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RiCORE Project Synopsis 

The aim of the RiCORE project (Risk based Consenting for Offshore Renewable Energy) 

is to establish a risk-based approach to consenting where the level of environmental 

survey required is based on the environmental sensitivity of the site, the risk profile of 

the technology and the scale of the proposed project. The project, which has received 

funding from the European Union’s Horizon 2020 research and innovation program, 

will run between January 1st 2015 and June 30th 2016. 

The consenting of offshore renewable energy is often cited as one of the main non-

technical barriers to the development of this sector. A significant aspect of this is the 

perceived uncertainty inherent in the potential environmental impacts of novel 

technologies. To ensure consents are compliant with EU and national legislation, such 

as the Environmental Impact Assessment Directive (85/337/EEC) and Habitats 

Directive (92/43/EEC), costly and time consuming surveys are required even for 

perceived lower risk technologies in sites which may not be of highest environmental 

sensitivity. 

The RiCORE project will study the legal framework in place in the partner Member 

States to ensure the framework developed will be applicable for roll out across these 

Member States and further afield. The next stage of the RiCORE project is to consider 

the practices, methodologies and implementation of pre-consent surveys, post 

consent and post-deployment monitoring. This will allow a feedback loop to inform the 

development of the risk-based framework for the environmental aspects of consent 

and provide best practice. The project will achieve these aims by engaging with the 

relevant stakeholders including regulators, industry, and EIA practitioners, through a 

series of expert workshops and developing their outcomes into guidance. 

A key objective of the project is to improve consenting processes in line with the 

requirements of the Renewable Energy Directive (2009/28/EC) (specifically Article 13-

1) to ensure cost-efficient delivery of the necessary surveys, clear and transparent 

reasoning for work undertaken, improving knowledge sharing and reducing the non-
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technical barriers to the development of the Offshore Renewable Energy sector so that 

it can deliver clean, secure energy.  
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Executive Summary 

The main aim of the RiCORE project is to ensure the successful development of 

Offshore Renewable Energy (ORE) in the EU Member States by reducing the cost and 

time taken to consent projects of low environmental risk through the development of 

a risk based approach to the consenting of projects which standardises the assessment 

of key components of environmental risk from ORE deployment. 

The starting point will be the “Survey, Deploy and Monitor Licensing Policy Guidance” 

(SDM) that was pioneered by Marine Scotland1, and the project will look separately at 

the potential utility of a risk based approach to reduce time and cost when securing 

consents during both pre- consent surveying and post- deployment monitoring. The 

SDM policy is a tool to provide regulators and developers with an efficient risk-based 

approach for taking forward wave and tidal energy proposals, facilitating a 

phased/staged development approach (avoiding sensitive environments). 

This deliverable aims to contribute to the further development of the Survey, Deploy 

and Monitor (SDM) policy guidance, pioneered by Marine Scotland, acting as a guide 

for users wishing to apply a risk based approach at a Member State level. For this, a 

review and further development of the three main pillars on which this approach is 

based has been undertaken: (i) environmental sensitivity of the site, (ii) the risk profile 

of the technology and (iii) the scale of the proposed project.  

Section 3 reviews the approach undertaken in Scotland for environmental sensitivity 

assessment with a view to informing consideration of those aspects other Member 

States may wish to further develop. 

Section 4 address the identification of the main impact pathways of MRE 

developments over the marine environment based on the technology identification 

undertaken by Deliverable 3.2 (Mascarenhas et al., 2015). 

                                                      
1
 http://www.gov.scot/Topics/marine/Licensing/marine/Applications/SDM  

http://www.gov.scot/Topics/marine/Licensing/marine/Applications/SDM
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Section 5 refine or improve the parameters used to describe the scale of the project 

introducing the physical scale of the project (area of occupation and generation 

capacity) and the duration of the project parameters. 

Section 6 develops the methodology for the overall assessment of the risk posed by a 

project, based on assessments of environmental sensitivity, project scale, and 

technology risk according to the proposal undertaken in previous sections.  
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1. INTRODUCTION 

As the world turns increasingly toward renewable energy sources, the potential risks 

of renewable energy development to various ecological receptors will require 

approaches that can both predict potential harm and be used to identify key research 

needs to understand and tolerate the risk to eco-receptors before and during 

operations. Risk is basically a measure of the probability and the magnitude of adverse 

consequences of an event (Suter and Barnthouse, 1993). According to ISO 310002, risk 

assessment includes three different steps (Figure 1):  

1. Risk identification involves the identification of risk sources, areas of impacts, 

events (including changes in circumstances) and their causes and their potential 

consequences.  

2. Risk analysis involves the processes to comprehend the nature of risk and to 

determine the level of risk, providing the basis for risk evaluation and decisions 

about risk treatment.  

3. Risk evaluation involves the processes of comparing the results of risk analysis 

with risk criteria to determine whether the risk and/or its magnitude are 

acceptable or tolerable, assisting in the decision about risk treatment. 

Ecological Risk Assessment (EcoRA) is a flexible process for organising and analysing 

data, assumptions, and uncertainties to evaluate the likelihood (probability) of adverse 

ecological effects that may have occurred or may occur as a result of exposure to one 

or more stressors related to human activities (Hope, 2006). Ecological risk assessment 

is increasingly seen as a way to integrate science, policy, and management to address 

the wide array of ecological impact assessment problems (Cenr, 1999). 

                                                      
2
ISO 31000:2009(E). Risk management — Principles and guidelines, ISO copyright office, Geneva, Switzerland, 

www.iso.org, p 34.  

http://www.iso.org/
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Figure 1. Risk management process (from ISO 31000
1
). 

 

The advantages of following an ecological risk assessment framework are two-fold: (a) 

it provides a framework for gathering data and evaluating their sufficiency for 

decision-making and (b) recognises, considers, and reports uncertainties in estimating 

adverse effects of stressors (due to natural variation of ecosystems and species 

populations, uncertainty is always present to some extent) (Chapman and Wang, 

2000). 

Moreover, EcoRA is an iterative process that consists of three phases (Usepa, 1998) 

(Figure 2): 

1. Problem formulation 

2. Analysis 

3. Risk characterization.  

According to Harman et al. (2004) the results of an ecological risk assessment can be 

used to: (i) determine the risk to the environment posed by energy development 

activities; (ii) whether those risks require remediation; and (iii) to develop potential 

remedial responses. 
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Figure 2. Ecological Risk Assessment process (from USEPA 1998). 

 

Some challenges facing EcoRA include the following:  

 Integrating the concerns of stakeholders and risk managers with the scientific 

knowledge of risk assessors. 

 Conducting risk assessments that encompass large areas and involve multiple 

stressors. 

 Moving beyond effects on individual organisms and species to predicting 

changes in populations and ecosystems. 

 Communicating ecological risks to stakeholders. 

EcoRA is a well-founded method, that, in addition to its many applications on land, has 

been used in marine renewable energy (Nunneri et al., 2008; Boehlert and Gill, 2010; 

Stelzenmüller et al., 2010; Burger et al., 2011; Chou and Ongkowijoyo, 2014; Hammar 

et al., 2014). It has been proved as a suitable tool for structuring the complexity and 

uncertainties associated with ecosystem-based assessments of emerging ocean energy 
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technologies. Hammar et al. (2014) applied an EcoRA on an offshore wind farm project 

to ensure an environmentally acceptable development and help regulatory authorities 

to make informed decisions. It can be used to allow developers to take responsibility 

for decisions on pre-application data gathering, to fully understand the rationale 

behind any proposed data collection and understand the costs and benefits of any 

survey work. It allows developers to understand the risks of not collecting sufficient 

information to inform an adequate EIA and the subsequent restrictions which might 

result, in the form of mitigation measures and other license conditions (Sparling et al., 

2015). 

Apart from using the information gathered from an EcoRA for making decisions about 

managing offshore exclusion zones, it can be also used for establishing public policies 

(Burger et al., 2011). In this context, Scottish Government adopted a risk-based 

approach to consenting prototype and first iteration devices and arrays in their 

receiving environments through the development of the Survey, Deploy and Monitor 

(SDM) Policy3 for wave and tide harnessing projects. SDM aims to enable flexibility in 

the Marine Scotland approach to site characterisation and monitoring in relation to the 

environmental impacts of marine devices. Regulators, and statutory advisors such as 

Scottish Natural Heritage (SNH), are able to discuss the relative risks associated with 

different developments in different locations, and take a balanced and proportionate 

view of the significance of the environmental issues raised in each case. With the 

growing and competing demands for marine resources, it aims to reduce the 

complexity of marine management and ultimately improve the regulatory framework 

for marine renewables.  

                                                      
3
 http://www.gov.scot/Topics/marine/Licensing/marine/Applications/SDM  

http://www.gov.scot/Topics/marine/Licensing/marine/Applications/SDM
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2. OBJECTIVES 

The general objective of this deliverable is to contribute to the further development of 

the Survey, Deploy and Monitor (SDM) policy guidance, pioneered by Marine Scotland, 

acting as a guide for users wishing to apply a risk profiling approach at a Member State 

level.  Conclusions are presented in the format of a checklist of the issues where scope 

for further development of risk profiling has been identified by the RiCORE project.  

In order to achieve this general objective, the present deliverable uses the SDM 

approach developed in Scotland as a case study.  Consideration is given to where the 

SDM approach is considered best practice and where further development of risk 

profiling is recommended for each of the following: 

a) Environment: developing the risk profile for environmental sensitivity.  

Through review of the profiling of environmental risk undertaken by Marine 

Scotland, options for refining the approach at a Member State level are 

considered. 

b) Technology: developing the risk profile of the novel technologies identified in 

Deliverable 3.2 and improving the profiling for wave and tidal technology with 

international experience to ensure robust basis for decision making under the 

policy.  This section reviews current state of knowledge with respect to 

important impact pathways between stressors and receptors.  The content can 

be used to inform technology risk profiling undertaken at Member State level, 

recognizing that the evidence base for the significance of impact pathways is 

likely to change over time. 

c) Scale: agreeing commitment to what constitutes small, medium and large scale 

for the different technology types. This is previously defined for wave and tidal 

as <10MW, 10-50MW and >50MW.  New recommendations are provided. 

