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ABSTRACT 

NOT GONE WITH THE WIND: 
ADDRESSING EFFECTS OF OFFSHORE WIND DEVELOPMENT ON BAT 

SPECIES IN THE NORTHEASTERN UNITED STATES 
 

SEPTEMBER 2018 
 

ZARA RAE DOWLING, B.A., BARD COLLEGE 
 

M.S., UNIVERSITY OF MARYLAND, COLLEGE PARK 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 
 

Directed by: Professor Paul R. Sievert 
 

 

Development of coastal and offshore wind energy resources has the potential to 

add considerable renewable electricity capacity to the United States electrical grid, but 

could have detrimental impacts on wildlife.  Land-based wind energy facilities are 

estimated to kill hundreds of thousands of bats every year in the United States, and could 

threaten population viability of some species.  Little is known about the potential impacts 

of offshore wind development on bat populations along the North Atlantic coast, but a 

number of species are known to frequent marine islands or fly over the ocean during 

migration.  This dissertation helps to characterize risks of offshore wind development to 

bats through increasing our knowledge of bat habitat use and behavior in the coastal and 

offshore environments of the northeastern United States.  Chapter I provides a general 

introduction to the topics of offshore wind energy development and bat mortality at wind 

energy facilities.  Chapter II details the first scientific survey of bat use of the offshore 

island of Nantucket, Massachusetts, with a focus on the federally threatened Northern 

Long-eared Bat.  Chapter III describes bat flight behavior on and around the offshore 
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island of Martha’s Vineyard, Massachusetts.  Chapter IV explores the fall migratory 

behavior of eastern red and hoary bats radio-tagged at sites along the New England coast 

and tracked using an extensive network of automated telemetry stations.  In Chapter V, I 

estimate the economic costs of curtailment as a bat fatality minimization option for a set 

of theoretical offshore wind energy facilities located at sites along the Eastern Seaboard.   
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CHAPTER I 

GENERAL INTRODUCTION 

The threat that offshore wind energy poses to North American bats is at present 

largely theoretical.  That is to say, there is only one offshore wind energy facility 

currently in operation off the coast of the United States or Canada – a 30-megawatt 

(MW) farm off of Block Island, Rhode Island.  However, the anticipated scale of 

development of offshore wind in North America is quite expansive, and the resultant 

effects on bat populations could be significant.  The Bureau of Ocean Energy 

Management has established eleven leases for offshore wind development in federal 

waters along the East Coast of the United States (2018).  Within the Northeast, over 

4,000 MW of offshore wind capacity are currently proposed for development off the 

coast of Massachusetts, and companies are contemplating plans for development of over 

1,000 MW off of Long Island, New York (New York ISO 2017b, ISO New England 

2018).  Recent legislative initiatives are providing the financial stability and market 

demand necessary to fund increasing development of this energy resource.  The 

Massachusetts legislature has instructed electrical utilities within the state to contract 

with generators for development of 1,600 MW of offshore wind capacity (Act to Promote 

Energy Diversity 2016), while New York has committed to installing 2,400 MW of 

offshore wind by 2030 (New York State Energy Research and Development Authoirty 

2018), and Maine has set a goal of 5,000 MW of offshore wind by 2030 (Act to 

Implement the Recommendations of the Governor’s Ocean Energy Task Force of 2010, 

M.P.L. ch. 615).  Overall, at least 352,000 MW of capacity are estimated to be available 
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off the New England coast, with an additional 74,000 MW available off of New York 

(Musial et al. 2016).  

Energy generated from the wind, whether in the onshore or offshore environment, 

is commonly considered an environmentally-friendly alternative to energy sourced from 

greenhouse gas-emitting fossil fuels.  However, wind energy development can have 

negative impacts on wildlife, including bats (Government Accountability Office 2005).  

Hundreds of thousands of bats are killed in collisions with wind turbine blades at land-

based facilities in the United States every year (Arnett & Baerwald 2013, Hayes 2013, 

Smallwood 2013).  In North America, mortality is heavily skewed towards long-distance 

migratory tree bat species, including the hoary bat (Lasiurus cinereus), eastern red bat (L. 

borealis), and silver-haired bat (Lasionycteris noctivagans) (Arnett et al. 2008).  Surveys 

for carcasses under turbines have demonstrated that fatalities tend to peak during the late 

summer and fall, when these migrants are moving southward (Arnett et al. 2008).  While 

precise population counts of long-distance migrants cannot be easily collected (O’Shea & 

Bogan 2003, Schorr et al. 2014), population parameter estimates based on expert opinion 

and data from related species can provide estimates of the population-level consequences 

of wind-associated mortality.  These sources suggest that mortality at wind facilities 

could drastically reduce populations of the hoary bat, decrease population viability, and 

increase the risk of extinction; other long-distance migrants may be at similar risk (Frick 

et al. 2017). 

In the northeastern United States, a number of hibernating bat species have 

already experienced dramatic population declines, in part associated with disturbance of 

hibernation sites, and over the last decade due to the spread of the fungal disease known 
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as White-Nose Syndrome (WNS) (Turner et al. 2011).  Median abundances for the six 

cave-hibernating bat species that occur in the Northeast have declined by 60-98% since 

the introduction of WNS; the disease has resulted in local extinctions at 6-69% 

hibernation sites, depending on the species (Frick et al. 2015).  These now-rare 

populations are vulnerable to any additional sources of mortality, including mortality at 

wind facilities (Arnett et al. 2008).  Population models of the endangered Indiana bat 

(Myotis sodalis) suggest that loss of individuals to wind energy is low relative to WNS, 

but wind mortality could reduce connectivity and eliminate smaller sub-populations 

(Erickson et al. 2016).    It is clear that wind energy development has potential 

population-scale consequences for all bat species that occur in the northeastern United 

States. 

What risks might offshore wind development pose to bat populations?  Bats are 

not typically thought of as ocean-going animals.  However, a number of species that 

occur in the Northeast have been known to travel significant distances (>50 km) to 

hibernation sites or to southern wintering grounds (Griffin 1945, Davis & Hitchcock 

1965, Cryan et al. 2003, Neubaum et al. 2006, Norquay et al. 2013, Fraser et al. 2012), 

and these travels could include over-water movements.  Long-distance migratory species 

are suspected of using coastal routes during migration (Johnson et al. 2011b), and both 

anecdotal and acoustic data provide evidence of significant coastal and offshore activity 

(Hatch et al. 2013, Peterson et al. 2014, Sjollema et al. 2014, Smith & McWilliams 

2016).  Less is known about offshore movements of regional migrants which hibernate in 

the northeastern United States, but these species are commonly recorded at coastal sites 

and on offshore islands (Peterson et al. 2014).  If regional migrants move between coastal 
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and offshore summering grounds and inland hibernacula, they could also be at risk from 

offshore wind development. 

Given the dearth of information about bats in marine environments, research is 

warranted to better characterize bat behavior offshore, and to evaluate what risks offshore 

wind development may pose to populations of bat species.  The most efficient way to 

collect data from a conservation perspective is to focus on answering questions which can 

help inform known strategies to minimize risk to bats.  At this point in time, specific 

methods for reducing bat mortality in the offshore environment have not yet been 

developed.  In terrestrial situations, however, researchers have proposed a number of 

approaches to reducing the risk of bat mortality at wind energy facilities.  These 

strategies fall into three general categories, as follows: 

1) Siting – Location of wind facilities away from major bat flyways and habitat.

