

Specifically, the High Desert Museum field test generated 34 video clips for evaluation, in which the eagle 
appears in 2030 video frames and another bird raptor appears in 620 video frames, as manually annotated 
by our students. In these videos, distances of the eagles and other birds from the camera range 
approximately between 30-150 feet. Further distances of birds are not considered, since they cannot be 
reliably seen in the video by a human, and hence cannot be annotated. Videos of these further distances are 
excluded from testing and training, as ground truth cannot be established. 

Following iterative improvement of the software, we evaluated our final software for eagle detection, where 
the goal is to correctly detect every frame in which the eagle appears vs. frames that show other bird raptors 
or no birds at all. Our final average per-frame eagle detection accuracy is 91.54% on the field-test videos; 
other results can be readily derived from the reported per-frame accuracy. This indicates that in 2426 of the 
combined 2650 video frames were correctly classified, and 224 were incorrectly classified (including both 
false positive and false negative). Our accuracy of detecting video intervals when the eagle truly appears in 
the video is 100%.   

Detection latency and trajectory estimation: 

We also evaluated our accuracy on how well we detect the start and end of a video interval when the eagle 
truly appears and disappears from the video. On average, our software has a delay of correct eagle detection 
of 4.2 video frames after the true moment when the eagle appears in the video. Also, on average, our 
software has a delay in detecting the true moment when the eagle disappears from the video’s field-of-view 
of 1.5 video frames. Finally, we evaluated our software for eagle-flight trajectory estimation over the eight 
trajectory classes – namely, moving “left”, “right”, “up”, “down”, each modified by either “toward” or 
“away” from the camera. Our average accuracy of eagle-flight trajectory estimation is 93.12%. 

Field-based testing of the integrated eagle detection hardware/software vision system: 

In addition to development and validation of the eagle detection algorithms, the integrated vision system 
was demonstrated in the field including video link and on-site processing at the High Desert Museum, Bend, 
OR, during a video collection trip. The integrated hardware system was deployed in the field and tested, 
and the videos of eagles and other raptor birds were recorded using this hardware system. The following 
hardware components were integrated for the field test: power system, camera system, video transmission 
system, video-to-frame extraction storage and buffering, and GPU processor for video analysis (HP Z840 
with NVIDIA Quadro M6000 GPU).  

The demonstrated hardware system is capable of: recording 24 frames per second of 4K, 360-degree video; 
transmitting such streaming video to a stand-alone workstation; extracting and buffering frames from the 
streaming video at the same rate of 24 frames per second; and finally, processing the extracted video frames 
at a slower rate of 10 frames per second using the software for eagle detection and trajectory estimation on 
a GPU processor. The slower video processing rate is due to the processing times required for grabbing 
individual frames from the buffer and then running the eagle detection and trajectory estimation software.  

The processing rate of 10 frames per second is nearly real-time, and it introduces a delay in eagle detection 
of less than one half of a second. This can be improved with additional computational power, or by 
processing a subset (e.g. every other) video frame; given that an eagle cannot occur for a single frame only, 
this is sufficient for the purposes of this application. 
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 Eagle Deterrent System using Kinetic Visual Deterrent (Task 2.00) 
 
Overview and Background 

One of the most effective golden eagle depredation control measures was previously reported to be a 
combination of harassment and increase of human activity [5], and a related result from the 2016 NREL 
“Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop” was that 
human-like figures are particularly effective in disturbing and harassing eagles [6].  As conspicuous 
negative visual stimuli have been shown to be the most effective method to deter eagles from flying around 
certain areas, we proposed and developed a deterrent system comprised of bright, inflatable kinetic devices 
(i.e. ‘air dancers’) to be operated on the ground to deter eagles from approaching the rotor swept area.  

Although no prior data exists for eagle reactions to air dancers, a significant amount of data and practical 
experience are available on the effect of air dancers on other birds. Research on air dancer effectiveness to 
scare wild birds was funded by a three-year multi-state USDA-National Institute of Food and Agriculture 
Specialty Crop Initiative grant. Cornell University studies on air-dancer effectiveness concluded that 
vegetable-farm yield increased by 1 to 19% by using air dancers [7].  Similar results were observed in 
blueberry farms [8] while a West Washington study found medium to high effectiveness of air dancers 
operated in Pacific Northwest sweet cherries orchards to scare birds.   

Toward testing this deterrent method, an integrated control and actuation system was implemented for 
remote activation of kinetic visual deterrents – either directly, or by integration with the automated eagle 
detection visual system (Task 1.00). The devices were tested in a variety of controlled conditions to assure 
viability at high wind velocity and over long exposure, and two limited field trials were conducted to assess 
the efficacy of the deterrent in the presence of wild eagles. This section summarizes the design, validation, 
and field testing of the visual deterrent system using kinetic air dancers.  

Visual deterrent system design and implementation   

Commercial kinetic inflatable devices (colloquially known as ‘skydancers’ or ‘air dancers’) consist of a 
fabric tube inflated by an electric fan, typically used for advertising purposes; the shape of the device leads 
to erratic, human-like movement of the fabric tube. Multiple devices were acquired and tested in 6ft, 10ft, 
and 20ft, heights; colors (orange, yellow, blue) were suggested by wildlife biologist collaborators, including 
Dr. Fernandez-Juricic Esteban from Purdue University; Dr. Esteban has identified blue in particular as a 
color highly visible  by eagles considering the background of the test site. For remote activation and use in 
the field, an electrical system was designed to provide long range (>100m) wired and wireless activation 
and deactivation of the devices, as well as standalone operation from deep cycle battery or direct wired 
power. The system is illustrated in Fig. 5 for initial electrical testing.  

Visual deterrent laboratory testing 

 
(a)     (b)    (c) 
 
Figure 5. (a) A 6ft visual deterrent undergoing initial testing in the OSU wind tunnel; (b) a simple electrical system 
for power and remote activation of visual deterrents; and, (c) initial testing of the visual deterrent system. 
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Visual deterrents were tested in controlled settings to establish viability for use in the field at wind turbine 
installations. In addition to cycle testing of the integrated electrical system and preliminary wind tunnel 
testing (Fig. 5a), representative testing is illustrated in Fig. 6. In Fig. 6a, vehicle testing was used to 
determine the relative airspeed at which the visual deterrent does not rise from the ground; prior testing at 
maximum wind tunnel velocity (18 m/s) still demonstrated ~45º relative to ground plane. At the lie-flat 
velocity (20-25 m/s), turbulence provided dynamic movement, and the flat angle may assist with visibility 
of the deterrent to eagles overhead under high wind conditions in the field, when Golden Eagles are still 
known to fly [18]. Given the nominal cut-off speed for operational wind turbines (~25 m/s), this also 
indicated that visual deterrents are likely to be kinetic whenever the wind turbine is operational. 