These tasks will take on recommendations from: (i) task 2.3 (D2.3) to ensure the risk 

profiling will be universally recognised and accepted; (ii) task 3.1 (D3.1) which 
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undertook a review of the of the SDM policy in order to set the basis for the further 

development of the policy to other novel technologies and the insertion into partner 

Member State policies and (iii) task 3.2 (D3.2) which undertook a review of novel 

technologies currently in development, focusing on TRL 5 – 9 but ensuring the scope 

includes the next tranche of technologies that are being developed, in particular to 

expand to include the range of emerging floating wind technologies. 

The deliverable builds on the findings coming from Expert Workshop 3 held in 

Dunkeld, Perthshire (UK) on 9-10th November 2015.  
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3. ENVIRONMENTAL SENSITIVITY 

3.1  Background 

This section reviews the approach undertaken in Scotland with a view to informing 

consideration of those aspects other Member States may wish to further develop.  In 

developing the Survey, Deploy and Monitor (SDM) policy, Marine Scotland created a 

map based profile of environmental sensitivities.  Environmental sensitivities were 

characterized for wave energy, tidal energy as well as offshore wind energy devices. 

The methods used are set out in scoping study documents for each set of technologies 

and are published in the Scottish Marine and Freshwater Science Report services 

(Davies and Watret, 2011). The data used to create individual sensitivity layers were 

considered the best available at the time and were largely held by the Crown Estate in 

their in-house geographic information system called Marine Resource System (MaRS) 

(Davies et al., 2012). 

The scoping studies that informed the development of the SDM policy environmental 

sensitivity mapping was undertaken on a grid scale of 1.8 km which reflected the scale 

at which the resource areas had been mapped. The reports acknowledge that those 

resource areas and associated sensitivities that occur at smaller spatial scales may 

have been poorly represented.  This is most likely to be the case for tidal stream 

resource owing to the large number of small areas around Scotland that can have 

powerful flows.  These include areas at headlands, and areas around sills at the 

entrances to sea lochs (and separating basins within sea lochs), and in channels and 

sounds between islands and between islands and large land masses.  For similar 

reasons, the mapping undertaken may not have included very localised environmental 

sensitivities, emphasizing the indicative nature of the exercise. 

The scoping studies undertaken in 2011 updated a previous report published in 2010 

(Harrald et al., 2010), incorporating new information on the environment, together 

with updates in the way underlying data were handled.  This reflects a policy strategy 

to continually use the best available scientific evidence, particularly in relation to 

http://www.gov.scot/Topics/marine/marineenergy/Planning
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interactions with novel devices whose potential impacts have associated scientific 

uncertainties that are likely to reduce through time. This is recommended as best 

practice because conclusions are sensitive to technical factors, such as the 

categorisation of environmental data layers as either representing complete or partial 

constraint on location of marine renewable energy, the weighting applied to the 

layers, and the classification system used to create the overall scores. 

3.2 Approach 

In creating a mapped representation of environmental sensitivity to inform the SDM 

policy it was necessary to make a number of decisions regarding data and their use in 

models that will apply equally to any similar exercise.  These decisions included: 

 Specification of the factors that require consideration with respect to the 

potential impacts of the energy devices, and the availability of spatial data that 

can be included; 

 Whether particular sensitivities should be considered as incompatible with the 

presence of energy devices, or whether the sensitivities should be considered 

as presenting gradations of limitation to the presence of devices (e.g. high, 

medium and low); 

 The relative importance (weighting and scoring) that should be applied to 

different sensitivities in the final integration of overall environmental 

sensitivity;  

 The relative quality, reliability and overall robustness of data layers. 

The SDM policy created maps of combined sensitivities for each of socio-cultural 

sensitivities, environmental sensitivities, and human activities (including industrial and 

commercial fisheries).  The combined environmental sensitivities layer was made up of 

a total of 19 individual layers (or factors), each of which was weighted and scored to 

calculate the potential relative influence within the overall sensitivity (Table 1).   
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Table 1. Environmental Sensitivities used for tidal energy in SDM policy: weighting, scoring and relative 
influence. 

Data layer Weight 
Maximum 

score 
Potential relative 

influence 

Bird reserves 800  80 64000 

Important Bird Areas 500 50  25000 

Local nature reserves 800 80 64000 

Special Areas of Conservation 1000 100  100000 

Special Protection Areas 1000 100  100000 

Sites of Special Scientific Interest 900 100 90000 

Offshore candidate SACs and SPAs 1000 100  100000 

Offshore draft SACs and SPAs 1000 100  100000 

Offshore possible SACs and SPAs
4
 1000 100  100000 

RAMSAR sites 1000 100  100000 

Possible seal haul out sites
5
 900  90  81000 

Areas of importance to basking sharks 700 70  49000 

Nursery areas for commercial fish species 300 55 16500 

Spawning areas for commercial fish species
6
 300 55  16500 

Areas of search for potential Marine Protected Areas (MPAs)
7
 600  60  36000 

Areas of search for seabird aggregations 400 40 16000 

Areas of importance to breeding sea birds 800 145  116000 

Areas of importance to sea birds in winter 500  50  25000 

Areas of importance to marine mammals 800 145 116000 

 

An overall environmental sensitivity layer for each tidal, wave and floating wind 

technologies, reflecting the fact that each technology has its own impact pathways. 

Therefore, the relative importance of particular sensitivities differs between the 

technologies.  As an example, though diving birds are relevant to all technologies, their 

presence is more significant with respect to tidal technologies (because of the 

potential for sub-surface collisions) and so this factor is given greater weighting in the 

tidal sensitivity map than that prepared for wave power and floating wind 

                                                      
4
 http://www.gov.scot/Topics/marine/marine-environment/mpanetwork/SACmanagement  

5
 In Scotland these were designated in June 2014 under the The Protection of Seals (Designation of Haul-Out Sites) 

(Scotland) Order 2014 (http://www.gov.scot/Topics/marine/marine-environment/species/19887/20814/haulouts). 
6
 Coull, K.A., Johnstone, R., and Rogers, S.I. (1998). Fisheries Sensitivity Maps in British Waters. Published and 

distributed by UKOOA Ltd., Aberdeen, 58 pp. 
7
 http://www.gov.scot/Topics/marine/marine-environment/mpanetwork  

http://www.gov.scot/Topics/marine/marine-environment/mpanetwork/SACmanagement
http://www.gov.scot/Topics/marine/marine-environment/species/19887/20814/haulouts
http://www.gov.scot/Topics/marine/marine-environment/mpanetwork
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developments. Landscape value or character, on the other hand, while important for 

site selection, was not considered to have any bearing on the length of time over 

which site characterisation surveys should be conducted, and therefore was not 

included.  It is anticipated that for any risk-based characterization, the environmental 

sensitivities would follow a similar process of identifying the individual factors that 

could potentially be impacted, and adoption of a scoring system to classify the relative 

importance of each factor to the overall environmental sensitivity.  The specification of 

factors will be dependent on available information and expert opinion regarding the 

potential for impact.  This specification is likely to vary between Member States.  The 

overall purpose of the scoring system is to ensure that those environmental 

sensitivities that are considered to be more important for decision making are given 

relatively more influence (potential relative influence column of Table 1).  The system 

of scoring and weighting adopted by Marine Scotland was specified for statistical 

reasons to be associated with MaRS, and would not necessarily apply to other 

datasets. 

With respect to the mapping of overall environmental sensitivity under the SDM policy 

a classification of constraint levels was provided in map form (Figure 3). This enables 

areas of relatively higher and lower sensitivity to be distinguished. In developing the 

SDM policy, Marine Scotland chose to consider the maps as indicative only (i.e. it is 

possible that at a local scale specific sites may have a relatively greater or lower 

sensitivity than is shown). Developers/applicants must take this information and use 

the best available site specific information to help determine what additional data may 

be required to undertake EIA/HRA (where necessary) to meet the requirements of the 

Directives i.e. identify and describe potential significant effects.  Additionally, they are 

relevant only to marine renewables (wave and tidal power) development and those 

factors which might influence the duration of site characterisation studies. They are 

neither an overall assessment of a site's environmental richness or biodiversity nor of 

its complete environmental sensitivity or sensitivity to other forms of development. 

The stated intention under the SDM policy is for the maps to be subject to revision and 

upgrade as more datasets become available and/or existing ones renewed. 
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Figure 3. Output from the Environmental Restriction model for tidal stream energy development in 
Scottish waters. Taken from Davies et al. (Davies et al., 2012). 
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3.3 Developing environmental risk profiles 

Following consultation, Marine Scotland assigned an overall assessment of High, 

Medium or Low environmental sensitivity to specific areas being considered for 

development. This qualitative approach at the end of the process for scoring the 

overall environmental sensitivity was adopted at the time for a number of reasons: 

 Because of concern that more quantitative approaches for discriminating 

between the environmental sensitivity layers could give a false sense of 

robustness to what was ultimately a subjective exercise; 

 The preference for an approach that was quick to apply; 

  It enabled a further degree of flexibility in the process, allowing consensus to 

build around the evidence that was available at the time of decision making; 

 By giving weight to expert opinion it allowed for pragmatic interpretation of 

the available evidence. 

Further development of more quantitative approaches should give consideration to 

the extent to which they can be confident of improving risk profiling. 

The factors considered as environmental sensitivities under SDM reflected general 

concerns that habitats and species afforded protection under the Birds and Habitats 

Directives, or under national legislation should be prioritised. Other Member States 

undertaking this exercise for the first time may choose to weight the factors 

differently, or choose additional or alternative factors.   