2) Curtailment – Stoppage of rotor motion during specific weather conditions and

times of year when bat activity and mortality at wind facilities are expected to be

high.

3) Deterrents – Devices mounted on wind turbines to warn bats away from blades.

Siting - In the eastern United States, high bat mortality rates have been documented in the 

Appalachian region, including at facilities in Tennessee and Pennsylvania (Arnett et al. 

2008), relative to sites elsewhere.  Baerwald and Barclay (2009) found higher mortality 

in the foothills of the Rocky Mountains in Canada, compared to Great Plains sites where 

roosting opportunities were scarce.  In general, bats are thought to follow linear features 

in the landscape when foraging and migrating, such as forest edges, mountain ridgelines, 
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rivers (Serra-Cobo et al. 2000, Furmankiewicz & Kucharska 2009), and coastlines 

(Johnson et al. 2011b), but specific travel corridors remain largely unknown.  The U.S. 

Fish &Wildlife Service Land-Based Wind Energy Voluntary Guidelines (2012) 

recommend acoustic surveys pre-construction to document patterns of bat activity, but 

acknowledge that pre-construction acoustic activity cannot be satisfactorily linked to 

post-construction mortality.  Acoustic data can therefore aid in identification of any 

protected species present in an area, but are not currently of great use in siting facilities to 

avoid sites with high bat activity. 

 

Curtailment - The use of curtailment is predicated on the idea that bat mortality can be 

predicted and, hence, avoided.  Bat mortality is expected to be non-random, given that 

metrics of bat activity are often significantly associated with meteorological variables 

(e.g. Ciechanowski et al. 2007, Baerwald & Barclay 2011, Wolcott & Vulinec 2012).  

Bats tend to be active on low-wind speed (<6 m/s) nights, during weather conditions 

related to the passage of storm fronts (Arnett et al. 2008).  Bats showed mixed, but 

significant, responses to other weather variables, including temperature, moon 

illumination and barometric pressure changes, depending on the location and species 

(Arnett et al. 2008).  In cooler weather, they tend to be active on nights with relatively 

warm temperatures (>10ºC) (Arnett et al. 2008).  Incorporating multiple meteorological 

variables leads to better fitting models of bat activity, and is expected to lead to more 

efficient curtailment practices (Weller & Baldwin 2012).  However, curtailment studies 

to date have focused on simple curtailment regimes, specifically reducing turbine 

operation at low wind speeds during the fall migration season (Baerwald et al. 2009, 
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Arnett et al. 2011).  Several curtailment studies have raised the cut-in speed, the 

minimum speed at which turbines begin to produce power, from 3.5 m/s to 5.0-6.5 m/s, 

or have adjusted turbine blade angles to “feather” the blades during low wind speeds.  

These alterations have the effect of raising the wind speed at which blades begin to rotate, 

and has been associated with a decrease in mortality of 44-93% (Baerwald et al. 2009, 

Arnett et al. 2011).  These operational adjustments are not favored by wind developers 

since they do lead to lower energy production.  However, curtailment is a requirement at 

some New England wind facilities during the active season for bats on warm-

temperature, low-wind nights (Maine Department of Inland Fisheries & Wildlife 2013, 

Vermont Agency of Natural Resources 2016), and has also been proposed as a strategy to 

minimize mortality under the draft Midwest Habitat Conservation Plan, wherever 

protected species or the little brown bat are present (U.S. Fish & Wildlife Service 2016b). 

 

Deterrents- An effective deterrent has not yet been developed for wind turbines, but 

efforts are underway to design an ultrasonic device that would warn bats away from 

turbine blades.  The only device tested thus far in situ was an ultrasonic white-noise 

generator, powered by electricity and mounted on the turbine nacelle (Arnett et al. 

2013a).  The sound intensity of the device was not adequate to extend the full length of 

the turbine blades, and its large size precluded mounting the device on the blades 

themselves.  In addition, the device suffered from weather damage and associated power 

failures.  Perhaps due to these issues, the device did not significantly reduce bat mortality 

at turbines (Arnett et al. 2013a).  Researchers are currently working to improve the 

device.  Nicholls and Racey (2009) proposed that radar was capable of producing 
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avoidance behavior by bats at foraging grounds, and could offer an alternative approach 

to deterrence.  This strategy has not been thoroughly explored.  

 

In this dissertation, I address a number of the gaps in our knowledge regarding 

coastal and offshore bat activity, with the goal of evaluating the level of risk offshore 

wind development could pose to bat populations, and ultimately informing siting and 

curtailment approaches to minimize risk to bats.  I explore bat use of coastal and offshore 

habitats, spatially and temporally, and characterize movements of radio-tagged 

individuals.  I also examine the economic costs associated with curtailment for bats at 

offshore wind sites 

As part of my graduate work, I also collaborated with colleagues in the UMass 

Department of Mechanical, Industrial, and Electrical Engineering on several projects 

related to development of bat deterrent devices for wind turbines.  Our main work has 

focused on development of an ultrasonic whistle that could be mounted along turbine 

blades, and blown by the wind to generate sound mechanically.  Due to the engineering 

focus of this work, I have played a secondary role in the research, and it is not included in 

this dissertation.  I also conducted a pilot experiment in conjunction with colleagues in 

Electrical Engineering to test the effects of radar as a deterrent to bats commuting to 

foraging areas near a known roost site, but we observed no reaction to the radar device. 

Following this general introduction, each succeeding chapter is treated as a stand-

alone paper with an abstract, an introduction pertinent to the topic, a description of 

methods used to address the research question, results, and discussion.  The subsequent 

chapters are ordered and formatted as follows:   
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 Chapter II describes bat use of the offshore island of Nantucket, with an emphasis 

on the threatened northern long-eared bat (Myotis septentrionalis).  It is formatted 

as a research article for submission to the Northeastern Naturalist. 

 Chapter III considers bat movements on and around the island of Martha’s 

Vineyard, through the use of coded radio-tags and automated telemetry data.  It is 

formatted as a technical report to the Bureau of Ocean Energy Management. 

 Chapter IV examines coastal and offshore movements of migratory bats during 

fall migration, through the use of coded radio-tags and an extensive array of 

automated telemetry stations.  It is formatted as a research article for submission 

to the Journal of Wildlife Management.    

 Chapter V focuses on output of a model to estimate economic costs of curtailment 

regimes designed to reduce bat mortality.  It is formatted as a letter for submission 

to Conservation Letters. 
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CHAPTER II 

BAT USE OF AN ISLAND OFF THE COAST OF MASSACHUSETTS 

 

 

Abstract 

Nantucket, Massachusetts, could provide unique habitat for bats, but few data are 

available regarding bat populations on the island. We conducted passive acoustic surveys 

in 2015 and 2016 to inventory bat species and identify seasonal activity patterns. We 

detected at least 6 species of bats on Nantucket.  Lasiurus cinereus (Hoary Bat) and 

Lasionycteris noctivagans (Silver-haired Bat) were detected as probable migrants, while 

Lasiurus borealis (Eastern Red Bat), Eptesicus fuscus (Big Brown Bat), and Myotis 

species were also present in summer.  Perimyotis subflavus (Tricolored Bat) was detected 

in fall and early winter, suggesting the species may hibernate on-island.  In 2016, we 

mist-netted and radio-tagged Myotis septentrionalis (Northern Long-eared Bat), and 

documented individuals reproducing and hibernating on Nantucket.  Given the 

persistence of this rare species on the island, we suggest land conservation organizations 

should consider maintenance of mature forest stands in management activities.  