In Fig. 6b, initial testing of material compatibility of low-cost commercial visual deterrents for long-term 
use at a wind energy installation is shown. An accelerated weathering testing (AWT) chamber was used to 
subject visual deterrent textiles to harsh conditions (variable ultraviolet radiation, humidity, temperature, 
and water spray for approximately 300 hours). The textiles included ripstop nylon (comprising the majority 
of the deterrent) and a rubberized canvas material (forming the mounting surface to the blower). Two water 
resistant materials were chosen to use as a comparison: standard truck tarp and a waterproof-breathable 
clothing textile. Although the textiles showed some loss of coloration, it was similar across samples, and 
more significant structural degradation was not observed. 

Visual deterrent field testing 

Visual deterrent field testing involved the deployment of visual deterrent in the presence of wild eagles. 
This was conducted over two separate field tests in 2018 and 2020 under US Fish and Wildlife Service 
Eagle Scientific Collecting Permit (MB53604C-0) and Oregon Department of Fish and Wildlife Scientific 
Taking Permit (010-19, 007-20). 

Deterrent Field Test, January 2018: 

Siting: The first field test spanned January 25-28, 2018. The selected site was a clearing in the Bear Valley 
National Wildlife Refuge, located near Worden, OR. Site selection was based on reported high eagle 
activity, ease of equipment setup, and wide field of view (FOV) for spotting eagles. The site was selected 
after consulting the U.S. Fish and Wildlife Service (USFWS). The test site was a meadow with relatively 
dense forestation surrounding the perimeter, near an elevated ridgeline. The visual deterrent (VD) was 
activated from a hunting blind located approximately 30 meters into the meadow from a fire access road 
used to access the site. 

Data Collection: Two researchers were involved in this field testing. One was dedicated to filming the eagle 
reactions using a digital camera (DSLR) and directing VD deployment, while the other operated the 
deterrent and a secondary 360º camera from the hunting blind. Both bald eagles and golden eagles were 
observed. In all, there were 27 separate eagle sightings across the three days of field testing. Nine videos 
were recorded during the deployment of the VD. An additional nine videos capture eagle flights without 

       
(a)       (b)     
 
Figure 6. (a) Maximum wind velocity testing for visual deterrents Deployment at 55 mph (orange, ~25 m/s) and 45 
mph (yellow, ~20 m/s) for the 6- and 20-foot variants. (b) Accelerated weather testing (AWT) of deterrent materials 
compared to common exterior-use waterproof-breathable fabric (orange) and tarp (yellow) materials; post-AWT 
samples at right. 
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the deployment of the VD, for a total of eighteen videos. In instances where eagles were not recorded with 
the DSLR camera, there may have been multiple birds in the air at once, or the eagle flew over rapidly and 
could not be captured in time. 

Discussion of Results: Of the nine VD videos, four seem to show eagle reaction in the presence of the VD 
activation. The remainder have difficult to spot targets, or the target became occluded by clouds or trees 
before the VD was deployed. In general, eagles tended to stay over the ridgeline, as in Fig. 7, which meant 
that their distance was anywhere from 300-500 meters from the VD and filming location. For most of the 
videos, the eagles are transiting towards the nearby valley to the east. In some circumstances, the eagles 
exhibited circling behavior near the ridgeline.  

In the most likely example of a potential eagle reaction to the VD, the eagle can be seen circling near the 
ridgeline; just around the time of deployment, the subject appears to switch to a linear flight path in the 
direction of the valley. At approximately 30 seconds after deployment, the subject performed one more 
circling maneuver between 300 and 500 meters out from the VD, then disappeared over the ridgeline and 
out of line of site (LOS).  

While these results may show potential for the use of these deterrents for discouraging activity near wind 
turbines, insufficient data was collected to provide a statistically relevant conclusion about the effectiveness 
of the deterrent. 

Deterrent Field Test, January-February 2020: 

Overview: As before, an outdoor field test was planned to be completed in the vicinity of wild eagles to 
determine the effectiveness of the system in deterring or altering the flight path of a nearby eagle. The 
deterrent system consists of kinetic visual deterrent (VD) that can be remotely triggered by a computer 
using a wireless link. For the planned tests, the deterrent was to be installed in a location of high eagle 
traffic, and field researchers located nearby would monitor eagle flights and remotely deploy the visual 
deterrent while recording video footage for analysis of flight patterns. In real time or through post 
processing, the videos and corresponding field notes could be used to assess if an eagle’s flight path had 
been altered by the visual deterrent deployment. To improve likelihood of useful test outcomes, the fields 
tests were planned in coordination with wildlife biologists, one of whom was present for eagle videography 
and flight assessment. 

Siting: The second field test spanned January 28 – February 3, 2020. The test location and test timing were 
identified in coordination with U.S. Fish and Wildlife Service personnel, as well as field biologists local to 
the Pacific Northwest. A test site was identified at a BLM site north of McFall Reservoir, near Klamath 

          
 
Figure 6. Left: a close flyby captured during testing. Right: Test setup, with hunting blind and researcher in distance. 
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Falls, OR, where wild eagles roost annually. Many eagles were observed flying over this area during 
preliminary scouting, and it could be seen easily from various flight paths to the identified roosting area.  

The VD was placed in an open field approximately 200 ft east of the area access road. A hunting blind was 
setup approximately 150 ft west of the road, and all vehicles and non-essential equipment much further 
north. The visual deterrent system and equipment used for the experiment were setup and dissembled at the 
beginning of each field test day. As such, the location of the deterrent system and hunting blind changed 
slightly every day, but by less than approximately 10-20 ft. Two colors and heights of the air dancer were 
used for this experiment: blue (10 ft) and yellow (30 ft).  

Data Collection: Two researchers were involved in this field testing. A wildlife field biologist and wildlife 
videographer filmed eagle flights and noted observed reactions in real time, while the other operated the 
deterrent from the hunting blind. Both researchers were located in the hunting blind. Both bald eagles and 
golden eagles were observed. The two key time frames to obtain wild eagle reaction to the visual deterrent 
(VD) system would be when they leave the roost to feed after sunrise and when they come back to roost 
before sunset. When an eagle was spotted flying in the direction of the VD system, the VD was actuated, 
and eagle behavior was observed and noted in real time, in addition to capturing video through a telescopic 
lens and DSLR camera. For each recording, the relative elevation of the bird from the VD system was 
estimated and noted. The VD system was deployed when the wild eagle was approximately 200-300m from 
the VD; the deterrent was not deployed if the eagle was further away. Written observations were also 
collected if video recordings were unable to be captured. 

Over five observation days, 43 eagles in total were observed, including both golden eagles and bald eagles. 
Of these, 16 eagle flights were recorded on video; 7 in which the VD was deployed, and 9 in which the VD 
was not deployed. 