The method used to combine individual environmental risk factors to arrive at overall 

environmental risk will entail quantification that is ultimately based on a series of 

expert judgements reflecting the value likely to be ascribed to each environmental 

factor under the licensing regime for project proposals. In Scotland the FEAST tool 

enables assessment of the sensitivity of receptors to pressures 

(http://www.marine.scotland.gov.uk/FEAST/), with a particular focus on determining 

http://www.marine.scotland.gov.uk/FEAST/
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the management requirements of Marine Protected Areas.  Existing work of this type 

can inform expert judgement.  Delphi techniques could also be applied when assessing 

the vulnerability of environmental factors (Certain et al., 2015). A key consideration for 

Member States developing the risk profile for environmental sensitivity is that they 

may not have access to datasets that can be used to spatially map the relative 

importance of the marine environment.  This issue has been identified during expert 

workshops, and is believed to be a potential constraint affecting the development of 

SDM in Portugal, Spain and Ireland in particular. Concerns regarding data quality also 

applied during the development of the SDM policy in Scotland, with observers noting 

the age of some datasets, and the limited spatial coverage associated with others. The 

recommendation is to use the best available evidence.  Where no data from the local 

marine environment exist (e.g. no attempts have been made to monitor seabirds at 

sea) reference to existing published literature can often be used to inform a mapping 

exercise.  In the example of seabirds, literature on the foraging ranges of seabirds from 

colonies could be used if no local data exists. Finally, if the exercise is repeated in 

Scotland there are various new pieces of additional information that could be used 

that were not previously available. Recently identified marine protected areas, and 

seal haul-out sites around the coastline are examples. 
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4. TECHNOLOGY RISK PROFILING 

The identification of the main impact pathways of MRE developments over the marine 

environment has been one of the conclusion points of the Expert Workshop 3 held in 

Dunkeld, Perthshire (UK). Defining an appropriate risk assessment approach involves 

consideration of potential impacts. Therefore, it follows that survey requirements 

should be determined by the potential significant impacts that could arise from a 

proposed development. These impacts will depend on the characteristics of a project 

including the type of energy generation technology, support vessels and infrastructure 

to be used. According to the Deliverable 3.2 (Mascarenhas et al., 2015), 11 technology 

types have already reached a level of maturity enabling them to immediately benefit 

from the risk-based approach proposed by the RiCORE project. A number of them are 

in the floating wind category (Table 2). 

Table 2. MRE technology types identified in Deliverable 3.2. Adapted from Mascarenhas et al. (2015). 

Technology  category Technology type TRL 

Tidal 

Tidal impoundment 9 

Tidal stream - Horizontal axis turbine 8 

Tidal stream - Enclosed Tips (Venturi) 8 

Wave 

Attenuator 8 

Point Absorber 7 

Oscillating Wave Surge Converter 8 

Oscillating Water Column (OWC) 7 

Floating Wind 
 

Spar-horizontal axis WT 7-8 

Semi-submersible platform - Horizontal axis WT 8-9 

Semi-submersible platform - Vertical axis WT 7 

Tension leg - submerged platform 7 

 

All of them have common aspects that are subject to act as stressors (action of the 

project that can generate impacts) over different receptors (environmental factors 

that can be affected by the project actions) of the marine environment. According to 

Boehlert and Gill (2010), the main stressors of MRE developments are associated with: 
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a) The physical presence of the devices. 

b) The physical presence of moorings, mooring lines and supporting structures.  

c) The dynamic components of the devices: the moving parts of the devices can 

lead to “blade strike”. 

d) The chemicals used in the devices (hydraulic fluids, anode erosion and anti-

fouling paints) and the pollutants’ leaking from vessels during deployment, 

routine servicing, and decommissioning. 

e) The acoustic effects during deployment, routine servicing and operation of 

devices, and decommissioning.  

f) The electromagnetic field generated during transmission of the produced 

electricity through the submarine cables during the operation of devices. 

In the following sections, the different impact pathways of the MRE technology types 

identified in Deliverable 3.2 are described. The objective is to provide the needed 

criteria to the experts in charge of the risk analysis of these technologies so they will 

be able to assign a value of Low, Medium or High risk according to the expected 

impacts. 

4.1 Physical presence of devices 

As stated by Boehlert and Gill (2010), the mere physical presence of new structures in 

marine ecosystems results in fundamental changes to the habitat, both above and 

below the water surface. 

4.1.1 Icthyofauna  

Generally speaking, any artefact located in the sea may cause an attraction effect on 

fish communities, especially if it is floating. Similar effects have been observed by 

Morrisey et al. (2006) in relation to floating structures for aquaculture (fish cages, 

mussel mesh, etc.). Such attraction can favour changes in species composition in the 
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study area and alter the relation predator-prey (Boehlert, 2008). This presence of MRE 

devices on the seafloor or suspended in the water column can act as Fish Attractant 

Devices (FAD), attracting certain marine animals as it has been observed for some fish 

species such as cod, flatfish, sand eels, etc. (Dempster and Taquet, 2004; Wilhelmsson 

et al., 2006; Fayram and De Risi, 2007; Kramer et al., 2015).  

At the sea surface, some wave devices may take up significant areas that may need to 

be considered for migratory surface dwellers in terms of a physical barrier. 

Furthermore, shoreline and estuarine devices may represent large immovable and 

impassable objects for migratory species (Boehlert and Gill, 2010). 

Thus the key impact pathways of the physical presence of devices over fish 

communities could be the following: 

 IP1: Changes in fish behaviour; may act as fish aggregation devices. 

 IP2: Barrier to movement (a real or perceived obstacle to normal movement of 

sea life during migration or day to day activities). 

All these effects will manifest during the operation phase of the MRE projects 

4.1.2 Marine mammals 

The attraction of fish described in section 4.1.1 can in turn entice other marine species 

like marine mammals (cetaceans and pinnipeds) attracted by the feeding opportunity. 

As with fish, at the sea surface, some wave devices may take up significant areas that 

may affect migratory surface dwellers in terms of a physical barrier or promote 

displacement from the area, keeping them from important feeding, breeding, nursery, 

or resting habitats, or from vital movement and migratory corridors. Even if Barrier 

effects could be more related with noise being produced from both wave and tidal 

devices, however, physical barriers will become more of an issue with array 

deployment. Furthermore, shoreline and estuarine devices may represent large 

immovable and impassable objects for migratory species (Boehlert and Gill, 2010). 
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Thus the key impact pathways of the physical presence of devices over marine 

mammals communities could be the following: 

 IP3: Changes in marine mammal behaviour; may act as aggregation devices. 

 IP4: Barrier to movement (a real or perceived obstacle to normal movement of 

sea life during migration or day to day activities), and displacement of activities 

such as feeding, mating, rearing, or resting habitats. 

4.1.3 Birds 

According to Copping et al. (2013), if the devices have surface expression, birds may be 

attracted to the device or may avoid large numbers of devices. However, there is no 

evidence that seabirds are likely shown avoidance or an extreme change in distribution 

as a result of the presence of a Wave Energy Converter (WEC) (Lees et al., 2016). 

In the case of offshore wind, the energy used by marine birds that are displaced is an 

impact of concern (Masden et al., 2009). For adult birds that have dependent young it 

may be the additional time costs of displacement that are the critical factor for survival 

of chicks. Energetic costs to adults may be a lesser impact upon the population. The 

potential impacts on long distance migrating birds are considered to be small, but for 

daily commuting birds, long-term habitat fragmentation and extended routes could 

have moderate effects on assemblages (Wilhelmsson et al., 2010). Evidence to date 

suggests that birds avoid wind turbine structures and are well able to navigate through 

the array of turbines (Desholm and Kahlert, 2005).  

With respect to collision risk, avoidance rates are likely to be species specific 

(depending upon a range of factors such as behavioural response and maneuverability 

in flight), although early assessments of collision risk using the ‘Band model’ adopted a 

fixed 95% avoidance rate for all species (Band, 2012; 2014). 

Thus the key impact pathways of the physical presence of devices over marine birds 

could be the following: 
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 IP5: Displacement. 

 IP6: Collision risk with turbine blades. 

4.1.4 Landscape 

The effects on landscape during the commissioning stage are mainly caused by the 

presence of floating structures, machinery and land equipment for fixed structures in 

the area of future occupation of the infrastructure. During the operation stage, the 

impact on landscape derives from the presence of the structures themselves (both 

infrastructures of floating devices and marker buoys usually necessary for fixed 

structures). Regarding this impact it is important to mention that most of WECs are 

located at water surface level, therefore their visual impact is expected to be minimal, 

but in the case of floating or fixed wind farms these structures can reach more than 

100 m height and rotor diameter between 100 and 130 m. In the case of offshore 

facilities, like tidal impoundment and OWC technologies, the modification of onshore 

landscape can be very significant. 

Thus the key impact pathways of the physical presence of devices over landscape 

could be the following: 

 IP7: landscape alteration due to the presence of devices. 

4.2 Physical presence of supporting structures 

Below water, devices will include buoys, cabling systems, hard-fixed structures (such as 

monopoles or jackets), rock scour protection, anchors, electrical cables, etc. 

4.2.1 Benthic communities 

Moorings leads to a change of benthic communities over the footprint of where it is 

placed (Energi and Elsam, 2005). The lost surface and consequently, total affected 

biomass will depend on the total number of structures installed at the bottom and 

their sizes.  
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On the other hand, whenever a new material is submerged in the sea it will become 

colonised by marine organisms. Particularly in soft bottom habitats, but to some 

extent also on hard bottom dominated areas, the addition of hard substrata, like 

mooring foundations, increases habitat heterogeneity and the biodiversity of sessile 

organisms (Wilhelmsson et al., 2010). Typical colonising species include sponges, 

cnidarians, bryozoans and polychaetes and mobile invertebrates (such as crab, shrimp, 

squid, etc.) that are prevalent in an area (Langhamer, 2010, 2012). This is a well-

documented effect, especially for wind and wave technologies, but also in coastal 

defences, oil and gas structures, etc. (Page et al., 1999; Petersen and Malm, 2006a; 

Vaselli et al., 2008; Wilhelmsson and Malm, 2008; Langhamer and Wilhelmsson, 2009; 

Langhamer et al., 2009; Langhamer, 2010, 2012; Krone et al., 2013a; Krone et al., 

2013b; Munari, 2013; Wehkamp and Fischer, 2013a; Wehkamp and Fischer, 2013b; 

Broadhurst et al., 2014).  