 

Introduction 

There is growing concern regarding conservation of bat populations in temperate 

North America.  This is due in large part to the devastating impact of the fungal disease 

known as White-nose Syndrome (WNS) on cave-hibernating bats (e.g. Frick et al. 2010, 

Turner et al. 2011), as well as the population-level threat mortality at wind energy 
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facilities could pose to long-distance migratory tree bats (Arnett and Baerwald 2013, 

Frick et al. 2017, Hayes et al. 2013). Three cave-hibernating bat species, Myotis 

septentrionalis Trouessart (Northern Long-eared Bat), Myotis lucifugus Le Conte (Little 

Brown Bat), and Perimyotis subflavus Cuvier (Tricolored Bat), are now listed as 

endangered in the state of Massachusetts (MA NHESP 2017) due to population 

reductions of greater than 90% associated with WNS (Turner et al. 2011); the Northern 

Long-eared Bat has also been designated as federally threatened under the Endangered 

Species Act (U.S. Fish & Wildlife Service 2016a).  In addition, three long-distance 

migratory tree bats, Lasiurus cinereus de Beauvois (Hoary Bat), Lasiurus borealis Muller 

(Eastern Red Bat), and Lasionycteris noctivagans Le Conte (Silver-haired Bat), are listed 

as Species of Greatest Conservation Need in Massachusetts (MA NHESP 2015).  

One major challenge in bat conservation is a lack of knowledge about bat 

populations and their distribution across the landscape (O’Shea and Bogan 2003).  

Relatively little is known about bat use of coastal areas and offshore islands in the 

Northeast, but these environments can offer unique habitat to bats.  Bat surveys 

conducted on Martha’s Vineyard and Cape Cod, Massachusetts detected large numbers of 

Northern Long-eared Bats prior to the outbreak of WNS (Buresch 1999, Kelly and 

Ciaranca 2000). Recent surveys on Martha’s Vineyard from 2014-2016 found that 

capture rates of Northern Long-eared Bats were lower than pre-WNS surveys, but healthy 

maternity colonies were still documented producing pups (Baldwin et al. 2017). This 

contrasts with sharp declines at many inland sites in the Northeast, where the species is 

now rarely found (Ford et al. 2011, Francl et al. 2012).  The offshore island of Nantucket, 

Massachusetts could also be providing habitat for persistent populations of Northern 
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Long-eared Bats, but only anecdotal information is available regarding historic bat 

populations.   

Long-distance migratory tree bats frequent coastal areas, and will often utilize 

islands as stopover habitat during their fall migration (Miller 1897; Peterson et al. 2014, 

2016; Smith and McWilliams 2016), roosting temporarily in lighthouses and other sites 

(Cryan and Brown 2007, Johnson et al. 2011b).  Specimens of all 3 long-distance 

migratory tree bat species have been collected on Nantucket in August and September 

(Maria Mitchell Association 2017), and Eastern Red Bats were captured on nearby 

Tuckernuck Island (Veit 2012).  If migratory bats are passing through Nantucket as part 

of their fall migration route, it will be important to consider risks to bats associated with 

large-scale offshore wind energy development planned for federal waters southwest of 

the island (BOEM 2017).   

The goals of this study were to 1) inventory bat species present on Nantucket 

using passive acoustic monitoring, 2) characterize the seasonal use of Nantucket by these 

species as migrants or summer residents, and 3) if present, determine if Northern Long-

eared Bats were reproducing or hibernating on the island.  

 

Methods 

Acoustic detector deployment 

The island of Nantucket, Massachusetts (120 km2) is situated 43 km south of 

Cape Cod, and 15 km east of Martha’s Vineyard, another offshore island. Between 2015 

and 2016, we deployed passive acoustic detector stations at 15 locations on Nantucket 

(Fig. 2.1). Sites were selected oportunistically in areas we deemed potential bat habitat, 
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including forest corridors (trails, wood roads) and beside wetlands. From April to mid-

November 2015, we deployed 8 stations at 4 localities, with the 2 stations at each locality 

at least 100 m apart, which represented non-overlapping detection radii (Table 2.1). In 

mid-August, 1 station was moved from the Squam Farm site to Gibbs Pond, in order to 

sample a broader range of sites. In 2016, we deployed 8 stations at more widely-dispersed 

localities between April and December (Table 2.1). Each station consisted of an Anabat 

II acoustic detector (Titley Scientific, www.titley-scientific.com) set in a PVC junction 

box, with the microphone pointed downward into a PVC elbow. We used a frequency 

division ratio of 16 and a sensitivity level of 6-7.  All units were powered by a 12-volt 

battery charged by a small solar panel. Detectors were mounted 1–3 m above the ground, 

either hung from a tree, a shrub, or two poles set in the ground. Detectors operated 

between 6:00 PM and 8:00 AM every night. Stations were checked periodically 

throughout the season to download data and ensure proper operation.   

 

Bat call identification 

We followed U.S. Fish & Wildlife Service Indiana Bat Survey Guidelines (2017) 

in identifying bat calls; first, we processed probable bat call files through two auto-

classification software systems, then manually examined candidate calls as identified by 

the software, and finally consulted with experts in the field, as appropriate. With the 

exception of data collected at the Ram Pasture station, all files were viewed manually 

using AnalookW 4.1 software prior to auto-classification. We used manual identification 

as a first pass to differentiate noise files from probable bat call files that contained at least 

two pulses. Files containing probable bat calls were then analyzed using both EchoClass 

http://www.titley-scientific.com/
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V3.1 (U.S. Army Engineer R and D Center 2015) and KaleidoscopePro (Wildlife 

Acoustics Inc. 2015). The Ram Pasture station generated over 58,000 files, therefore we 

did not manually pre-screen files at this site before running them through the auto-

classification software.  Data from nights with an average of 100 files per hour or higher 

(>1400 files per night) were ignored during analysis; we found they contained few to no 

bat calls, and were associated with either high average wind speeds (>8 m/s) when bats 

were unlikely to be active, or showed evidence of device malfunction and mechanical 

noise.  At Ram Pasture, the busiest site, true spikes in bat activity led to averages of ~70 

call files per hour, but never exceeded 100 call files per hour. 

Bat call files were run through EchoClass using the Species Set 2 list, which 

includes the 9 bat species known to occur in Massachusetts currently [Eptesicus fuscus de 

Beauvois (Big Brown Bat), M. leibii Audubon and Bachman (Eastern Small-footed Bat), 

Eastern Red Bat, Hoary Bat, Little Brown Bat, Northern Long-eared Bat, Silver-haired 

Bat, Tricolored Bat] or historically [Myotis sodalis Miller and Allen (Indiana Bat)].  