Discussion of Results:  

For the first field test, eagle reactions were classified using qualitative assessment of change of flight pattern 
by the field researchers. In the second field test, a similar qualitative metric was used, but in this case 
assessments were made in real-time by an experienced wildlife biologist, raptor spotter, and wildlife 
photographer (Bryce Robinson). A majority of the videos and observations noted by the wildlife biologist 
during the field test demonstrate no clear reaction of observed wild eagles to the activation of the visual 
deterrent system. Some videos and observations may demonstrate minor reactions but cannot be definitively 
classified as such. From field notes, one strong observed reaction not captured on video was of an adult 
bald eagle flying. What is believed to be the same eagle flew approximately 50 ft above the ground during 
three consecutive days. On the first two days, the yellow visual deterrent was actuated during this bird’s 
flight route with no verifiable reaction. On the third day, the blue visual deterrent was deployed when the 

       

   
 
Figure 7. Left: Siting and test setup near Klamath Falls, OR. Right: Frame from video recording using a DSLR with 
a 600mm zoom lens from the hunting blind.  
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eagle was about 100 m in front of the air dancer, at which point the adult bald eagle reacted demonstrably 
by flapping its wings and changing its flight path. 

While these results may show potential for the use of these deterrents for discouraging activity near wind 
turbines, insufficient data was collected to provide a statistically relevant conclusion about the effectiveness 
of the deterrent. Further, over the course of two field test excursion and a total of eight observation days 
with the assistance of an experience wildlife field biologist and videographer, 25 flights were captured on 
video, demonstrating the likely challenge in collecting sufficient evidence of deterrent efficacy using this 
approach. 

 Blade Collision Detection System with On-Blade Image Capture (Task 3.00) 
 
Overview and Background 

An on-blade, multi-sensor electronic system was 
developed to monitor blade movement, position, 
and vibration to detect when an object strikes a 
turbine blade. A small CMOS imager, similar to 
a smart phone camera, is integrated in the sensor 
unit looks down the length of the blade to record 
video, and a set of image frames can be recorded 
just before and after a collision or blade strike.  

If an impact is detected, images are saved and can 
be uploaded for off-site analysis of the object 
striking the turbine blade to enable event 
confirmation, eliminate false-positives, and allow 
post-impact species or object identification. 
Including this combined functionality in the 
integrated impact minimization system closes a 
critical loop in validating the efficacy of 
deterrence, as well as providing ongoing 
monitoring of impacts and take. 

This section summarizes the design and implementation of the on-blade impact detection module (Fig. 8). 

On-blade impact detection system architecture 

 
 
Figure 8. High-level block diagram of on-blade collision 
detection system with automated image capture of 
colliding objects.  

      

 
Figure 9. (top) Custom multi-sensor module printed circuit board (PCB) integrates accelerometer, gyrometer, contact 
microphone readout, and power management into a small circuit board for integration into on-blade system. (bottom) 
Custom sensor PCB connects to small single-board computer and CMOS imager for complete, wireless system. 
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As illustrated in Fig. 8, the multi-sensor architecture includes an inertial measurement unit (IMU) that 
incorporates both accelerometer and gyrometer sensors to measure turbine blade movement and position, a 
contact microphone for sensing vibration in the turbine blade surface, a small camera for capturing video 
along the blade length, local on-board computation, and a wireless data connection.  

The IMU provides advanced multi-axis motion tracking using an advanced MEMS device. For the blade 
impact detection (BID) system, the InvenSense MPU-9250 has been selected for its unique combination of 
low-power consumption in active and idle modes and on-board motion co-processor. From a system level, 
this IMU will provide: 3-axis accelerometer data, which will provide primary vibration measurement for 
detecting blade impacts, as well as baseline vibration measurement for correcting for noise in active turbine; 
3-axis gyroscope, which can provide blade position and rotational speed at the time of impact; and, a 3-axis 
magnetometer, which may be used as a compass to estimate turbine position (direction). The IMU 
accelerometer can operate at up to 4 kHz sample rate, for measurement of up to 2 kHz mechanical vibration 
frequency, although in most experiments this is operating at a lower 30 Hz sample rate. The IMU requires 
<20μA under continuous accelerometer operation at 30 samples/second, and ~8μA when not in use.  

The IMU, contact microphone front-end amplifier readout circuity, and power management circuitry are 
incorporated on a custom printed circuit board (PCB), as illustrated in Fig. 9. This PCB was designed for 
direct interfacing with a single board computer (SBC, Raspberry Pi Zero W) and a CMOS image module 
(Raspberry Pi Camera v.2). The SBC provides system control, data logging, video capture, and wireless 
data interface over 2.4GHz WiFi. The integrated sensor system shown in Fig. 9 was used in initial on-blade 
testing (Section 4.00). Following initial testing, an enhanced BID electronic subsystem was developed, 
shown in in Fig. 10, which adds a secondary microcontroller (PIC32MX) for time synchronization of the 
IMU and contract microphone data streams, and uses a more powerful SBC (Raspberry Pi 3B+) to provide 
additional local computer power for automated collision detection algorithms.  

Custom firmware for the microcontroller was developed in C, which configures all system sensors and 
streams time-synchronized digital data from the IMU and contract microphone to the SBC. Custom 
software for the SBC was developed for recording sensor data, looping and recording on-blade camera data, 
and providing wireless control and data access was developed primarily in Python. 

  
 
Figure 10. (left) Annotated block diagram of second and final version of collision detection system electronics module 
following first round of on-blade testing to increase local compute power and improve sample synchronization for 
IMU and contact microphone data streams. (right) Final system in mounted in custom modified enclosure. 
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Blade impact detection system enclosure and fixturing 

A mechanical housing for the BID was designed for containment and protection of all electrical components 
while installed for on-blade testing on an operational wind turbine, which is detailed in Fig. 11. The 
enclosure is a modified IP67-rated commercial enclosure. Custom internal fixtures include two additively 
manufactured pieces to mount the SBC, camera, multi-sensor PCB, and other component.  

Blade impact detection system laboratory testing 

Laboratory-based testing and verification of the BID module electronics was conducted using a test stand, 
which was constructed to apply repeatable impacts both with and without added system noised for verifying 
functionality of hardware, firmware, and software, and for initial development and validation of automated 
collision detection algorithms. As pictured in Fig. 12, the test stand includes a beam anchored at one end 
as a test object, a collision detection module with CMOS image sensor installed at the anchored root of the 
beam, and an automated dropper installed above the beam tip.  

A mechanical shaker is attached to the free end of the pipe. The shaker is setup to add mechanical vibrations 
onto the pipe to test the system’s ability to handle noise, simulating the mechanical noise induced on a 
turbine blade. The shaker is set to vibrate the pipe with a waveform superimposing a 20Hz sine wave and 
a gaussian white noise source. To test the impact detection the system was tested with no noise (idle), and 
using an input noise level of 10 mV RMS, 15mV RMS, and 20 mV RMS.  

The impact detection module captures a video sample when triggered by the automated detection of an 
impact (Section 3.4), in order to capture still frames before, after, and at the point of impact. As tested, the 
CMOS image sensor runs a continuous loop buffer, and each automatically captured video file is a 10 
second clip of the impact with video centered on the impact (showing 5 seconds before and after the impact 
detection).  