MRE devices thus can provide hard substrata in regions and at depths often dominated 

by soft bottom habitats. This could fill gaps between natural areas of hard substrata 

and so change the biogeographic distribution of species within a region (Bulleri and 

Airoldi, 2005) and also the possibility of being a possible entry point and stepping-

stones for invasive rocky shore species brought in as larvae by ballast water (Airoldi et 

al., 2005; Glasby et al., 2007; Villareal et al., 2007; David and Gollasch, 2008; Hulme et 

al., 2008; Simkanin et al., 2009). Also, the devices itself can provide a substrata for 

biofouling processes with similar effect as those above mentioned.   

Thus the key impact pathways of the physical presence of supporting structures over 

the benthic communities could be the following: 

 IP8: increases of sea bottom habitat heterogeneity and biodiversity of sessile 

and mobile benthic organisms due to the addition of hard substrata coming 

from moorings, foundations and cables. 

 IP9: changes in biogeographic distribution of hard substrata species and 

introduction pathway of invasive species. 
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4.2.2 Icthyofauna  

The installation of MRE devices may also provide opportunities for creating and 

enhancing habitats increasing the number of fish in an area as they reef around the 

supporting structures of the devices (searching for protection, food availability and 

using the structures as reference points for spatial orientation), and create de facto 

marine protected areas as other human uses, such as trawling (which is one of the 

most severe threats to the marine environment including both benthic and fish 

assemblages), are avoided in the vicinity or inside the areas of MRE development. This 

reefing effect has been documented and hypothesized for tidal (Broadhurst et al., 

2014; Broadhurst and Orme, 2014) and wind and wave developments (Page et al., 

1999; Petersen and Malm, 2006b; Vaselli et al., 2008; Wilhelmsson and Malm, 2008; 

Inger et al., 2009; Langhamer and Wilhelmsson, 2009; Langhamer et al., 2009; 

Lindeboom et al., 2011; Krone et al., 2013a; Munari, 2013; Kramer et al., 2015). If not 

buried, the physical presence of power cables could also provide shelter for benthic 

fish, especially juveniles (Wilhelmsson et al., 2010). 

Thus the key impact pathways of the physical presence of supporting structures over 

fish communities could be the following: 

 IP10: reefing effect. 

4.2.3  Marine mammals 

Large marine animals such as marine mammals may also be at risk from colliding with 

or becoming entangled in mooring lines and cables. As stated by Boehlert and Gill 

(2010), for those devices with cables and moorings, the nature of mooring cables (slack 

or taut, horizontal or vertical, diameter) is critical to entanglement issues. 

Nevertheless, according to Benjamins et al. (2014), for most megafauna, MRE device 

moorings are unlikely to pose a major threat. 

Thus, the key impact pathways of the physical presence of supporting structures over 

marine mammals could be the following: 
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 IP11: entanglement and collision with cables and mooring lines. 

4.2.4 Seafloor integrity 

During the commissioning stage, the effects on sediments are mainly associated with 

re-suspension during anchoring and installation of fixed devices to the bottom, thus 

being an extremely temporary impact in nature and with a rapid recovery (Bald et al., 

2010). 

During the operation stage, dragging or rubbing of materials such as chains, wires, 

ropes or cables across the seabed could be expected. Kristof and Linfoot (2012), 

carried out a study of the scouring effect on bottom sediments and consequent 

disruption of benthic habitats of a typical (height 19 m, diameter 16 m, mass 900 

tonnes) wave energy converter (WEC) of an oscillating water column (OWC) type with 

a three point mooring installed in 40 m of water depth and wave regime conforming to 

regular waves between 2 and 6 m height with 8 s period. The results of the study 

showed that in regular waves of 6 m height and 8 s period, the area of benthic habitats 

adversely affected by the mooring lines may exceed 60 m2. Also, moorings dragged 

after an exceptionally severe storm may affect rocky structures, making rocks and 

stones rotate, and also the sedimentary bottom of the installation area, if present. 

According to Fairley et al. (2015), the installation of tidal turbines in sites with mobile 

sediments can lead to changes in sediment transport regime and also to the 

morphology of sandy areas.  

Another effect derived from moorings involves the artificialisation of substratum. If 

anchor points are mainly located on sedimentary bottoms, an accumulation of anchors 

may lead to a significant change in proportion of hard/soft substratum in the 

installation area (Bald et al., 2010).  

Thus the key impact pathways of the physical presence of supporting structures over 

seafloor integrity could be the following: 
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 IP12: dragging or rubbing of materials such as chains, wires, ropes or cables 

across the seabed and changes in sediment transport regime and the 

morphology of sandy areas. 

 IP13: artificialisation and change in proportion of hard/soft substratum in the 

installation area. 

4.3 Dynamic effects of devices 

Dynamic components of MRE devices (rotating tidal turbine blades, the various wave 

devices that oscillate, attenuate, and move as waves pass by and blades of offshore 

wind devices) can interact with marine environment. As stated by Boehlert and Gill 

(2010), moving parts of MRE technologies can lead to “blade strike”. Because of the 

wide variety of MRE technologies, dynamic components of these technologies can be 

located above or below the sea surface and their potential environmental impacts may 

vary.  

In-water turbines, such as current or tidal energy devices, generally move at slower 

speeds and thus the likelihood of blade strike is lower. However, the speed of the tip 

of some horizontal axis rotors could be an issue for cetacean, fish, or diving birds 

(Wilson et al., 2007). The potential for marine animals to collide with the moving parts 

of tidal devices, particularly the rotors of horizontal-axis tidal stream turbines, is a 

primary concern for consenting and licensing of projects (Sparling et al., 2015). 

In the case of wind energy devices, the interaction between birds and wind turbines is 

the most thoroughly investigated environmental concern relating to wind power. This 

collision risk/blade strike is much more likely to be an environmental concern for 

offshore wind compared to tidal stream. 

4.3.1 Icthyofauna  

Several field studies focused on evaluating the potential risk for fish to collide with 

wave and tidal technologies have indicated a low probability of co-occurrence of fish 

with a rotating turbine when currents were stronger than 1 m/s, however this 
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behaviour can be species-specific and the risk can be greater with larger fish (Hammar 

et al., 2013; Broadhurst et al., 2014; Viehman and Zydlewski, 2015). Laboratory and 

semi-controlled field studies suggest high survival rates (>95%) of fish after passing 

through turbine rotor-swept areas (Amaral et al., 2015; Castro-Santos and Haro, 2015). 

Other studies have included the use of numerical models (Romero-Gomez and 

Richmond, 2014; Hammar et al., 2015) suggesting a 1 to 10% of probability of collision. 

This risk increases as a function of turbine diameter and current speed.  

Thus the key impact pathways of the dynamic effects of devices over fish communities 

could be the following: 

 IP14: collision with structures and moving parts. 

4.3.2 Marine mammals 

Although advances have been made on the modelling front (Wilson et al., 2007; 

Carlson et al., 2014; Band, 2015), empirical data describing the behavior of marine 

mammals around operational tidal turbines is still lacking limiting the understanding 

and prediction of how MRE developments could affect marine mammals. Current 

uncertainty about the nature and magnitude of collision risk is curtailing the rate of 

development of the tidal energy industry in some parts of the world.  

Few studies of the consequence of an animal colliding with an MRE device have been 

completed. Much of the work on marine mammals in tidal environments has focused 

on the harbor porpoise (Pierpoint, 2008; Marubini et al., 2009; Embling et al., 2010; 

Wilson et al., 2014; Macaulay et al., 2015). All these studies underlined the importance 

of baseline density and behavior (diurnal variation on depth) of marine mammals as an 

important predictor of collision risk. Direct observations of marine mammals were 

made at Marine Current Turbine s’ (MCT’s) SeaGen in Strangford Lough, Northern 

Ireland, and at OpenHydro’s open-center turbine at the European Marine Energy 

Centre (EMEC), Orkney, Scotland. At SeaGen, no impacts on marine mammals from the 

tidal turbine were observed (Keenan et al., 2011; Savidge et al., 2014). At Open 

Hydro’s open-center turbine, no direct interactions between marine mammals and 
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turbines were observed, and there were frequent observations of marine mammals 

(seals, porpoises, and small whales) around the turbine (Copping et al., 2013). 

Modelling of collision show that risk of collision will vary across the tidal cycle as a 

result of variations in rotor speed with current speed, approach velocities of animals, 

etc., as well as any variation in animal abundance over the tidal cycle (Wilson et al., 

2007; Pierpoint, 2008; Wilson et al., 2013; Carlson et al., 2014; Sparling et al., 2015; 

Thompson et al., 2015b). 

Thus the key impact pathways of the dynamic effects of devices over marine mammals 

could be the following: 

 IP15: collision with structures and moving parts. 

4.3.3 Birds 

a) Wind turbines 

Marine wind energy device impacts on birds have been addressed in several studies 

(Chamberlain et al., 2006; Larsen and Guillemette, 2007; Wilson et al., 2007; Minerals 

Management Service, 2008; Masden et al., 2009; Wilhelmsson et al., 2010; Band, 

2012; Band, 2014; Grant et al., 2014; Henkel et al., 2014). It has been broadly 

suggested that collision risks at offshore wind turbines would cause minimal mortality 

within populations. However, there are still considerable research gaps (e.g. the 

cumulative collision risks exposure associated with long-distance migration). A recent 

offshore wind farm study indicated that the majority of collisions occur on a few days 

per year, when bird navigation is hampered by bad weather, which weakens 

predictions (Wilhelmsson et al., 2010).  

According to Desholm (2009), it is important to note that both collision rates and 

impacts of increased mortality on populations vary greatly with species. lncluding both 

on- and offshore facilities, estimated rates of mortality for different bird species range 

from 0.01 to 23 mortalities per wind turbine per year (Drewitt and Langston, 2006), 

with an average across bird species of 1.7 collisions per turbine per year according to 
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an ongoing scientific synthesis (M. Green, personal communication on synthesis in 

progress 2009 in Wilhelmsson et al., 2010). In conclusion, most studies indicate small 

impacts of bird collisions on assemblages as a whole for most species studied and the 

few areas considered, although any effects would be long-term. The temporal and 

methodological limitations in most studies and variability among species call for 

further clarification (Wilhelmsson et al., 2010). 