EchoClass returns a maximum likelihood estimate indicating the probability that the 

presence of a species at a site on a given night was falsely identified, therefore a low P-

value indicates a species is likely present at the site. Bat call files were also analyzed 

using KaleidoscopePro, with the software set to the “0 Balanced” (Neutral) setting, and 

the Massachusetts region selected for the same 9 bat species. KaleidoscopePro also 

provides a maximum likelihood estimator describing the probability that a species was 

misidentified at a site, based on how many detections of each bat the classifier found, and 

a confusion matrix representing how likely a species was to be mis-identified. Both auto-
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classification programs were approved by the U.S. Fish and Wildlife Service for 

identification of Indiana and Northern Long-eared Bats in zero-cross acoustic data. 

As a final step, we viewed and qualitatively vetted calls identified by EchoClass 

and KaleidoscopePro using comparisons with established keys (Humboldt State 

University 2011, Keinath 2011) and reference call libraries.  At a minimum, we required 

the following conditions for positive identification: Hoary Bats – calls a minimum 

frequency of <22 kHz; Eastern Red Bats - a minimum frequency between 32–42 kHz 

which varied 1–2 kHz across pulses; Tricolored Bats - a minimum frequency of 38–42 

kHz, with consistency across pulses and a strong constant-frequency component; Eastern 

Small-footed Bats- a minimum frequency of >45 kHz; other Myotis species - a minimum 

frequency of 38–42 kHz, best distinguished by the slope of the call, with some overlap, 

probable Northern Long-eared Bats - slope >200 octaves per second (Johnson et al. 

2011a), potential Little Brown or Indiana Bat - calls with a slope <200 octaves per 

second; Big Brown or Silver-haired Bat - minimum frequency ~25 kHz, with flat calls of 

~25–30 kHz diagnostic of Silver-haired Bats.  

We manually vetted at least one call per station-night per species, as identified by 

KaleidoscopePro.  We also vetted all calls identified by the auto-classification programs 

as Big Brown Bat, Tricolored Bat, Eastern Small-footed Bat, or Indiana Bat, since these 

calls were relatively few in number.  We shared selected examples of identified calls of 

each bat species with experts with a greater proficiency and experience in identifying bat 

calls.   
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Seasonal variation in detections 

We categorized sampling nights into five seasons: spring migration (April 15-

May 31), maternity period (June 1-July 15), volancy period (July 16-August 15), fall 

migration (August 16-November 15), late season (November 16-December 15).  These 

five seasons roughly reflected regional patterns of behavior of cave-hibernating and 

migratory bats in terms of timing of migration, pup volancy, and hibernation (e.g., Burns 

et al. 2014, Davis and Hitchcock 1965, Dowling et al. 2017, Kunz et al. 1998, Peterson et 

al. 2016, Townsend et al. 2008).  We evaluated seasonal variation in detection rates in 

two ways.  First, for each season, we summed the number of nights bats were detected for 

each station-year, and divided by the total number of sampling nights during that station-

year, to obtain a detection probability. We used ANOVA (R Core Team 2017, 

package:aov) to test the effect of season on probability of detection for all bat calls 

combined, and separately for Myotis spp., Eastern Red Bats, Hoary Bats, Silver-haired 

Bats, Big Brown Bats, and Tricolored Bats, as identified by KaleidoscopePro.  We used 

Tukey’s HSD to evaluate differences among categories within season. 

Second, we qualitatively assessed seasonal activity patterns based on call 

identifications confirmed through manual vetting.  Differentiation between the calls of 

Big Brown Bats and Silver-haired Bats is challenging (Betts 1998); therefore, we only 

classified a call as from a Silver-haired Bat when a flat call was present in the appropriate 

frequency range.  We shared clear examples of calls auto-classified as Big Brown Bat 

with multiple experts, in order to determine if the species was present in each season. 

Differentiating among Myotis spp. is also prone to error (Britzke et al. 2013), therefore 

we pooled detections of all four Myotis spp.  The majority of Myotis calls detected were 
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steep in slope (>200 octaves per second), suggesting they were from Northern Long-

eared Bats. 

 

Bat capture and tagging 

We mist-netted potential travel corridors and wetland areas on 3 nights in the 

spring (29 April, 30 April and 2 May 2016 at Squam Farm), 2 nights in the summer (19 

July at Squam Farm, 20 July at Ram Pasture), and 2 nights in the fall (30 October at Ram 

Pasture, 31 October at Lost Farm), using 38 mm mist nets.  Each night we deployed 1 

triple-high mist net set-up (3 stacked nets, each 4 m across x 2.6 m high, total height ~6.5 

m) and 2–4 single-high mist nets (1 net, 4 or 6 m across x 2.6 m high). In addition, on 1 

November, we hand-captured bats roosting at an identified roost site in a crawl space.  

We only operated mist nets in conditions with low wind and no precipitation, although 

temperatures fell below preferred conditions of ≥10°C during spring and fall trapping.  

Captured bats were identified to species, sexed, weighed, and measured along the 

forearm. We aged bats based on wing joint ossification, but could not differentiate 

young-of-the-year from adult bats during fall trapping.  We attached Lotek NTQB-1 

(0.29 g) coded radio-tags to bats using animal ID tag cement (Nasco), after shaving a 

small area of fur between the scapulae. Radio-tags operated on a single frequency, and 

emitted a signal every 4.7 seconds 24 hours per day, for an estimated battery life of about 

3 weeks (Lotek Wireless, www.lotek.com). To reduce the likelihood of negative effects 

from tagging, all transmitters were <5% of bat body weight (Aldridge and Brigham 

1988). Bat capture and handling efforts were conducted under MassWildlife Scientific 

Collection Permit # 181.16SCM and University of Massachusetts-Amherst IACUC 
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Protocol Sievert 2015-0009, and followed American Society of Mammalogists standards 

(Sikes and Gannon 2011).  Mist nets were only used on Nantucket, and all gear was 

treated in accordance with National WNS Decontamination Protocols (U.S. Fish & 

Wildlife Service 2012, 2016c) to minimize the likelihood of spreading WNS.  

 

Bat tracking and roost monitoring 

We manually tracked tagged bats to roost sites using a Lotek SRX-800 receiver, 

and recorded roost characteristics. When possible, emergence counts were conducted 

from shortly before sunset to an hour after sunset. Manual tracking was conducted until 

bats dropped tags or battery life of the tags expired.  We tracked one bat to a crawl space 

roost site, where we conducted visual surveys of the site on 31 October 2016, 8 

November 2016, and 24 February 2017, and used a Maxim Integrated iButton 1-wire 

Hygrochron to record temperature and humidity at the site through the winter.  

Movements of bats roosting in the crawl space were monitored from 2 November to 10 

December 2016 with the use of an automated telemetry station erected on a balcony at a 

house ~85 m from the roost. The station consisted of an omni-directional antenna 

connected to a sensorgnome receiver (www.sensorgnome.org) that continuously 

monitored for radio-tags 24 hours per day.  During this time period, there were 3 other 

automated telemetry stations on Nantucket, and 12 automated telemetry stations on Cape 

Cod, deployed as part of the Motus Wildlife Tracking System (Taylor et al. 2017), which 

could have detected coastal or off-island movements by tagged bats.   In the summer, we 

calculated the number of days tracked based on manual tracking to roost locations and 

roost emergence.  In the fall, we calculated the number of days tracked based on visual 

http://www.sensorgnome.org/
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inspection at the crawl space, and variation in signal strength as detected via automated 

telemetry.  Manual tracking was used to confirm radio-tag presence at the crawl space, 

but since bats did not emerge on most nights, we could not differentiate between tags on 

torpid bats and dropped tags using this method. 