  
 
Figure 11. (left) Exploded view of the mechanical housing for BID system and corresponding electrical components. 
(right) External view of assembles BID module in modified IP67-rated enclosure. 
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Subtask 3.40: Blade Sensor and blade camera signal processing  
Subtask Summary: As a subset of firmware development for the impact detection module, digital signal 
processing (DSP) algorithms will be implemented for automated detection and classification of impact 
events in real time using accelerometer and contact microphone data streams; an impact can be positively 
identified using amplitude!based or power spectral density!based analysis of the blade sensor signals. Any 
detected impact will additionally trigger (or store from buffer) a near!simultaneous visual image along the 
length of the blade from the integrated CMOS imager.  
Current Status: TASK ONGOING  
Firmware and software drivers for acquiring still images from the CMOS imager has been implemented, 
as has the digital interface firmware for real-time contact microphone recordings. Signal processing 
firmware is currently in development and will be informed by initial contact microphone recordings, 
which will occur in M7; this sub-task is delayed by 1-2 months due to the recent completion of the 
complete impact detection electronics module.  
 
Mechanical Housing Design: The mechanical housing was designed for simplistic and effective 
containment and protection of all electrical components. The enclosure itself is an IP66 rated 
case, which needs minimal modification. Custom parts primarily include two additive 
manufactured pieces (indicated by arrows in Figure 9). The upper printed component acts as the 
battery holder, which can be quickly removed to access the Raspberry Pi, camera, and other 
critical components below. An angled lens is installed to reduce glare seen by the camera. Off 
the shelf components have been ordered. 
 

 
Figure 9. Exploded view of the mechanical housing and corresponding electrical components 
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Typical test data are shown in Fig. 12, where raw sensor data recorded by the BID electronics include 3-
axis accelerometer and 3-axis gyrometer from the IMU, as well as digitized contact microphone data. A 
preliminary threshold-based impact detection algorithm was used for collision detection, which 
automatically stores to memory the most recent video buffer, providing image capture of the colliding 
object. In addition, both Bluetooth and WiFi wireless connections to the integrated BID electronics were 
tested to verify system connectivity for overall system integration. 

 System Integration and Full System Testing (Task 4.00) 

Overview and Background 

Full-system field testing was conducted in an outdoor field environment on the Corvallis campus of Oregon 
State University to verify all system functionality following relocation from the indoor laboratory 
environment to a separate outdoor location, including transport and assembly of all system components. 
This complete test served as a ‘dry run’ in advance of follow-on testing on full-scale wind turbines at 
Mesalands Community College and NREL-NWTC. 

 
 
 
Figure 12. (left) A test apparatus constructed to verify functionality of collision detection and image capture 
subsystems, including automatically captured image frames from a detection collision. (right) Raw sensor data gathered 
from the accelerometer and gyrometer on the system, as well as from the contact microphone interface. Sample test 
impacts are annotated and appear across all channels. Data shown was recorded in the presence of induced mechanical 
vibrations from the shaker, which is most visible in the y-axis accelerometer recording. 
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System integration 

The overall system architecture is illustrated in Fig. 13, where a combination of wired and wireless 
connections is used for system integration, control, and remote data acquisition. Each on-blade collision 
detection and image capture module connects to a router in the nacelle through a 2.4GHz WiFi link. The 
360º camera is installed atop the nacelle and is connected over wired USB and HDMI connections to a 
video encoder and computer located in the nacelle; this computer provides local video stream processing 
for broadcast to the turbine base, and it provides wireless control and data interfaces for on-blade modules.  

A wired ethernet or fiber optic link connects the nacelle computer to a central computer located in the tower 
base; this central computer provides additional computational processing power for operation of real-time 
video stream processing and eagle detection algorithms. 

Visual deterrents are triggered remotely, and both wired (RS-485) and wireless (sub-GHz) links were 
developed and tested. Custom software handlers running on the nacelle and tower base computers were 
used for remote control of and data acquisition from on-blade modules, as well as providing manual and 
automated triggering of visual deterrents. 

In additional to the development of a connection network and handling software, additional custom 
fixturing was designed and fabricated for mounting the 360º camera on the nacelle, and for providing power 
to on-blade modules through the turbine hub slip ring; these are shown in Fig. 14.  

Summary of full-system field tests: 

Following benchtop validation of individual and integrated system components, the complete system was 
disassembled in the lab and relocated to a combined outdoor/indoor field test location on the Oregon State 
University campus. Subsystems intended for outdoor use, including visual deterrents, impact detection 
modules, and 360º eagle detection camera, were located outdoors to mimic real environmental operating 
conditions; subsystems intended for indoor use, include the tower base computer (algorithm processing) 
and in-nacelle computer (wireless interface to and control of blade-mounted modules and nacelle-mounted 

 
 
Figure 13. (left) Intended location of detection, deterrent, and collision detection system components on an installed 
wind turbine. (right) Network diagram including wired and wireless connections among subsystems for control and 
data acquisition across the integrated system. 

 

Overview of eagle detection, collision detection, and 
eagle deterrent integrated system:
• 360º camera mounted on nacelle 
• On-blade collision detection on each blade (3X)
• Kintetic visual deterrents with remote trigger
• Computation and control in nacelle and on ground

Data and control integration map:



DE-EE0007885  
A Heterogeneous System for Eagle Detection, Deterrent, and Wildlife Collision Detection for Wind Turbines  

Oregon State University 

Page 19 of 38 

360º camera) were set up at an adjacent indoor location to mimic operational conditions. Testing proceeded 
over the course of a day; all tests were tested multiple times (generally three) for robust verification, and 
all were successful. 

Blade Impact Detection (BID) Sub-system: Successful verification of the blade impact detection module 
included: on/off control by the tower computer, simultaneous wireless connection to all three impact 
detection modules, on-blade camera communication and alignment, on-blade camera exposure calibration 
and image capture, recording of raw data files from all on-blade sensors (contact microphone, 
accelerometer, gyrometer), simultaneous continuous recording of on-blade videos and sensor data streams 
(static, moving, and tapping), and deterrent trigger recording using artificial stimulus.  

Visual Deterrent Sub-system: Successful verification of the visual deterrent detection module included: 
basic on/off control of visual deterrent fan module, remote on/off control using a wired connection, remote 
on/off control using a wireless link, remote visual deterrent start-up in random sequence following a 
software-define signal, and automated remote triggering of visual deterrent start-up using an artificial 
stimulus representing ‘eagle-detected’ signal. 

Wireless Connectivity Testing: Successful verification of the wireless system connections included: 
communication range testing between the tower computer and the remote visual deterrent control box with 
verified range exceeding 250 meters, and verification of the communication range between the BID on-
blade units and the in-nacelle computer exceeding 10m. All wireless connections were verified for 
connection, data transfer for control, and re-connection after power cycling. 