Thus the key impact pathways of the dynamic effects of devices over birds could be 

the following: 

 IP16: collision with wind turbines 

b) Tidal turbines 

For diving seabirds, collisions with tidal turbines represents a potential way in which 

tidal energy developments may cause population-level impacts, especially in shallow 

depths. However, there are few empirical data available on collision impacts of 

seabirds with underwater MRE devices. Furness et al. (2012) related the tidal turbine 

collision risk with mean and maximum diving depth and the use of tidal races for 

foraging. Grant et al., (2014) developed a Exposure Time Population Model (ETPM) to 

assess collision risk of diving seabirds. The model explores the collision rate required to 

achieve a critical level of additional mortality by estimating (i) thresholds of additional 

mortality for the population at risk of collision (via population modelling) and (ii) the 

potential time that each individual within the population is at risk of collision (via 

exposure time modelling). Wade (2015) has incorporated uncertainty data in an 

attempt to highlight areas and species where more targeted research was required. 

According to Furness et al. (2012), it is acknowledged that even the highest risk of 

collision due to structures would represent a relatively low risk for seabirds. In this 

regard, Wade (2015) suggests that highly energetic tidal channels may not be an 

attractive foraging habitat for most species of seabirds, implying that only a small 

number of bird species are likely to be at elevated risk of collision with devices. This 

would be in accordance with the results of the SeaGen tidal energy convertor 
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Environmental Monitoring Programme (Keenan et al., 2011). Data collected from 

shore-based surveys conducted during the installation and operation of the tidal 

device suggested that SeaGen had little impact of ecological or conservation 

significance on the bird species investigated.  

Thus the key impact pathways of the dynamic effects of devices over birds could be 

the following: 

 IP17: collision with tidal turbines 

4.3.4 Marine dynamics 

Marine renewable energy devices operate by removing kinetic energy from water (or 

air in the case of offshore wind). This energy withdrawn from air, water, or waves may 

also have potential effects at both near- and far-field scales.  

According to Copping et al. (2013) nearfield changes in the water column are not likely 

at the small pilot scale, but they could occur at large scale. For devices at sea or in 

estuaries, the resultant reduction of energy may lead to downstream effects. In the 

water column, modifications to water movement energy could lead to changes in 

turbulence and stratification, potentially altering vertical movements of marine 

organisms and resulting in prey and predator aggregation. In the far field, energy 

reduction could lead to changes in currents and subsequent alterations in sediment 

transport. 

Tidal energy devices may result in local acceleration and scouring in some cases, but 

have the potential to decrease tidal amplitude in downstream areas. Field studies 

carried out by O’Laughlin and Proosdij (2013) and O’Laughlin et al. (2014), found that a 

decrease in the tidal amplitude due to energy removal by tidal turbine arrays may 

decrease the cumulative export capacity of tidal channels over time, potentially 

leading to a gradual infilling of tidal creeks. Modelling studies of simulated arrays  

undertaken by Martin-Short et al. (2015), Robins et al. (2014) and Mulligan et al. 

(2013), among others, showed in general an alteration of the sediment transport in the 
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nearfield close to the array (sediment accumulation within the array with reduced 

velocities) and the surrounding area (scour to the sides of the array). Studies 

undertaken by means of a three-dimensional model by Sanchez et al. (2014) showed 

that there are no significant differences between the impacts caused on the general 

circulation by floating and bottom-fixed tidal stream turbines. Also, studies based on 

marine radar undertaken by McCann and Bell (2014) has showed promising 

capabilities for the study of marine currents and consequently the application of this 

methods for further studies of the impact of tidal energy devices on marine dynamics. 

Shadow effects of wave energy devices may alter sediment transport and deposition as 

well as have an effect on beach processes (Millar et al., 2007; Largier et al., 2008). 

Numerical models simulating changes in wave energy extraction have looked for 

impacts on the nearshore areas, particularly the focusing of energy nearshore that 

could cause changes in shorelines (Iglesias and Carballo, 2014) and beach erosion 

profiles (Abanades et al., 2014). Calculations made in trial installations like the ones by 

Wave Hub in England, estimate a reduction of 5% in wave height in the worst case 

(equivalent to ~10% of energy) being re-established at an approximate distance of 5 

km (Halcrow_Group_Ltd, 2006). A case study at Perranporth Beach, Cornwall, UK (a 

small array of 11 devices), expected a wave energy flux reduction by up to 12% 

(Abanades et al., 2014). A recent example of a shadow area assessment for the 

installation of a floating wave harnessing devices in the Biscay Marine Energy Platform 

(BIMEP) in Arminza, Basque Country (Bald et al., 2008) is based on propagation of a 

series of waves from the most energetic directional sectors with the average direction 

in that sector, achieving a series of associated shady areas. The global percentage of 

energy decrease reaches a maximum of 9% in some areas of the nearshore. This 

decrease can have direct effects over some marine species which have a strong 

relationship with wave energy. This is the case of the goose barnacles (Pollicipes 

pollicipes). According to the biomass-wave energy relationship established by Borja et 

al. (2006), the 9% of wave energy decrease in BIMEP can derive in a 0,47 to 0,66 kg·m-2 

biomass decrease, which represents approximately a 25% of existing biomass in the 

affected area.  
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Energy removal by devices in water, as well as blockage effects, can lead to localized 

changes in water movement energy and turbulence—these changes, in turn, can cause 

benthic sediment scouring and resultant habitat changes. In the water column, 

modifications to water movement energy could lead to changes in turbulence and 

stratification, potentially altering vertical movements of marine organisms and 

resulting in prey and predator aggregation. In the far field, energy reduction could lead 

to changes in currents and subsequent alterations in sediment transport. 

Thus the key impact pathways of the dynamic effects of devices over marine dynamics 

could be the following: 

 IP18: Scour processes affecting the movement of previously stable sediment 

due to accelerated flows and turbulence induced by structures on or near 

seabed. Sedimentation processes affecting accumulation of previously mobile 

or suspended sediments due to reduced flows or turbulence arising 

downstream or in the shadow of structures. 

 IP19: Dissipation of wave energy due to the presence of marine energy devices 

leading to calmer waters or less exposed coastlines.  

 IP20: Change in tidal flows and fluxes (changes in the velocity, direction, 

quantity and or duration of flows). 

 IP21: reducing or more likely increasing turbidity in the water column through 

the release or mobilisation of fine particles. 

4.4 Chemical effects 

In most cases, the effects of chemicals used in marine renewable energy will differ 

little from other marine construction projects. During deployment, routine servicing, 

and decommissioning, the expected risks associated with marine vessel operations will 

be encountered. In normal operations, the potential for spills exists, particularly for 

those devices that use a hydraulic fluid. Continuous leaching of chemicals may occur if 
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anti-fouling paints are used to minimize biological fouling of devices (Boehlert and Gill, 

2010).  

Concerning water quality, the greatest potential risk from chemicals associated with 

marine energy development could be leaks of hydrocarbons, oil or other fluid leakage 

as well as the continuous leaching of anti‐fouling paints from installation, 

maintenance, and decommissioning of devices (Arvidsson and Molander, 2012; Sotta, 

2012).  The largest risks of negative physical environmental impacts from pollution 

would probably arise from dredging of sediments containing pollutants (Nendza, 

2007), and although these effects are likely to be local and/or temporary, caution is 

needed when constructing many turbines over a longer time (U.S. Department of 

Energy, 2009). 

Concerning the biological environment, chemicals that are accidentally or chronically 

released from ocean energy installations could have toxic effects on aquatic organisms. 

Such events are unlikely but could potentially have a high impact (Boehlert et al. 2008). 

On contact with accidental release of oil, marine animals die most often through 

external contamination that destroys their protection against the cold and water, or by 

toxic poisoning through ingestion (Sotta, 2012). On the other hand, chronic releases of 

dissolved metals or organic compounds used to control biofouling in marine 

applications would result in low, predictable concentrations of contaminants over 

time. Even at low concentrations that are not directly lethal, some contaminants can 

cause sublethal effects on sensory systems, growth, and behavior of biological 

environment; they may also be bioaccumulated on predators such as young fish, 

seabirds and marine mammals (U.S. Department of Energy, 2009; Sotta, 2012; Witt et 

al., 2012). 

In conclusion and according to Wilhelmsson et al. (2010), serious pollution does not 

seem likely, and if pollution does occur effects on biotic assemblages should be local 

and overall effects thus small, provided that there are no large oil spills. The risk of 

stirring up polluted seabeds and variability in construction methods among developers 

bring in some uncertainty, but evidence from existing research is otherwise good. 
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Thus the key impact pathways of the chemical effects over physical and biological 

environment could be the following (U.S. Department of Energy, 2009): 

 IP22: releases of contaminants from oils and other operating fluids and anti-

biofouling coatings deriving in toxicity due to the exposure to contaminants; 

potential bioaccumulation of metals and other compounds and effects on 

behavior. 

4.5 Acoustic effects 

Noise can be generated by vessel traffic as well as the installation, operation, and 

decommissioning activities required for MRE devices. Potential impacts of 

anthropogenic underwater noise on marine life are wide ranging: it can cause species 

to avoid areas with significant anthropogenic sound, possibly disrupting feeding, 

breeding or migratory behaviour, cause permanent or temporary damage to marine 

organisms, mask communications, or even cause death (Clark et al., 2009; Oestman et 

al., 2009; Halvorsen et al., 2012a; Halvorsen et al., 2012b; Hammar et al., 2013; 

Rossington et al., 2013; Viehman and Zydlewski, 2015). 

The loudest and most disruptive noise levels are associated with construction phase 

(Thomsen et al., 2006). Construction of foundations and the laying of cables in offshore 

wind projects have showed that they can generate considerable acute noise, Peak 260 

dB re: 1µPa and Peak 178 dB re: 1µPa respectively (Mccauley et al., 2003; Gill, 2005; 

Madsen et al., 2006). This is especially clear for pile driving associated with monopile 

for offshore wind devices and some tidal turbines and other devices that require small 

piles for securing jacket foundations. Pile driving can generate very-high-intensity, 

wide bandwidth (20 Hz to 1 kHz) (Greene and Moore, 1995), but relatively short-

duration noises (Boehlert and Gill, 2010). Less is known about noise generated during 

construction of tidal and wave devices (Copping et al., 2016). However, Thomsen et al. 