 

Results 

Acoustic detector deployment 

Acoustic detectors were deployed at station locations for 80 to 198 nights between 

late April and mid-November 2015, and 37 to 224 nights between early May and mid-

December 2016. Detector malfunction and ambient noise led to some missed nights, but 

most detector stations functioned for the majority of their deployment. We successfully 

recorded during 51–100% of nights deployed (Table 2.1). Data were recorded for a total 

of 2,120 detector-nights.  

 

Bat species presence 

A total of 58,231 files were collected at the Ram Pasture site; 5,670 were 

identifed to species using the EchoClass software.  At the other stations, where calls were 

reviewed manually prior to analysis, a total of 13,518 files were identified as probable bat 

calls, 727 of which were identified to species using EchoClass software. EchoClass 

software estimated that 8 of 9 bat species found in Massachusetts were likely present on 

at least 1 station on Nantucket (P < 0.05) (Table 2.2). The exception was the Eastern 

Small-footed Bat, for which individual call sequences were only identified at the Ram 

Pasture site in 2016. Eastern Red Bats were the most commonly detected species, 
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identified as present (P < 0.05) in 13 of 17 station-years surveyed, with individual call 

sequences recorded at 2 other stations. Northern Long-eared Bats were identified as 

present (P < 0.05) at the Ram Pasture and Lost Farm stations in 2016. 

KaleidoscopePro software identified 11,856 calls to species at the Ram Pasture 

station, and 2,401 calls at the other stations combined. KaleidoscopePro software 

determined all 9 bat species found in Massachusetts were present on at least 1 station on 

Nantucket (P < 0.05) (Table 2.3). Eastern Red Bats were again the most commonly 

identified bat species, with their presence identified (P < 0.05) in 16 of 17 station-years. 

The Eastern Small-footed Bat, which was not detected by EchoClass software, was 

identified (P < 0.05) at 4 stations. The Northern Long-eared Bat was identified at 8 

stations (P < 0.05).  

Manual vetting confirmed the presence of Northern Long-eared Bats, Eastern Red 

Bats, Hoary Bats, Silver-haired Bats, Tricolored Bats, and Big Brown Bats on Nantucket. 

There is significant overlap in the parameters differentiating calls of Myotis species, and 

expert review did not identify any candidate calls as definitive evidence of Little Brown 

Bats, Indiana Bats, or Eastern Small-footed Bats.  

 

Seasonal variation in detection rates 

Probable bat calls were detected from 30 April through 11 November 2015 and 2 

May to 12 December 2016. Bats were present on 19–84% of nights surveyed at each 

station, with lower detection rates during late fall (Fig. 2.2).  We demonstrated a 

significant effect of season on likelihood of bat detection (F(4,54) = 2.81, P = 0.034), with 

detection rates significantly lower on nights in the late season compared to the volancy 
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period (Padj = 0.013).  There was no effect of season on likelihood of detection (P > 0.05) 

of any individual species or Myotis spp. as identified by KaleidoscopePro.  This was 

likely due to low identification rates by the auto-classification software, resulting in low 

detection rates for species at most stations across all seasons.  

Based on manual vetting, Myotis spp. were present from 30 April–21 October 

2015, and on most warm nights between 2 May–26 November 2016, with particularly 

high detection rates at the Ram Pasture and Lost Farm sites in 2016.  Tricolored Bats 

were detected on 29 July 2016, on several isolated nights in September and October 

2015, and on 8–9 November 2016; a final call was recorded 12 December 2016 at the 

Lost Farm site, following an unseasonably warm day (high of 12°C, 7°C at dusk). 

Manual vetting also confirmed that Eastern Red Bats were widespread, and were 

recorded frequently every month from 15 May–15 November 2015 and 2 May–27 

November 2016. Hoary Bat calls were primarily recorded during the migration seasons 

(2015: 9–29 May, 9 August– 13 October; 2016: 12 August–25 September), but there 

were isolated detections during the maternity period in June 2015 and early July 2016. 

Silver-haired Bats in 2015 were detected from 27 October–5 November, with two distinct 

peaks (27 August–1 September, and 14–16 September), whereas in 2016, Silver-haired 

Bats were detected from 26 July–30 October with no peaks in activity.  There were 

several confirmed calls in June.  

 

Bat capture, tagging, and tracking 

We caught a total of 13 bats on Nantucket in 2016, all of which were Northern 

Long-eared Bats (Table 2.4).  We captured 9 bats in 2.25 hours of trapping on 20 July 
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2016 at Ram Pasture, and radio-tagged 3 lactating females.  Two tagged bats were re-

located for 2 days each, before dropping their tags.  One tagged bat utilized a roost at a 

private residence ~1.9 km from the capture site on 22 July and 23 July, where it appeared 

to be roosting on the side of a house under a trim board.  A second bat was tracked to a 

Pitch Pine snag ~200 m from the capture site in a pine stand on 21 July.  That evening, 11 

bats were observed emerging from a long crack in the tree.  On 22 July, the bat was 

tracked to a second roost in a live Pitch Pine ~130 m from the first tree and ~140 m from 

the capture site.  Two observers saw 9 and 20 bats respectively in the vicinity of the tree 

on the night of 22 July, but the emergence location could not be identified. 

We captured and tagged one male Northern Long-eared Bat in 2 hours of trapping 

on 30 October 2016 at Ram Pasture.  This bat was tracked to a crawl space beneath a 

house located ~2.4 km from the capture site, where it was found roosting in association 

with 4 other Northern Long-eared Bats in narrow (~1 cm) cracks between wooden 

sistered floor joists.  On 1 November, we hand-captured and radio-tagged 1 additional 

male and 2 female Northern Long-eared Bats roosting in the crawl space (Table 2.4).  

Radio-tags remained on all 4 bats at least through 8 November, when bats were observed 

in the crawl space, torpid and unresponsive.  Three of the 4 tagged bats were also 

intermittently recorded by the nearby automated telemetry station, with variation in signal 

strength demonstrating tags remained on these bats for at least 12-24 days after tagging.  

Manual tracking further indicated tags of all 4 bats were located in the crawl space 

through the end of radio-tag battery life on 8 December, and no tagged bats were 

recorded by coastal or off-island telemetry stations.  Based on variations in signal 

strength recorded by the local automated telemetry station, bats were active in the 
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evening hours (16:00-19:00) following relatively warm days in early-mid November, but 

it was not clear if bats were simply changing positions within the roost or making short 

forays outside.  No bats exited the roost during an emergence survey on one warm 

(>10°C) evening (3 November).  The crawl space was open to the outside via a ~0.6 x 1.0 

m hole which was closed on 27 November, but small (~2 cm wide) cracks along boards 

covering basement window holes remained, providing potential points of egress. On 24 

February 2017, a researcher re-entered the crawl space and found one torpid Northern 

Long-eared Bat with no visible signs suggestive of WNS.  Relative humidity within the 

crawl space remained above 85% throughout the hibernation season (15 November 2016 

to 15 April 2017), and recorded temperatures remained between 6.5–15°C (Fig. 2.3).  