360º Camera Sub-system: Successful verification of the 360º camera sub-system for on-nacelle use 
included: on/off control and start/stop recording by via wireless network connection verification of recorded 
file name and location, video recording and real-time streaming over the wired network, and verification of 
video recording exposure control in multiple lighting conditions. Additional field testing of the automated 
eagle detection hardware and software sub-system in the presence of live birds was conducted in an outdoor 
field environment at the High Desert Museum in Bend, OR to verify all system functionality following 
relocation from the indoor laboratory environment to a separate outdoor location, including transport and 
assembly of all system components, and including classification of live birds (eagle and non-eagle). These 
field tests were further detailed in Section 2.1. 

Through these tests, all sub-system functionality and interconnectivity was successfully validated. 

 

 

  
 
Figure 14. (left) Additional custom fixturing was designed and fabricated for mounting 360º camera on the nacelle. 
(right) Custom DC-DC power conversion assembly for powering on-blade modules from the turbine hub. 
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3. Summary of Field Testing (Task 5.00) 
Three separate field tests were conducted over the course of the project to validate functionality of 
the complete integrated detection and deterrent system on an operational wind turbine, and to 
provide real-world data on which to develop, train, and test automated impact detection algorithms. 
This section summarizes each of these field tests, including installation, data collection, and 
lessons learned for future development.  

 
 Field Testing at NREL-NWTC, Boulder, CO – October 2018 

Field Test Overview  

The first round of on-turbine field testing was completed 10/15/18-10/19/18 on a 1.5MW GE wind 
turbine at the NREL National Wind Technology Center (NWTC) facility, located at the Flatirons 
Campus in Boulder, CO. The primary intent of these field tests was to verify installation and 
operation of the complete integrated detection and deterrent system using an operational wind 
turbine, and to provide initial sensor data recording from all sensors and cameras, both for 
downstream analysis and to be used for further system improvement in advance of additional on-
turbine testing in future field tests. For eagle detection, programmed fixed-wing drone flights were 
used as surrogate birds for evaluation of the 360º imaging system. For blade strike and collision 
detection, small surrogate projectiles were used. In addition, data was recorded from all sensors 
across multiple operational conditions for downstream assessment. Test planning, coordination, 
and execution was done in close collaboration with NREL-NWTC staff.  

Installation of blade impact detection (BID) modules and 360º camera 
BID modules were installed onto the root of the leading edge of each of the three turbine blades, 
as shown in Fig. 15. Each unit was secured to the blade surface using 3M VHB double sided tape 
following surface cleaning. Each module was positioned with the on-blade camera facing down 
the leading edge of the blade. As an additional measure, the bottom perimeter of the box was 
secured with additional tape, and a tape strap was applied across the box and secured to the blade. 

 

 
 
Figure 15. Installation of multi-sensor modules and contact microphones on each blade of a GE 1.5MW wind turbine 
for collision detection and image capture, and a 360º camera installed on the nacelle roof for eagle detection. 
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A contact microphone was installed on the blade next to each BID module using tape. Care was 
taken to ensure that the entire metal surface of the transducer was in contact with the blade’s 
surface.  
The BID units were powered using a Sola power supply connected to a service power outlet in the 
hub of the turbine. The power wires were run though the hub shroud to each blade unit. Cables 
were connected to the units via a service loop for strain relief, and excess wire was secured to keep 
it free of any moving parts during blade pitching. 
The 360º camera was attached to the nacelle mount by telescopic monopod and C-clamps, as 
shown in Fig. 16. The nacelle mount connected to an existing lidar bracket on the nacelle roof and 
was secured by an aluminum adapter with angle bracket through hole. Power and data cables for 
the camera routed through an access hatch in the nacelle and connected to the nacelle computer 
for video data stream processing. 
As illustrated in Fig. 13, a wireless router and compact computer were installed in the nacelle for 
wireless connection to all three on-blade modules and wired connection to the 360º camera, and a 
separate computer was installed in the tower base for real-time video stream processing. 
Installation and test of visual deterrent system 
The visual deterrent system was installed on ground, with an approximately 10 meters distance 
next to the turbine tower base, as shown in Fig. 16. The visual deterrent controller (‘Remote 
System Box’) communicates with the tower base computer through a local sub-GHz wireless link. 
As the eagle detection algorithm runs on the tower base computer, this enables automated deterrent 
triggering based on a programmable threshold of eagle classification confidence. 
In our field testing, we successfully triggered the visual deterrent by remotely sending trigger 
signals representing artificial stimuli; in practice, this would be triggered by the eagle detection 
system if eagles were detected in the 360º camera video stream from the nacelle roof. As tested, 
the communication range between the tower computer and the visual deterrent control box can be 
greater than 250 meters. 
 
  

 
 
Figure 16. Installation and testing of visual deterrent near the base of the 1.5MW wind turbine. The deterrent is 
activated by an artificial stimulus; in practice, this would be triggered by the eagle detection system (Task 1.00) if 
eagles were detected in the 360º camera video stream from the nacelle roof. 
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Data collection from 360º camera using drone flights 
Video streams from the 360º camera to the in-nacelle laptop via HDMI, and an example 360º video 
frame is shown in Fig. 17. As can be noted it provides a field of view of the entire azimuthal sweep 
(North, South, East West) and the elevations expected for the species of interest (e.g. eagles). 
A fixed-wing drone was used as an eagle surrogate, providing images of a known-size flying object 
from various 3D positions relative to the 360º camera. Direct triggering of visual deterrent from 
drone was not possible, as the classifier is trained for eagle/non-eagle and not for drones (all non-
eagle); as such, this was not a test of the binary eagle classifier. Instead, drones were used to 
capture relavant video from the nacelle with an object of known size and known (via GPA) distance 
from the camera. A total of five drone flights were performed near the wind turbine, following 
installation and initial validation of the 360º camera system. The operating drone, a FireFLY6 
PRO, has a wingspan of 1524 mm and length of 828 mm with a cruise speed of 30-35kts (15-
18m/s), as shown in Fig. 17; this is comparable to a typical eagle soaring speed of ~14-15 m/s. 
Drone flight paths were recorded using on-board GPS; for the path shown in Fig. 17, the maximum 
distance from the camera position to the drone is approximately 350 meters. Flight paths included 
loops up to 600m from the turbine tower. 
An example drone image is shown in Fig. 18, where the drone is approximately 75m from the 
turbine tower. The green bounding box was generated by an automated motion detection algorithm 
running in real-time to mimic the eagle detection algorithm; this is approximately 40 x 40 pixels. 
The minimum drone image detected by the motion detection algorithm is 10 x 10 pixels, and the 
minimum drone image recognized by visual inspection is 5 x 5 pixels. As the 360º camera’s 
hemispherical lens indicates pixel density decreases approaching the zenith (i.e. center of the 
image), objects that are nearer or below the horizon will have a higher pixel density for the same 
distance from the camera. While an important performance tradeoff for single-imager 360º 
cameras, in this application it is possible (though not tested here) that the higher pixel density at 
the horizon may be beneficial for longer-range detection. 