(2015) surmise that construction activities may produce sound levels similar to those 

of wind farm construction activities, when similar activities are implemented. 

However, few wave and tidal installations are likely to drive full size piles into the 
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ocean floor, as is carried out for offshore wind development; the resulting noise levels 

for MRE installation are likely to be less than those for offshore wind (Copping et al., 

2016). 

During the operational phase, devices with subsurface moving parts could generate 

noise and vibration. Sound generated by wave and tidal devices is likely to range from 

116 to 170 dB SPL (sound pressure  level) at 1 m from the source, with most energy 

being below 1 kHz (Polagye et al., 2010; Bassett et al., 2012; Beharie and Side, 2012; 

Lepper et al., 2012; Haikonen et al., 2013; Cruz et al., 2015). Despite the seemingly 

extensive number of existing studies reviewed by Robinson and Lepper (2013), these 

authors conclude that actually few datasets of the quality necessary to characterize 

noise radiation from MRE devices exist, which presents serious challenges for making 

impact assessments. 

In the case of offshore wind, vibrations in the tower cause underwater noise with 

frequencies in the range of 1-400 Hz and 80-110 dB re: 1µPa and is likely to increase as 

a function of the number of turbines (Nedwell et al., 2003).  

4.5.1 Icthyofauna 

Fish species hear at low frequency (typically 10 Hz to 1000 Hz) (Enger and Andersen, 

1967; Chapman and Sand, 1974; Sand and Karlsen, 1986), but there is considerable 

variation in fish hearing abilities, both in terms of threshold and frequencies of 

perceptible sounds, which are linked to particular anatomical adaptations (Hawkins, 

1981; Hastings and Popper, 2005; Lovell et al., 2005; Madsen et al., 2006; Thomsen et 

al., 2006) and life cycle stage, species and body size as well (Nedwell et al., 2003). It 

has generally been agreed that fish can be divided into two groups – hearing 

generalists (or “non-specialists”) and hearing specialists. These groups are not related 

to the taxonomic relationship between fishes. Instead, both hearing specialists and 

generalists are found distributed through many fish taxonomic groups (Hastings and 

Popper, 2005). Hearing specialists have special adaptations that enhances their 

hearing bandwidth and sensitivity. Examples of specialists include goldfish, catfish, 



   
ricore-project.eu   

 

 

39 

some squirrelfish, herrings and relatives, and many other taxonomically diverse 

species. Quite often, hearing specialists will detect signals up to 3,000 – 4,000 Hz, with 

thresholds that are 20 dB or more lower than the generalists. The majority of fishes do 

not have specializations to enhance hearing and are therefore called hearing 

generalists (Hastings and Popper, 2005). It might be argued that the only fishes that 

would be affected by anthropogenic sounds are species that make and use sound for 

communication (Popper, 2003). However, while any species do not make sounds or 

use sound for intraspecific communication (e.g., goldfish), all species are likely to 

obtain a good deal of information about their environment from the overall acoustic 

milieu (Popper, 2003) 

According to Wilhelmsson et al. (2010), displacement of fish during pile driving for the 

construction of a single wind-farm can be very broad, but should be short-term, and 

severity of impacts of local fish assemblages should generally be small. If the 

construction of several wind farms succeeds each other in the same region effects will 

be longer term. According to the same authors, during operation there is no evidence 

of fish avoiding wind farms and based on current knowledge, any impacts should be 

very local. Studies on juvenile fish and larvae exposed to seismic shooting and 

explosions showed an impact on survival in these groups, although these results 

cannot be directly translated into possible effects of pile driving due to the difference 

between the sound sources (Popper and Hastin, 2009) 

Robinson and Lepper (2013) note there have been 29 studies related to noise and 

wave and tidal energy development activities, and of these, 17 have measured noise 

during construction and/or operational phase. Despite the seemingly extensive 

number of studies, Robinson and Lepper (2013) conclude there are actually few 

datasets of the quality necessary to characterize noise radiation from MRE devices 

which presents serious challenges for making impact assessments. Haikonen et al. 

(2013) reported that at a distance of 20 m from a WEC, the maximum value for a single 

pulse was 133 dB re 1 μPa with an average of 129 dB re 1μPa, which suggests that 

many marine animals will be able to detect the noise from the operating WEC, but that 
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the noise is not sufficient to cause fish to change their behaviour or be physically 

injured at the site. In the long term, the severity of impacts on fish assemblages as a 

whole is considered small.  

Thus the key impact pathways of underwater sound over icthyofauna could be the 

following: 

 IP23: disturbance and avoidance behaviour during construction stage due to 

underwater noise generated. 

4.5.2 Marine mammals 

Although there is considerable variation in the hearing abilities of marine mammals, 

the published data suggest that, in general, they are able to perceive a wider range of 

frequencies and to lower levels than fish (Nedwell et al., 2012).  

Consequently, the effects on marine mammals behaviour can extend far beyond the 

farm area during pile driving of offshore windfarms and may cause behavioural 

changes in seals, dolphins and porpoises more than 20 kilometres away (Madsen et al., 

2006; Tougaard et al., 2009; Kyhn et al., 2014; Thompson et al., 2015a). According to 

Wilhelmsson et al. (2010) these changes seem to be short-term, unless the wind farm 

is very large and requires several years of construction. Madsen et al. (2006) estimated 

that the known noise levels and spectral properties of wind turbines in operation are 

likely to have small or minimal impacts on shallow water marine mammals. Similar 

results are reported by Tougaard et al. (2003; 2009), Dong Energy (Dong-Energy and 

Vattenfall-a/S, 2006) and Thompson et al. (2015a). According to Wilhelmsson et al. 

(2010), there is no evidence of marine mammals avoiding wind farms during operation 

due to noise, and any long-term avoidance behaviour of porpoises and seals should be 

very local. 

A review of the state of knowledge done by Copping et al. (2016), underline that 

studies to date suggest organisms are unlikely to experience severe injury or mortality 

during construction and operation activities of wave and tidal devices, but more 
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information is needed to determine whether physical injury and behavioral changes 

caused by installation noise will be harmful.  To date no studies have indicated that the 

level of operational noise from MRE devices is likely to be harmful to marine animals.  

Little work has been done to examine the potential effects of underwater sound on 

sea turtles and diving birds (Copping et al., 2016). 

Thus the key impact pathways of underwater sound over marine mammals could be 

the following: 

 IP24: disturbance and avoidance behaviour during construction stage due to 

underwater noise generated. 

4.6 Electromagnetic fields 

The main objective of ORE devices is to produce electric power, hence all ORE devices 

have a variety of Electromagnetic fields (EMF) emitting sources. The dominant sources 

are the electric cables, usually buried or on the seabed. According to current industry 

specifications, the cables used inside tidal, wave, and wind energy arrays can be either 

Alternate Current (AC) or Direct Current (DC) power. An AC generates a time-varying 

magnetic (measured in μT) and electric field (B-field and iE-field), measured in volts per 

meter (V/m), in the surrounding environment (Cmacs, 2003), while a DC only 

generates a static magnetic field . The primary electrical field rapidly diminishes in the 

marine environment; however, a magnetic field can persist for longer distances as 

does the induced secondary electrical field. The screen/armouring efficiently confines 

the primary electric field to the inside of the cable but not the magnetic field and 

associated EMF. The most recent evidence of EMFs in the environment emitted by 

subsea cables comes from the European MaRVEN study, which clearly demonstrated 

that electric and magnetic fields are emitted by electricity being transported through 

cables associated with an MRE device (a wind farm) and the separate EMF components 

(E- and B-fields) can be measured both at the seabed and at tens of meters distance 

from a cable (Copping et al., 2016). 
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EMF generated by AC or DC  can produce negative impacts on aquatic species sensitive 

to electric and/or magnetic fields. Many marine animals can detect these fields and 

utilize them in important life processes such as movement, orientation and foraging 

(Gill et al., 2014). Among them, are elasmobranchs  (sharks, skates and rays), agnatha 

(lampreys), crustacea (lobsters and prawns), mollusca (snails, bivalves, cephalopods), 

cetacea (whales and dolphins), bony fish (teleosts and chondrosteans), and marine 

turtles (Kirschvink, 1997; Luschi et al., 2007; Lohmann et al., 2008; U.S. Department of 

Energy, 2009; Wilhelmsson et al., 2010; Witt et al., 2012). The majority of these animal 

groups are considered magnetoreceptive, principally in relation to local-scale 

orientation or large-scale navigation within the marine environment. Animals that are 

sensitive to electric fields (electrosensitive) are considered able to detect E-fields 

whether directly emitted or induced via magnetic fields (Gill et al., 2014). 

4.6.1 Icthyofauna 

The most sensitive fish species are elasmobranches (sharks and rays), common eels 

and electric fish, which use weak electrical currents for orientation (induced electric 

field in relation to the geomagnetic field) and/or prey location (Meyer et al., 2005; 

Peters et al., 2007; Gill et al., 2009). According to Wilhemsson et al. (2010), eventual 

effects on fish should be local, and overall impacts on resident fish assemblages should 

be small. However, the consequences or long-term ecological effects of the disruption 

of EMF on these populations (chronic effects), at different life stages are not yet clearly 

identified (Ohman et al., 2007; Gill et al., 2012). While available research suggests that 

many fish species are able to detect electric and/or magnetic fields and behavioural 

responses have been demonstrated, it is not possible to extrapolate these studies to 

situations where there are networks of multiple cables, such as those associated with 

MRE devices (Gill et al., 2014) and data on the effects of underwater cables on fish are 

inconclusive (Isaacman and Daborn, 2011). 

According to Isaacman and Daborn (2011) the key impact pathways of EMF over 

icthyofauna could be the following: 
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 IP25: Change in movement patterns, effect on navigation/operation, avoidance 

or attraction behaviour, effect on predation-prey detection, physiological 

effects, change in health, survival and/or reproductive success.  