The crawl space was warmed by water pipes running beneath the house, and the dirt floor 

may have helped maintain humid conditions.  

 

Discussion 

Species presence 

This is the first inventory of bat species on Nantucket. Using acoustic detection, 

we documented the presence of 3 long-distance migratory tree bat species at multiple 

locations on the island. These 3 species were previously collected on Nantucket during 

the spring and fall in the 1950-1970s (Maria Mitchell Association 2017), and existing 

evidence suggests these migratory species use coastal and island areas along the Eastern 

Seaboard during migration (Cryan and Brown 2007; Johnson et al. 2011b; Peterson et al. 

2014, 2016; Sjollema et al. 2014; Smith and McWilliams 2016).  We detected Silver-

haired and Hoary Bats primarily during the spring and fall migration seasons, but Eastern 
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Red Bats were detected frequently throughout the active season from early May to late 

November. Previous studies describe peaks of migratory activity in which high capture 

rates in mist-nets, bats roosting in visible numbers, or high numbers of calls, indicate 

waves of migration, possibly associated with favorable weather conditions (e.g. Cryan 

2003; Cryan and Brown 2007; Divoll 2012; McGuire et al. 2012; Peterson et al. 2014, 

2016). We observed qualitative evidence for this behavior in 2015 among Silver-haired 

Bats, with peaks of activity that spanned multiple sites from 27 August–1 September, and 

again 14–19 September. We did not observe similar peaks of activity in 2016 among 

Silver-haired Bats, or among Hoary Bats or Eastern Red Bats in either year. The presence 

of Eastern Red Bats during the maternity and volancy periods suggests they could be 

forming maternity colonies on the island. Cryan (2003) documented both sexes moving 

into New England in the summer based on analysis of museum specimen collections, and 

the species has been recorded in inland Massachusetts during summer (Brooks 2011).  

Through acoustics, we also documented the presence of Myotis species on 

Nantucket, including the federally-threatened Northern Long-eared Bat. Auto-

classification software identified Little Brown Bats, Indiana Bats and Eastern Small-

footed Bats as present at multiple sites on the island, but in the manual vetting process we 

did not identify any definitive calls of these species. The last known observation of the 

Indiana Bat in Massachusetts was in 1939 (MA NHESP 2012). The historic summer 

range of this species is poorly known, but there are no records from southeastern 

Massachusetts (Thomson 1982); formerly, the species was known to hibernate at sites in 

Berkshire and Hampden counties (MA NHESP 2012). Further mist-netting efforts may 

reveal whether other Myotis spp. are present on Nantucket. We also recorded Big Brown 
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Bats and Tricolored Bats on Nantucket. The final acoustic detection of a Tricolored Bat 

was in mid-December, which indicates this species may over-winter on Nantucket. 

 

Northern Long-eared Bats 

Northern Long-eared Bats appear to be successfully reproducing and hibernating 

on the island. We captured 9 Northern Long-eared Bats in summer 2016, and 4 Northern 

Long-eared Bats in the fall. Bats captured in July included both lactating females and 

volant juveniles of both sexes. Based on emergence counts, the maternity colony we 

identified comprised at least 11 individuals, and may have included 20 or more. Capture 

rates at the Ram Pasture site were high compared to other locations in the Northeast, with 

4.0 Northern Long-eared Bats per hour in July, and 0.5 per hour in October. Acoustic 

activity suggests Northern Long-eared Bats are present at the capture site through much 

of the active season, from early May into early December. At other stations on the island, 

Northern Long-eared Bats were also detected from when acoustic detectors were first 

deployed in late April through early December. 

In the fall, Northern Long-eared Bats captured at a hibernation site in a crawl 

space included males and females of comparable weight to Little Brown Bats entering 

hibernation in the pre-WNS era (7.2–9.0 g) (Johnson et al. 1998, Kunz et al. 1998). 

Although bats appeared torpid during an inspection of the hibernaculum on 8 November, 

automated tracking data suggests bats were intermittently active within the hibernaculum 

on seasonably warm evenings through mid-November. Final automated detections were 

12–24 days after tagging, but the tags were manually detected in the hibernation site 

through early December, presumably through the end of tag battery life. Conditions 
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within the hibernation site fell within the range suitable for hibernating Myotis spp. 

(Brack 2007, Johnson et al. 2016, Thomas and Cloutier 1992, Webb et al. 1996). The 

relatively mild temperatures could promote the growth of Pseudogymnoascus destructans 

Gargus (White-nose Fungus), which grows optimally at 12.5-15.8°C (Verant et al. 2012); 

however, there were no visible signs of the disease on the bat we observed in the 

hibernaculum on 24 February 2017.  The continued presence of Northern Long-eared 

Bats on Nantucket and at other coastal locations could indicate ecological, genetic, or 

behavioral differences between coastal and inland populations are allowing these 

populations to persist in the face of WNS; alternatively, relative geographic isolation 

could be merely be slowing the spread of WNS to these areas.  If coastal areas are serving 

as refugia from WNS, persistent populations in these areas could be a focus for 

conservation of cave-hibernating bats. 

Northern Long-eared Bats traditionally are considered “deep forest” bats that 

forage in habitats with a high level of vegetative clutter and roost in trees.  However, they 

also utilize man-made structures as roost sites where natural roost habitat is limited 

(Henderson and Broders 2008). On Martha’s Vineyard, 36% of Northern Long-eared Bat 

summer roosts were in human structures (Baldwin et al. 2017), and bats were often found 

roosting under rakeboards on houses, where trim boards intersected with shingles below 

the roof line. On Cape Cod, Northern Long-eared Bats used primarily human structures 

as roost sites (Curry 2016). We found bats utilizing both house and tree roosts during the 

maternity period. Given the common use of cedar shingles as siding on houses on 

Nantucket, there may be a profusion of man-made roosts on the island which mimic 

natural roosts and are acceptable to this species. Both tree roosts we documented were in 



 

26 

Pitch Pines, including one cavity roost in a pine snag, a common roost type in pine-

dominated forests (Perry and Thill 2007). Measured characteristics of maternity roosting 

behavior were within the range of those documented in other studies. Colony sizes of 10–

30 individuals are thought to be typical, and females in maternity colonies switch roosts 

on average every two days (Silvis et al. 2016). 

Even within our small sample, we documented high variability in distances bats 

traveled (several hundred meters to 1.9 km) between the point of capture, and maternity 

roost sites, with the latter distance exceeding the maximum recorded distance for a 

female bat from capture site to maternity roost on Martha’s Vineyard (Dowling et al. 

2017).  Average capture site-to-roost distances recorded for Northern Long-eared Bats 

are <0.7 km, although longer range distances have been reported in the literature (2.7 km) 

(Silvis et al. 2016). In the Yukon, Randall et al. (2014) found that female Little Brown 

Bats commuted longer distances to foraging areas than males of the species, and 

hypothesized this was due to limited roost habitat appropriate for maternity colonies.  