Data collection from on-blade modules 

 
Figure 17. Sample image from nacelle-mounted 360º 4K camera (left); fixed-wing drone used for programmed flights 
and 360º capture (middle); and, GPS recording of drone flight relative to the wind turbine and camera postion (right). 
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Following installation of on-blade collision detection modules, a series of tests were performed to 
verify that the units were operational. After power-on, the BID modules automatically connected 
to the local wireless network, and all additional tests were performed over remote log-in to the 
BID modules through the wireless network.  
Each sensor was verified, as shown in Fig. 19. A still image was taken from each on-blade imager 
to verify that the camera was aligned and in focus. Simple tapping tests were performed with a 
rubber mallet to verify contact microphone functionality, and for downstream analysis of 
sensitivity to detecting vibrations. Tapping locations included each blade next to the installed BID 
module, on the shroud of the hub, on the upper tower wall, and on the base of the tower.  
A variety of turbine motions were performed while recording from all contact microphone and 
IMU sensors: single blade pitching for each blade, all blades pitching simultaneously, turbine in 
normal running mode, turbine while generating power, turbine stopping, and on a stopped turbine. 
As an example, Fig. 19 shows recorded accelerometer data from a blade pitching from 85° to 0°. 
Over the course of the field test, a total of 25 tapping and turbine motion experiments were 
recorded, resulting in multi-sensor data recording across all three blades. 
  

 
Figure 18. Sample image from nacelle-mounted 360º 4K camera (left); zoom in of fixed-wing drone in 360º camera 
frame with automatic bounding box based on motion detection (middle); and, GPS recording of drone flight relative 
to the wind turbine and camera postion (right). 

 

 
Figure 19. Initial validation of on-blade collision detection modules includes remote testing of all sensor subsystems; 
on-blade imager for down-blade image capture, on-blade IMU (accelerometer and gyrometer), and on-blade contact 
microphone. All three on-blade modules were validated following installation prior to structured data collection. 
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Surrogate blade collision tests 
To emulate avian blade strikes, surrogate projectiles were launched at the turbine under a variety 
of operation conditions, while on-blade collision detection modules recorded signals on all three 
blades. Projectiles included normal tennis balls, tennis balls filled with water, and small fingerling 
potatoes, fired using compressed air. A boom lift was used to fire from a position closer to the 
turbine blade, approximately 100ft from the ground. These tests include: shooting at a still turbine 
with normal tennis balls, shooting at a moving turbine with normal tennis balls, moving turbine 
with filled tennis balls, and moving turbine with potatoes. 
In summary, we successfully recorded 14 impact events for regular tennis balls interreacting with 
stationary blades, 12 impact events for regular tennis balls interreacting with rotating blades, 16 
impact events for tennis balls filled with water interreacting with rotating blades, and potatoes 
interreacting with moving blades. Field notes were taken on-site for each impact. 
An example data recorded during a tennis ball impact is shown in Fig. 21, recorded by the on-
blade module on the struck blade. The slow oscillation seen in the accelerometer data correspond 
to the wind turbine blade rotation.  

 
Figure 20. Surrogate blade strikes were conducted using soft projectiles fired at the blade using compressed air. 
Shown at right is an image of two tennis balls just after striking the blade, captured automatically by the on-blade 
collision detection module. 

 
Figure 21. Blade strike by surrogate projectile (tennis ball) recorded using the on-blade sensor module.  
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Summary of data collected  
Over the five-day field test, installation procedures and baseline functionality of all hardware 
subsystems and real-time communication among all parts were verified, including 360º visual 
detection from the nacelle, ground-based visual deterrent deployment, and on-blade sensing and 
imaging for collision detection. The eagle classification algorithm was not included in this testing. 
Video recordings of five fixed-wing drone flights were taken from the nacelle-mounted 360º 
camera, allowing downstream analysis of object size vs. distance and pixel density for the selected 
camera module. The visual deterrent system was successfully operated on-site with a trigger signal 
simulating eagle detection. More than 300 separate multi-sensor recordings were created using the 
on-blade collision detection modules, providing a rich data source for downstream analysis of on-
blade baseline vibration and motion artifacts. Multi-blade recordings for more that 40 surrogate 
projectile impacts can be used for offline development and test of collision detection algorithms 
using real-world data. Preliminary thresh-hold based detection demonstrated viability of the 
automated image capture functionality. 
 

 Field Testing at Mesalands Community College, Tucumcari, NM – April 2019 

Field Test Overview  

The second round of on-turbine field testing was completed 04/29/19-05/03/19 on a 1.5MW GE 
wind turbine at the North American Wind Research and Training Center (NAWRTC) facility at 
Mesalands Community College, Tucumcari, NM. Between the previous field testing at NWTC 
and this second field test, the on-blade collision detection module internal electronics were 
redesigned as described in Section 2.3 and shown in Fig. 10, based on lessons learned from the 
first round of field testing and post-test data analysis. As such, the primary goal of this second on-
site field test was verification of subsystem functionality and real-time communication among all 
parts; updated on-blade impact detection and imaging modules, nacelle-mounted 360º camera, and 
ground-based visual deterrent system. This verification was successfully achieved. The eagle 
classification algorithm was not included in this testing. 
Vibration data were recorded by accelerometers, gyrometers, and contact microphones integrated 
in the on-blade units for a variety of operational conditions and turbine motions, including free 

 
Figure 22. Installation and verification of system components on a 1.5MW GE wind turbine at NAWRTC, Mesalands 
Community College, Tucumcari, NM.  
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and generating rotations, blade pitching, and nacelle rotations. Down-blade images were 
successfully captured by the on-blade unit. Test impacts using surrogate objects were performed, 
providing recorded on-blade vibration data for 15 confirmed impacts. Tapping tests and free-
running recordings provide additional information on vibration sensitivity and background noise. 
The kinetic visual deterrent system was successfully operated on-site, triggered remotely following 
a signal of a simulated eagle detection. 

System Installation 
As updates to the collision detection module were largely internal, installation procedures followed 
the same process as in Section 3.1 and are not duplicated here. An overview of the installed system 
components is provided in Fig. 22. 

Data collection from on-blade modules  
Data collection proceeded as in Section 3.1, including post-installation system verification and 
recording across all sensor modules. As before, sensor recordings were taken across multiple 
turbine movements: blade pitching, turbine yawing, turbine running, turbine braking, turbine 
shutdown. A typical recording of all blades pitching from 85º to 0º is shown in Fig. 23. A total of 
11 turbine motion event trials were recording across all three on-blade modules. 
Tapping tests were also conducted as in Section 3.1, including tapping locations on each blade and 
on the turbine tower; a typical recorded tapping test is shown in Fig. 24. 

Surrogate blade collision tests 
Blade collisions were performed using surrogate projectiles following the same procedure 
described in Section 3.1. However, as at NWARTC there was no access to a boom lift to elevate 
the air cannon, overall accuracy and efficiency of our impact simulation testing was reduced. 

 
Figure 23. Typical data recorded from on-blade multi-sensor modules, with blades pitching from 85° to 0°; pitching 
begins at  approximately 85s, and the impulse visible just prior to this is the mechanical pitching lock being opening 
at the blade hub. 
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Combined with weather and installation delays, only one field test day was used for blade strike 
testing, during which we collected 55 recordings (55 on each on-blade module), with 13 of those 
recordings containing blade impacts. 