4.6.2 Benthic communities 

Among benthic invertebrates, there are also considerable uncertainties due to the 

limited number of studies addressing invertebrate tolerance to EMF (Ugolini and 

Pezzani, 1995; Boles and Lohmann, 2003; Bochert and Zettler, 2004; Leeney et al., 

2014; Lindeboom et al., 2015). Based on the evidence to date there is no demonstrable 

impact (whether negative or positive) of EMF related to MRE devices on any 

electromagnetic sensitive species (Gill et al., 2014). It appears that continued exposure 

to EMFs can in some cases potentially alter early life history development attributes 

(Woodruff et al., 2012) but according to Wilhemsson et al. (2010), the potential long-

term impacts on sessile organisms are likely to be very localised and small. 

According to Isaacman and Daborn (2011) the key impact pathways of EMF over 

benthic communities could be the following: 

 IP26: Change in movement patterns, effect on navigation/operation, avoidance 

or attraction behaviour, effect on predation-prey detection, physiological 

effects, change in health, survival and/or reproductive success.  

4.6.3 Marine mammals and turtles 

Little consideration has been given to whether magneto-receptive marine mammals 

and turtles might be able to detect and respond to EMF s from MRE devices and/or 

subsea cables (Gill et al., 2014). The likely explanation is that the MRE device/cable 

EMFs are less intense than the geomagnetic field, so it is assumed that the animals are 

less likely to respond, but this still remains an open question. If they did respond to 

cables then mammals and turtles would more likely detect EMFs from DC cables than 

from AC cables, because the former characteristically have static B-fields (similar to the 

geomagnetic field) and they are of higher intensity than the latter. The likeli-hood of 
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exposure will also be a function of the depth of the water above the cable and the 

depth of swimming because field strength dissipates with distance (Copping et al., 

2016). 
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5. SCALE OF THE PROJECT 

5.1 Initial SDM policy risk assessment of the scale of the project 

The initial scheme of SDM policy described in Deliverable 3.1 (Bald et al., 2015) 

identified the scale of development as one or the three factors enabling assessment of 

the overall project risk. It has initially been assessed on the proposed total installed 

generating capacity in megawatts (MW) of the development, on a 3 points scale as 

shown in Table 3. 

Table 3. Initial risk assessment related to the scale of a project (according to SDM policy) 

Scale Criteria Assessment 

Small Scale Up to 10 MW Low 

Medium Scale More than 10 MW, to 50 MW Medium 

Large Scale More than 50 MW High 

 

5.2 Risk assessment of the scale of the project 

During the Expert Workshop 3 held in November 2015, experts suggested that this 

classification could be improved in 2 ways: 

 Refine or improve the parameters used to describe the physical scale of the 

project, and to apply metrics of scale that reflect the relevant impact pathways. 

For example, introducing the notion of area covered by the project, either as a 

complement or to replace the generating capacity scale where the impact 

pathway is displacement. For instance, Troldborg et al. (2014) expressed the 

area requirement as m2/kW.  Where the impact pathway is collision, consider 

using the number of devices as the most relevant metric of scale. 

 Introduce project duration in addition to physical size, in order to perform the 

overall development scale risk assessment of the project. 
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5.2.1 Physical scale of the development 

There are several parameters that can describe the physical scale of the project:  

generation capacity, number of devices, size of the devices, area of the project, etc. 

The proposal here is to assess the physical scale of the project on the basis of: (i) 

generation capacity in MW and (ii) area occupied by the project in km2. 

c) Generation capacity 

For the generation capacity the proposal is based upon maintaining the assessment 

criteria included in the SDM Policy (see Bald et al., 2015) (Table 3). 

Generation capacity is proposed to be kept as a secondary criteria. Using generation 

capacity rather than more detailed characteristics (number of device, size, etc) enables 

risk assessment of a project location at stages where the number of devices and the 

unitary generation capacity are not determined, or if these factors change during 

project development while preserving total generation capacity.  This regularly occurs, 

a good example being the early development stages of the offshore wind park of Saint 

Brieux, France in 2014. 

d) Area occupied by the project 

Taking into account the m2/kW values reviewed by Troldborg et al. (2014) for wind, 

wave and tidal projects and the generation capacity values shown in Table 3, the 

thresholds showed in Table 4 are proposed for risk assessment. 

Table 4. Example of risk assessment related to area of the project for wind, wave and tidal projects. 

Scale Wind Wave Tidal Assessment 

Small Scale < 2 km
2
 < 1,5 km

2
 < 1 km

2
 Low 

Medium Scale 2 - 10 km
2
 1,5 – 7,5 km

2
 1 - 5 km

2
 Medium 

Large Scale > 10 km
2
 > 7,5 km

2
 > 5 km

2
 High 
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5.2.2 Duration of the project 

Project duration of the operational phase has been stressed by experts attending 

workshops as a very important criterion. It has already been used in existing risk 

assessments (Sparling et al. (2015)) of wave and tidal projects on marine mammal 

populations in Wales. According to the criteria established by these authors, the risk of 

the project according to the duration can be assessed as shown in the Table 5.  

Consideration of differing life history traits between organisms may lead to alternative 

classification time scales on a case by case basis. 

Table 5. Example of risk assessment related to the duration of the operational phase of a project, taken 
from  Sparling et al. (2015).  

Time Scale Criteria Assessment 

Short 1-3 Years Low 

Medium  3-10 Years Medium 

Long >10 Years High 

 
 
It´s worth noting that duration of the installation and decommissioning phases of the 

project could be also be included in the assessment of the “duration of the project”. 

This is a most difficult issue due to the wide range of projects that could be proposed 

and the specific conditions of each site, thus remaining an open question to be further 

developed and incorporated into the risk assessment approach. 
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6. RISK ASSESSMENT 

Following the methodology suggested by the SDM Policy (see Deliverable 3.1), the 

assessment of the risk of a MRE development is based on assessments of 

environmental sensitivity, project scale, and technology risk (Figure 4). These are each 

categorised as High, Medium or Low and then summarised into a single project risk 

assessment (Figure 4). 

 

Figure 4. Risk assessment approach. 

 

Similar to Sparling et al., (2015), the assessment of the risk of a MRE development is 

based on the combined outcomes of the overall sensitivity of the receptors, taking into 

account the sensitivity of the location, and the risk posed by the project, taking into 

account the scale and the technology. 

6.1 Environmental sensitivity 

As previously stated, in developing SDM, Marine Scotland chose to take a qualitative 

approach to classifying the overall environmental sensitivity of the project location 

using expert judgment based upon the mapping exercise of all environmental 

sensitivities combined.  An alternative and potentially more transparent approach to 

scoring the overall environmental sensitivity of a potential development location is 

given in Table 6.  

RISK

SCALE OF THE 
PROJECT

TECHNOLOGY 
RISK

ENVIRONMENTAL
SENSITIVITY
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Table 6. Calculating overall environmental risk of the proposed location for MRE development: score (1, 
2 or 3 for Low, Medium or High respectively); GM = Geometric Mean. 

Location of project 

ENVIRONMENTAL SENSITIVITY LAYERS (RECEPTORS) 

PHYSICAL ENVIRONMENT BIOTIC ENVIRONMENT 

Marine 
Dynamics 

Seafloor 
integrity 

Water 
quality 

Landscape Benthos Fish 
Marine 

mammals 
Birds 

Lo
w

, m
e

d
iu

m
 o

r 
h

ig
h

 

se
n

si
ti

vi
ty

 a
t 

th
e

 

lo
ca

ti
o

n
 

 
       

Overall  RISK GM 

 

For each environmental sensitivity of concern at the location a value of 1, 2 or 3 is 

assigned for Low, Medium and High risk assessments respectively, depending on the 

perceived importance of the location. For example locations that are protected areas 

for habitats or species would score more  highly than other areas, and areas of the 

wider marine environment with relatively higher densities of a particular species would 

score relatively more highly than other areas. This exercise would be informed by the 

environmental sensitivity mapping at a national scale, that was of sufficient robustness 

to allow quantification at local scales to be undertaken with confidence. As such it 

would appear to be more appropriate for Member States who have access to 

comprehensive and reliable data sets on environmental sensitivity.  Having obtained a 

risk value for each receptor of interest at the project location the overall 

environmental sensitivity of the location can be calculated using the geometric mean. 

In principle, scoring environmental sensitivity in this manner should make it more 

transparent which factors at a particular location are of particular importance for the 

subsequent assessment of environmental impacts from the project.  This may be 

particularly useful where a scoping exercise is undertaken as part of an Environmental 

Impact Assessment. 
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6.2 Technology risk (TR) 

Table 9 summarizes the IP of MRE developments over the marine environment 

identified in Section 4. For each IP a value of 1, 2 or 3 is assigned for Low, Medium and 

High risk assessments respectively. In this way, a risk value can be obtained for each 

stressor and receptor by means of the calculation of the geometric mean (GM) of the 

assigned scores for each IP (Geometric Mean = ((IP1)(IP2)(IP3)…..(IPn)1/n). This analysis 

need to be done for each of the project stages, that is, construction, operation and 

decommissioning. For each of these project stages we will obtain a Low, Medium or 

High risk assessment. Thus, it is recommended that the overall risk assessment of the 

technology consists of the calculation of the Geometric Mean of the three scores 

(stressors, physical receptors and biotic receptors) as shown in Table 7. 

Table 7. Technology Risk (TR) assessment. 

Technology Risk GM score Overall risk 

TRConstruction = ((IP1)(IP2)(IP3)…..(IPn))
1/n

 

TROperation = ((IP1)(IP2)(IP3)…..(IPn))
1/n

 

TRDecommissioning = ((IP1)(IP2)(IP3)…..(IPn))
1/n 

TR = ((TRConstruction)*(TROperation)*(TRDecommissioning)…..(IPn))
1/n

 

1 – 1.60 Low 

1.61 – 2.20 Medium 

2.21 – 3.0 High 

 

6.3 Scale of the project 

For each of the three scale factors (generation capacity, area occupied by the project 

and duration), a value of 1, 2 or 3 is assigned for Low, Medium and High risk 

assessments respectively. An overall project scale risk value can be obtained by means 

of the calculation of the geometric mean (GM) of the assigned scores for each scale 

factors as shown in Table 8. 