It is uncertain whether natural roost habitat is limited for Northern Long-eared 

Bats on Nantucket, but the island has relatively few stands of mature trees and only 12% 

forest cover (The Nature Conservancy 1998). In this respect, Nantucket represents a 

fairly unique habitat for this species. Numerous studies have documented a preference 

among Northern Long-eared Bats for large tracts of intact forest for foraging and 

roosting.  While these bats are known to occur in forests under a variety of management 

and cutting regimes (e.g. Menzel et al. 2002; Owen et al. 2001, 2003; Perry et al. 2007), 

they avoid clear cuts (Owen et al. 2004, Patriquin and Barclay 2003), are uncommon in 

open landscapes (Henderson and Broders 2008, Owen et al. 2003), and are less likely to 
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occur in fragmented forest stands (Henderson et al. 2008, Morris et al. 2010, Yates and 

Muzika 2006). We detected widespread occurrence (8 of 15 stations) of Northern Long-

eared Bats on Nantucket, including where the predominant vegetation was scrub oak < 6 

m tall. However, our acoustic sampling was somewhat opportunistic and focused on areas 

we deemed potential bat habitat; all sites where Northern Long-eared Bats were identified 

were within ~500 m of a forested stand. Both sites that had consistently high detection 

rates of Northern Long-eared Bats (Ram Pasture and Lost Farm) were located adjacent to 

mature stands of Pitch Pine.  

If Northern Long-eared Bats on Nantucket do rely on mature forest patches for 

roosting or foraging habitat, this could have significant management implications for land 

conservation organizations. The island has been the focus of extensive efforts to restore 

and preserve coastal sandplain grassland, heathland and scrubland. Cutting, mowing, 

prescribed burns, and grazing have all been used as management tools to conserve 

species that rely on early successional habitats (Omand et al. 2014, Zuckerberg and 

Vickery 2006). While some consider these efforts a maintenance of the natural landscape, 

the Cape and Islands region was likely originally dominated by forests of pine, oak, and 

hardwoods, which were lost following European colonization (Foster and Motzkin 2003). 

Foster and Motzkin (2003) argue that this history does not invalidate the current 

biological and cultural value of early successional habitats, but note management should 

be conducted with clear policy objectives in mind, as well as an understanding of the 

ecological history. Populations of woodland species are in general increasing across the 

Northeast; nevertheless, the regional decline of the Northern Long-eared Bat and other 

forest bats necessitates consideration of these species in management planning in places 
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where they persist. Further research is warranted to determine whether management of 

protected lands in the Cape and Islands region should include maintenance of hardwood 

and pine forest patches for Northern Long-eared Bats. 
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CHAPTER III 

FLIGHT ACTIVITY AND OFFSHORE MOVEMENTS OF NANOTAGGED 

BATS ON MARTHA’S VINEYARD, MA 

 

Abstract 

The northern long-eared bat (Myotis septentrionalis) was listed as threatened 

under the federal Endangered Species Act in 2016, following dramatic population 

declines associated with the spread of the fungal disease known as White-Nose Syndrome 

(WNS). However, the species continues to persist in the Cape and Islands region of 

Massachusetts, including Martha’s Vineyard. Southern New England waters are likely to 

be an area of increasing offshore wind development in the coming decades, but the 

potential threat this development may pose to northern long-eared bats and other bat 

species remains largely unknown. In 2016, we conducted an automated telemetry study 

of northern long-eared bats on Martha’s Vineyard to monitor flight activity and document 

any offshore movements. 

We tracked four northern long-eared bats for 5-12 nights in July 2016 in our 

northwest Vineyard study area, and one northern long-eared bat for 39 nights in October 

2016. BiodiversityWorks also tagged and manually tracked three northern long-eared 

bats on other parts of the island in July and August 2016. Our sample size was small, due 

to low capture rates for this species. In this sample, we did not record any offshore 

movements by northern long-eared bats. To supplement our data for northern long-eared 

bats, we also tagged and tracked three little brown bats (Myotis lucifugus), two big brown 

bats (Eptesicus fuscus), and three eastern red bats (Lasiurus borealis) captured on the 
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island. We detected offshore movements by little brown bats and eastern red bats during 

the study period, suggesting our automated telemetry network was adequate to detect 

offshore movements by tagged individuals. Among these detections was the migration of 

the congeneric little brown bat from Martha’s Vineyard in late August. Although 

northern long-eared bats are capable of accessing the offshore environment during the 

summer months, our data, as well as data from the literature, indicate they are unlikely to 

forage over federal waters during the maternity period (June to mid-July). Our data also 

strongly suggest that some northern long-eared bats are over-wintering on the island, but 

this does not preclude the possibility that other individuals of this species may migrate to 

inland hibernacula. Further study is warranted to determine whether northern long-eared 

bats are making offshore movements, particularly during late summer and early fall when 

little brown bats appear to depart the island. Unfortunately, research efforts may be 

hindered by low capture rates, likely associated with the spread of WNS. 

 

Background 

The northern long-eared bat (Myotis septentrionalis) is a small insectivorous 

vespertilionid, with a wide distribution across much of the eastern United States and 

Canada, northwest to British Columbia and the Northwest Territories, west to eastern 

Montana and Wyoming, and south to Alabama, Georgia, and the Florida Panhandle 

(Arroyo & Alvarez 2008). The northern long-eared bat was listed as threatened under the 

federal Endangered Species Act (ESA) in 2016, due to dramatic population declines 

associated with the spread of the fungal disease known as White-Nose Syndrome (WNS) 

(U.S. Fish & Widlife Service 2016). The species is also state-listed as Endangered in 
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Massachusetts, Maine, and New Hampshire. Northern long-eared bat counts have 

declined by as much as 95-99% at WNS-affected hibernacula in the Northeast (Turner et 

al. 2011), and echolocation calls of these species have decreased in their summer range 

(Brooks et al. 2011, Ford et al. 2011). At these low densities, there is concern that 

additional loss of individuals -whether through mortality at wind energy facilities, 

disturbance of hibernacula, or other causes - could affect local population viability.  

Large numbers of bats are killed in collisions with wind turbine blades in the 

United States every year (Hayes 2013). Northern long-eared bats and other hibernating 

species typically represent only a small fraction of fatalities (Arnett et al. 2008). 

However, recent analyses suggest mortality associated with wind facilities could have 

population-scale consequences for the federally endangered Indiana bat (M. sodalis) 

across its range (Erickson et al. 2016), and it is possible that related species, including the 

northern long-eared bat, face similar risks. Incidental take of northern long-eared bats at 

wind energy facilities is regulated by a 4(d) rule under the federal ESA (U.S. Fish & 

Wildlife Service 2016a).  

As wind energy development expands into the offshore environment, the question 

arises of whether offshore development poses a risk to the northern long-eared bat, as 

well as other bat species. Bats are not traditionally thought of as ocean-going animals, but 

there is a long anecdotal history of bat sightings off the East Coast (Hatch et al. 2013, 

Peterson et al. 2014), and bats are known to utilize temporary roost sites on lighthouses 

and other structures on offshore islands (Miller 1897, Cryan & Brown 2007, Johnson et 

al. 2011b). It is most often long-distance migratory bats that have been observed offshore, 

but Myotis spp. were documented in acoustic surveys 2.8-11.5 km off the coasts of New 
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Jersey and the mid-Atlantic states (Sjollema et al. 2014). Recent acoustic monitoring 

efforts in the Gulf of Maine detected Myotis spp. on eight of nine forested islands 

surveyed, and on two tree-less rocks located 33 and 42 km from the mainland (Peterson 

et al. 2014). Overall, hibernating species (Myotis spp., Eptesicus fuscus, and Perimyotis 

subflavus) were present on 20% of nights surveyed at offshore sites in the Gulf of Maine 

in the late summer and fall (Omland et al. 2013). There is also a report from 2003 of a 

flock of Myotis bats roosting on a fishing boat 110 km from shore in the Gulf of Maine in 

late summer (Thompson et al. 2015). The Environmental Impact Statement for the 

proposed Cape Wind offshore wind facility in Nantucket Sound notes that big brown 

bats, tricolored bats, little brown bats, and northern long-eared bats must all at least 

occasionally make over-ocean movements, since they are known to occur on Martha’s 

Vineyard (Mineral Management Service 2009). 