 
Summary of findings 
A primary goal of this testing was to verify our installation procedures and test methods in 
preparation for our final round of up-turbine testing at NREL later in 2019. While onsite at 
Mesalands, we were able to fully install the entire system on the wind turbine, verify correct 
functionality of all hardware components, and disassemble the system. The eagle classification 
algorithm was not included in this testing. 
The BID modules for these tests used an improved version of the contact microphone recording 
electronics that were used in our previous NREL-NWTC tests. Analyzing the frequency content 
of the new contact microphone data, we can see improvement over the prior contact microphone 
circuit at eliminating the 60 Hz line noise tone and its harmonics.   
Fig. 25 highlights the new contact microphone signal in the presence of a surrogate impact event 
by a tennis ball. In this it should be noted that the average noise level is lower, less than 3 analog-

 
Figure 24. Typical data recorded from tapping on one of the blades (middle column), with the resulting vibrations 
seen across sensors (accelerometer, contact microphone, gyrometer) and across all blades. 
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to-digital converter (ADC) codes (y-axis), or about 9 mV, and without the low frequency or 60 Hz 
noise present in the prior contact microphone signals.  
Continuing the analysis of the new contact microphone data we find that the new system is more 
sensitive to vibration and impacts. In designing the updated contact microphone circuit, additional 
gain was provided to further amplify the signal in hopes to increase sensitivity for collision 
detection. This had a side effect of causing the system to be more sensitive to wind noise on the 
contact microphone (Fig. 25), which will be mitigated by improved wind isolation in future tests, 
as described in Section 3.3. 
  
  

 
Figure 25. SNR is improved over the prior system (left); increased sensitivity also picks up more wind noise while 
mounted on the blade, so future installations will include a wind cover (Section 3.3). 
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 Field Testing at NREL-NWTC, Boulder, CO – July 2019 

Field Test Overview 

The third and final round of on-turbine field testing was completed July 19-26, 2019 on a 1.5MW 
GE wind turbine at the NREL National Wind Technology Center (NWTC) facility, located at the 
Flatirons Campus in Boulder, CO. All systems were installed and verified for functionality and 
systems communication. Tests employed the final iteration of the multi-sensor on-blade modules, 
including enhanced contact microphone electronics and updated mounting approaches, 
incorporating learnings from the previous NWTC tests. Over several days, data was recorded using 
multi-sensor modules installed on all three turbine blades, in a variety of operational conditions 
(rotating, idle, pitching, generating, etc.). The eagle classification algorithm was not included in 
this testing. 
Among planned and verified test objectives, the visual deterrent was tested with automatic 
deployment after target motion, and multiple unmanned air vehicles (UAV) flights were 
performed; 360º camera footage was taken of the programmed UAV flights, as well as from an 
additional (non-360º) nacelle-mounted camera. Numerous artificial blade impacts were performed 
using tennis balls and organic projectiles in multiple operating conditions and recorded. Test 
planning, coordination, and execution was done in close collaboration with NREL-NWTC staff.  

System installation and data collection 
Installation procedures followed the same process as in Section 3.1 and are not duplicated here. 
The primary modification is the installation of a custom wind cover for the contact microphone at 
each on-blade collision detection module to decrease baseline noise. An overview of the installed 
up-turbine system components is provided in Fig. 26 and Fig. 27. 
Summary of data collection from integrated system components 
Data collection proceeded as in Section 3.1, including post-installation system verification and 
recording across all sensor modules, as well as surrogate blade strikes using projectiles launched 
from a boom lift; representative images are shown in Fig. 28. As before, sensor recordings were 
taken across multiple turbine movements: blade pitching, turbine yawing, turbine running, turbine 

 
Figure 26. Installation and of final on-bladed system components on a 1.5MW GE wind turbine at NREL-NWTC in 
Boulder, CO. Multi-sensor module is shown, along with image capture and live stream from on-blade imager. The 
contact microphone now includes a custom wind cover to mitigate added wind noise sensitivity (Fig. 25). 
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braking, turbine shutdown. Overall, 214 multi-sensor data recordings were recorded from the blade 
sensors including 70 surrogate blade strikes, providing a rich data source for algorithm 
development. Representative on-blade sensor recordings are shown in Fig. 29-32, including blade 
strike images captured automatically by the on-blade imagers following detection collisions. 
 
  

 
Figure 27. Installation and of final nacelle system components on a 1.5MW GE wind turbine at NREL-NWTC in 
Boulder, CO providing both 360º camera and high-resolution camera images and video for testing.  

 
Figure 28. Data collection includes surrogate blade strikes using projectiles (tennis balls and potatoes), as well as 
programmed fixed-wing UAV flights for recording 360º and high-resolution video images from the nacelle. 



DE-EE0007885  
A Heterogeneous System for Eagle Detection, Deterrent, and Wildlife Collision Detection for Wind Turbines  

Oregon State University 

Page 31 of 38 
 

 
Figure 32. Annotations of typical non-collision turbine and blade actions visible from on-blade sensors, including 
blade rotation, blade pitching, and turbine startup. 

 
Figure 29. Typical time-synchronized data taken across all three blade-mounted sensor modules (left); and, subset of 
Blade 1 sensor data with a tennis ball impact visible on all sensor types (right). 

 
Figure 30. Zoom in of contact microphone data 
during a blade collision using a tennis ball as a 
surrogate projectile. 

Figure 31. Automatically saved images from on-blade 
imager following detected collisions; tennis ball is visible 
in frame, providing record of striking object. 
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 Development of automated collision detection algorithms 
 
The extensive on-blade sensor recording data set, including more than 200 multi-blade recordings 
and 70 surrogate blade strikes, was used to develop enhanced automated collision detection 
algorithms. The approach and findings are summarized here, with additional detail available in [9] 
and in future publications as algorithm development continues. A high-level illustration of the 
signal processing and collision detection process is illustrated in Fig. 33, including filtering, 
windowing, standardization, and the use of a trained AdaBoost random forest classifier.  
On-turbine sensor data can be divided up into three different turbine operational modes occurring 
during the testing: stopped, spinning, and idle. A stopped turbine occurs during instances with very 
low wind velocity, and the turbine blade is not rotating; this can be seen with near-zero slope in 
the accelerometer data. Spinning occurs when the turbine is spinning at its operational rate of 
rotation and can be characterized by a steady fixed frequency sine wave signal in the 
accelerometers. Finally, idle operation occurs with sufficient wind velocity for rotation, but 
insufficient for rotation at operational frequency. For developing the detection algorithm, analysis 
was focused on the spinning mode data sets, which present the greatest threat for avian collisions. 
Visual analysis of the signals gathered highlight the main challenge in automatically detecting 
colliding objects on the wind turbine (Fig. 33). While known collisions stand out, it is difficult to 
define a level where a spike is due to an object hitting the wind turbine blade, or due to other 
turbine-related events such as blade pitching or nacelle yaw. Analysis from [10] shows signals 
overlapping in the frequency spectrum and notes the difficulty of a threshold-based detection 
algorithm. To overcome these challenges, we have employed an AdaBoosted random forest 
ensemble for collision detection [11]–[13]. 