Table 8. Scale of the Project Risk (SPR) assessment. 

Scale of the project Risk GM score Overall risk 

SPR = ((Generation Capacity)*(Area of the project)*(Project Duration))
1/3

 

1 – 1.60 Low 

1.61 – 2.20 Medium 

2.21 – 3.0 High 
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Table 9. Impact pathways of the MRE developments over the marine environment. Key: Sc = score (1, 2 or 3 for Low, Medium or High respectively); GM = Geometric Mean. 

Installation 
Operation 

Decommissioning 

ENVIRONMENTAL FACTORS (RECEPTORS) 

 
PHYSICAL ENVIRONMENT BIOTIC ENVIRONMENT 

R
IS

K
 

Marine Dynamics Seafloor integrity Water quality Landscape Benthos Fish Marine mammals Birds 

A
C

TI
O

N
S 

O
F 

T
H

E 
P

R
O

JE
C

T 
 (

ST
R

ES
O

R
S)

 

Physical presence 
of devices 

        
  

IP7 Sc   
 

IP1 Sc IP3 Sc IP5 Sc 
GM 

                    IP2 Sc IP4 Sc IP6  Sc 

Physical presence 
of supporting 

structures 

    IP12 Sc         IP8 Sc IP10 Sc IP11 Sc    
GM 

    IP13 Sc         IP9 Sc          

Dynamic effects 
of devices 

IP18 Sc                IP14 Sc IP15 Sc IP16 Sc 

GM 
IP19 Sc     

  
      

 
    

  
 IP17 Sc 

IP20 Sc     
  

      
 

    
  

    

IP21 Sc                             

Chemical effects         IP22 Sc                     GM 

Acoustic effects                     IP23 Sc IP24 Sc     GM 

EMF                 IP26 Sc IP25 Sc         GM 

 

RISK 
GM GM GM GM GM GM GM GM 

GM 

 

GM GM 

 
Key to IP: 

 IP1: Changes in fish behaviour; may act as fish aggregation devices. 
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 IP2: Barrier to movement (a real or perceived obstacle to normal movement of sea life during migration or day to day activities). 

 IP3: Changes in marine mammal behaviour; may act as aggregation devices. 

 IP4: Barrier to movement (a real or perceived obstacle to normal movement of sea life during migration or day to day activities), and displacement of activities such as 

feeding, mating, rearing, or resting habitats. 

 IP5: Displacement of marine birds. 

 IP6: Collision risk with turbine blades. 

 IP7: Landscape alteration due to the presence of devices 

 IP8: Increases of sea bottom habitat heterogeneity and biodiversity of sessile and mobile benthic organisms due to the addition of hard substrata coming from 

moorings, foundations and cables. 

 IP9: Changes in biogeographic distribution of hard substrata species and introduction pathway of alien species. 

 IP10: Reefing effect. 

 IP11: Entanglement and collision with cables and mooring lines. 

 IP12: Dragging or rubbing of materials such as chains, wires, ropes or cables across the seabed and changes in sediment transport regime and the morphology of sandy 

areas. 

 IP13: Artificialisation and change in proportion of hard/soft substratum in the installation area. 

 IP14: Collision with structures and moving parts. 

 IP15: Collision with structures and moving parts. 

 IP16: Collision with wind turbines. 

 IP17: Collision with tidal turbines. 

 IP18: Scour processes due to the movement of previously stable sediment due to accelerated flows and turbulence induced by structures on or near seabed. 

Sedimentation processes due to accumulation of previously mobile or suspended sediments due to reduced flows or turbulence arising downstream or in the shadow 

of structures. 
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 IP19: Dissipation of wave energy due to the presence of marine energy devices leading to calmer waters or less exposed coastlines.  

 IP20: Change in tidal flows and fluxes (changes in the velocity , direction, quantity and or duration of flows). 

 IP21: Reducing or more likely increasing turbidity in the water column through the release or mobilisation of fine particles. 

 IP22: Releases of contaminants from oils and other operating fluids and anti-biofouling coatings deriving in toxicity due to the exposure to contaminants; potential 

bioaccumulation of metals and other compounds and effects on behavior. 

 IP23: Disturbance and avoiding behaviour during commissioning stage due to underwater noise generated. 

 IP42: Disturbance and avoiding behaviour during commissioning stage due to underwater noise generated. 

 IP25: Change in movement patterns, effect on navigation/operation, avoidance or attraction behaviour, effect on predation-prey detection, physiological effects, 

change in health, survival and/or reproductive success.  

 IP26: Change in movement patterns, effect on navigation/operation, avoidance or attraction behaviour, effect on predation-prey detection, physiological effects, 

change in health, survival and/or reproductive success.  
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6.4 Overall assessment 

Following the methodology suggested by the SDM Policy (see Deliverable 3.1), the 

assessment of the risk of a MRE development is based on assessments of 

environmental sensitivity (see section 3), technology risk (see section 4) and project 

scale (see section 5),  based on the geometric mean of the three scores as shown in 

the following table: 

OR GM score Overall risk 

Overall Risk = ((ESR)*(TR)*(SPR))
1/3

 

1 – 1.60 Low 

1.61 – 2.20 Medium 

2.21 – 3.0 High 

 

The project did not identify any alternative methods considered more suitable, and the 

current recommendation is that this method is applied by Member States. 
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7. DISCUSSION 

As stated before, the objective of this deliverable is to provide guidance on the further 

development of the criteria on which the experts in charge of the risk analysis of a 

specific project will base their analysis in Member States. As it has been pointed out in 

the Expert Workshop 3 held in November 2015, ultimately, any risk-based approach 

should rely on expert opinion and at the discretion of Member States whether or not 

to undertake a more prescriptive approach at national or regional levels. This means 

that the suggested approaches to applying methodologies and criteria are open 

questions and consequently it is the responsibility of the experts to argue each of the 

assessments made under the suggested methodology.  

This is especially clear taking into account the uncertainty that still remains associated 

with interactions between MRE devices and marine animals and/or habitats which are 

directly related with the risk analysis of the technology (Section 4), and with respect to 

the variation in the baseline data that can be used to define environmental sensitivity 

(Section 3). In order to reduce this uncertainty and better understand those 

interactions a continuing monitoring effort need to be implemented. Even if some data 

are available in relation to single devices, it is difficult to extrapolate the obtained 

results to larger deployments over longer time scales. Also, the question of cumulative 

impacts become a bigger issue as MRE development reaches commercialisation – 

particularly for tidal stream as the areas of resource interest tend to be in clusters 

around islands/entrances to lochs. Although cumulative impacts became an 

increasingly important component of environmental impact assessment, practice 

remains contested (Duinker et al., 2012) with few EIAs even considering cumulative 

impacts (Masden et al., 2010). 

The dynamic nature of the marine environment, combined with continuous 

improvements in our understanding of the abundance and distributions of the species 

that are associated with the individual factors within the environmental sensitivities 

layer mean that periodic updating should be considered best practice. The 
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recommendation of the RiCORE Project is that timing of updates should reflect 

significant changes in the baseline understanding, or in response to further phases of 

planned deployment of novel technologies. 

Regarding the project scale criteria, further development could be expected as MRE 

develops to commercial scale and other questions such as layout of an array are 

addressed under the present approach. 

The flexible approach adopted by SDM policy towards characterisation of the 

environmental risk profile is generally considered to be consistent with the underlying 

principle that the policy driver is in response to scientific uncertainty associated with 

novel activities whose impacts are necessarily poorly understood.  More prescriptive 

approaches are more likely to be associated with more established, larger-scale human 

activities whose impacts are understood with greater scientific certainty. 
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8. CONCLUSIONS 

The conclusions are provided in the form of a checklist of take home messages for the 

further development of risk profiling at a Member State level: 

 Data gaps associated with environmental risk mapping should be addressed 

with reference to the best available information in preference to no attempt to 

characterize environmental risk being made. 

 The specific environmental sensitivity layers considered by Member States will 

vary depending on information available and local concerns. 

 Individual environmental sensitivity layers should be weighted and scored 

based on Member State priorities. 

 Weighting of environmental sensitivity layers by refering to established 

assessments that relate the sensitivity of receptors to pressures can provide 

consistent treatment of marine renewable energy with other human activities. 

 Overall environmental sensitivity can be risk profiled by calculation using the 

geometric mean method. This may provide a more comprehensive and 

transparent alternative to qualitative ranking of environmental sensitivity as 

either 1, 2 or 3 for each project location.  Undertaking this exercise could also 

inform scoping for projects that subsequently undertake Environmental Impact 

Assessment. Balanced against this are the benefits associated with more 

qualitative approaches that place more weight upon expert opinion which may 

be preferred; particularly where there are reasonable grounds to be concerned 

about the robustness of the data layers informing environmental sensitivity 

scores. 

 Overall technology risk should be informed by identification and scoring of 

impact pathways between stressors and receptors. This can be used to arrive at 

an overall technology risk score using the geometric mean approach. 
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 Best available information on impact pathways should be used. This report 

reviews current state of knowledge, recognizing that the evidence base may 

change rapidly. 

 Technology risk assessment should address construction, operation and 

decommissioning risks. 

 The geometric mean scoring system should be applied to impact pathways in 

order to calculate overall technology risk. 

 For scale of project risk the recommendation is to incorporate additional 

factors to consider the timescale of the different project phases and physical 

scale of the project in addition to the electrical output (megawatts).  Physical 

scale may be sub-divided into spatial area for displacement impact pathways 

and number of devices for collision risk impact pathways. 

 The geometric mean scoring system should be used to calculate overall scale of 

project risk. 

 The overall project risk should also use the geometric mean scoring system. 

 The suggested approach for a risk analysis of a specific project developed in the 

present deliverable remain an open question and consequently it´s the 

responsibility of the experts to argue each of the assessments made under the 

suggested methodology. Further developments are expected an encouraged as 

new research reduce uncertainties about environmental interactions between 

MRE devices and marine animals and/or habitats,  
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