 
 

Figure 33. Three-blade multi-sensor data (accelerometer, gyrometer, contact microphone) is used as input to train a 
collision detection classifier algorithm for automated blade-strike collision detection. 
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To generate features for classifier training, the signals were first separated into non-overlapping 
windows and labeled to contain either an on-blade collision or no collision. Multiple signal features 
were calculated for each window, including conventional statistical features such as root mean 
square, standard deviation, variance, kurtosis, and skewness, which were selected to extend prior 
work [14]. Machine learning techniques for structural health monitoring in wind turbine blades 
[15] have additionally shown crest factor, impulse factor, and RMS entropy estimator to be 
effective in determining anomalous vibration activity from background noise and were also 
included. Calculated feature vectors were then normalized using a z-score normalization, and the 
data was then separated into a 0.25/0.75 test-train split; a total of 1161 1.5s time windows (870 for 
training, 291 for testing) were used. The AdaBoost random forest ensemble algorithm was then 
trained on the data using SciKitLearn [16], [17]. 
The classifier was evaluated using a receiver operating characteristic curve (ROC) and a precision 
recall curve (PRC) and are shown in Fig. 34. In these results, the area under the curve (AUC) for 
the classifier is 0.989, but due to the rarity of a collision for the system the PRC was used to more 
accurately express the classifier accuracy with a large class imbalance. The average precision (AP) 
for the system is found to be 0.809.  
A further benefit of using a forest-based model is the ability to rank the input features in terms of 
importance. The top 5 features in terms of AdaBoost vote weighting are shown in Fig. 34, which 
include z-axis gyrometer crest factor, x-axis gyrometer kurtosis, y-axis accelerometer kurtosis, and 
both z-axis and x-axis gryrometer skeness. In future work, this may lead to a reduced complexity 
for a real-time inference engine operating on a minimum number of input features. 

Summary of findings 
Final field testing at NREL-NWTC demonstrate successful operation of the complete, integrated 
eagle detection and deterrent system, including 360º imaging from the nacelle, on-blade multi-
sensor data recording and image capture across turbine operations and surrogate blade strikes, and 
remote triggering of the kinetic visual deterrent system. The eagle classification algorithm was not 
included in this testing. Following the field test, the multi-sensor data recordings allowed for 
additional collision detection algorithm development, in which training and testing of machine 
learning classifiers can be performed in silico using real-world recorded on-blade sensor data, 
enabling continued and iterative improvement and validation of the complete system performance.  

 
Figure 34. Performance of trained collision detection classifier on recorded multi-sensor turbine data collected during 
NREL-NWTC field testing, including precision and recall and the receiver operation characteristic (ROC); top five 
features (for driving classification) can be extracted from the forest-based model. 
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4. Conclusions and Suggested Future Work 
 

A focus of this project was to extended prior efforts in the development of an on-blade collision 
sensor system for wind turbines to provide a coordinated visual detection, visual deterrent, and 
blade-strike collision detection system for golden eagles. Specific enhancements to hardware 
and software systems provide the following added functionality and identified challenges: 
 

 Automated Visual Detection of Eagles:  
As described in Section 2.1, a machine learning approach was used to develop an automated 
classifier algorithm for eagle detection in images or video streams, in particular from a 360º 
4K camera. Classifier training and testing was conducted using videos collected in the field of 
trained raptors, including both eagles and non-eagles. Following iterative improvement of the 
system, the classifier demonstrated up to 91.54% per-frame accuracy for classifying eagles 
using field-recorded videos from the 360º camera. While successful for eagle detection, this 
development revealed a few challenges worth consider for future work. First, while 4K 
represents state-of-the-art resolution for consumer field-ready cameras, this resolution spread 
over 360º viewing limits the overall system visual acuity. As such, birds recorded beyond 
approximately 150ft from the camera could not be distinguish as eagle vs. non-eagle raptor 
even by human eye. For longer-range detection, an array of non-360º cameras (e.g. four 
cameras pointed orthogonally at the horizon, and one point up) would provide additional visual 
acuity and could leverage the same classification approach.  Second, preparing or acquiring 
training videos presents a unique challenge, as it may be infeasible to gather sufficient eagle 
and non-eagle video under conditions similar to wild eagle behavior near constructed wind 
turbines. Similarly, in situ testing of eagle detetction performance may be infeasible outside of 
a long-term installed test. 
 

 Visual Deterrent using Kinetic Humanoid Devices:  
As described in Section 2.2, a visual deterrent system was developed that used the remote, 
automated deployment of large (10-20ft) inflatable ‘air dancer’ devices used commonly for 
commercial advertising applications, as ground-based human activity is one of few verified 
eagle deterrent strategies. The devices were tested for use in the field, including under high-
wind conditions and using accelerated lifetime materials testing. Two small field trials (3-5 
days each) were conducted to test the efficacy of the visual deterrent at alterting the flight 
trajectory of wild eagles. As described in the report, overall results of this testing are 
inconclusive due to the small number (< 5 per day) of eagle interactions, despite targeting field 
test areas with known eagle populations. This illustrates the difficulty of verifying deterrent 
efficacy in wild eagle populations, and a much longer or larger field trial would be required to 
prove or disprove efficacy of the approach. 
 

 Automated Blade-Strike Collision Detection:  
As described in Section 2.3, a multi-sensor on-blade electronics module was developed and 
demonstrated, which includes a 3-axis accelerometer, 3-axis gyrometer, blade surface contact 
microphone, and down-blade camera mounted near the root of each wind turbine blade. On-
board computation provides continuous, real-time data acquisition from all sensors, and 
automated collision detection is used to save a video of objects striking the blade. Control and 
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data acquisition are provided wirelessly for each blade root sensor module. Over three field 
tests (Section 3.1-3.3), the modules were successfully used to detect and capture images of 
blade strikes using surrogate projectiles (e.g. tennis balls). While successful for ~60g surrogate 
objects and thereby likely sufficient for detecting golden eagle strikes (3-5 kg), future work 
may add additional and/or distributed sensors (contact microphones or accelerometers) along 
the blade length to increase sensitivity and provide collision detection (and possibly 
localization) for smaller striking objects, such as smaller birds or bats. 
 

 Ongoing Work using Recorded Data Sets from On-Turbine Testing:  
As described in Section 3.4, the multiple on-turbine field tests (Section 3.1-3.3) provide a rich 
multi-sensor data set than can be used offline for continued analysis of on-turbine sensor noise 
and sensor sensitivity, as well as continued development and testing of automated detection 
algorithms. This is expected to support ongoing in silico development, enabling iterative 
improvement and validation in advance of future field testing. 
 

 
5. Summary of Project Outcomes (Task 6.0) 
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