In Scandinavia, bats, including Myotis species, have been observed foraging over 

the ocean, feeding on insects, and even gaffing prey from the water’s surface (Ahlen et al. 

2009). Bats will forage in the vicinity of offshore wind facilities, and even attempt to 

roost in turbine nacelles (Ahlen et al. 2009). In North America, we know very little about 

the offshore behavior of Myotis species. It is not clear whether Myotis species routinely 

forage over the ocean during the active season, or in the fall, if hibernating bats on islands 

move to mainland hibernacula. Certainly, little brown bats (M. lucifugus) are capable of 

making long-distance movements (>500 km) to hibernation sites (Norquay et al. 2013). 

Movements of northern long-eared bats are less studied. Migratory distances traveled by 

northern long-eared bats are estimated to range 8-270 km (Griffin 1945). One individual 

banded at a cave in April was observed at a house roost 56 km away in May of the same 
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year; this was interpreted as a movement from a winter hibernaculum to a summer 

territory (Caire et al. 1979). Recent genetic analyses suggest northern long-eared bats 

may be comparable to little brown bats in terms of dispersal and population mixing. In 

Canada, population-level genetic structuring was similar between little brown bats and 

northern long-eared bats, and structure was not related to geography (Johnson et al. 

2015). Analyses of nuclear DNA at swarming sites did not reveal isolation by distance 

for northern long-eared bats over the distances examined (up to 309 km) (Johnson et al. 

2015). Johnson et al. (2014) found that groups of northern long-eared bats in New York 

and West Virginia were genetically indistinguishable at multiple spatial scales.  

Within the WNS-affected zone, northern long-eared bats appear to be persisting in 

some coastal areas, including the Cape and Island region of Massachusetts, and Long 

Island, New York. In 2014, a pilot mist-netting survey on Martha's Vineyard by 

BiodiversityWorks and the U.S. Fish & Wildlife Service (USFWS) resulted in capture of 

five northern long-eared bats in nine nights (0.56 bats/night). By contrast, Buresch (1999) 

documented average capture rates of 1.4-4.2 northern long-eared bats per night in mesic 

and oak woodlands on the island in 1997-1998. Bat biologists speculated that persistent 

coastal populations could be hibernating locally, rather than migrating to large inland 

hibernation sites already infected with WNS.  

The continuing presence of northern long-eared bats on Martha’s Vineyard 

offered a unique opportunity to study offshore movements of this rare bat, as well as a 

chance to learn more about habitat use of persistent northern long-eared bat populations 

in the face of WNS. In 2015, we assisted local non-profit BiodiversityWorks in a study of 

northern long-eared bat roosting ecology on the island, identifying maternity colonies, 
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roost trees, and roosting home ranges. Eleven northern long-eared bats were captured and 

tracked to day roosts between May and September as part of the BiodiversityWorks 

project. Subsequently, The Bureau of Ocean Energy Management (BOEM) funded the 

acquisition, installation and removal of three automated telemetry stations, and part-time 

funding for one year for a researcher to complete this study. In 2016, this funding 

allowed us to use automated radio-receiving towers and coded transmitters to document 

activity patterns of tagged bats on Martha’s Vineyard, and to detect any offshore 

movements by bats during the active season. We report here on the results of automated 

telemetry tracking, and provide context with results of manual tracking, roosting 

behavior, and acoustic detections, where they are of relevance to bat flight activity. In 

addition, we report on detections of other tagged bats and birds recorded by the Vineyard 

and Naushon Island automated telemetry stations in 2016. This study is a collaboration 

among the USFWS, University of Massachusetts Amherst, the USGS Cooperative Units 

of Virginia Tech and UMass, and BiodiversityWorks. 

 

Methods 

Bat capture and radio-tag deployment  

Bat capture work was conducted collaboratively among the USFWS, University 

of Massachusetts Amherst, and BiodiversityWorks. Bats were captured using single, 

double, and triple high set-ups of 2.6, 4, 6, 9, and 12 m mist nets strung across woods 

roads, trails, wetland areas, and adjacent to identified roost sites on Martha’s Vineyard, 

MA. Trap stations consisted of 2-5 mist-net set-ups, with trapping conducted at a given 

location for 1-3 nights in succession (almost always 2), from near sunset until 3-5 hours 
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post-sunset, depending on trapping success and weather conditions. On cold and windy 

nights, nets were occasionally closed earlier (e.g. after 1.5 hours).  

All bats were handled in accordance with American Society of Mammalogists 

standards (Sikes & Gannon 2011). Bats were identified to species, aged as adult or 

juvenile based on ossification of the wing bones, sexed, and weighed. For a subset of 

captured bats, a small area was shaved between the scapulae, and a radio-tag was 

attached using eyelash adhesive. Radio-tags were Lotek NTQB-1 (0.29 g) or NTQB-2 

(0.35 g) NanoTag series coded units, with burst intervals of 6.7-19.9 seconds and 

operating lives of 24-71 days (www.lotek.com). To reduce risk to bats, no transmitter 

constituted greater than 5% of bat body weight (Aldridge & Brigham 1988). All gear was 

treated in accordance with USFWS National White-Nose Syndrome Decontamination 

Protocols (2012, 2016c).  

 
Manual tracking  

Tagged bats were tracked manually to day roost sites using a Lotek SRX-800 

receiver, which allows for differentiation among coded NanoTags. Tracking was 

conducted until bats dropped tags or battery life of the tags expired. BiodiversityWorks 

conducted the majority of manual tracking as part of a separately-funded roost study, the 

results of which will be available from this organization.  

 
Automated tracking  

We utilized NanoTags deployed within the Motus network to track bat 

movements. NanoTags are coded radio-transmitters operating on a single frequency; in 

combination with automated radiotelemetry stations, they allow for the simultaneous, 
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long-distance tracking of thousands of individual birds, bats, and large insects. The 

Motus network consists of over 100 automated telemetry stations in the U.S. and Canada, 

stretching along the East Coast from Nova Scotia south to Florida, and inland at sites 

along the Great Lakes, the Connecticut River, and portions of the Midwest (Taylor et al. 

2017). Stations consist of yagi or omni-directional antennae, deployed on buildings, 

lighthouses, pop-up masts, or sectional towers; the antennae are attached via BNC cables 

to radio receivers, which continuously monitor for NanoTags transmitting at a single 

frequency. Stations typically are built in one of two styles, either a “Motus-style” 

arrangement of 3 9-element yagi antennae oriented horizontally on a pop-up mast and 

connected to a hand-built sensorgnome receiver (www.sensorgnome.org), or a “Lotek-

style” arrangement, consisting of 6 9-element yagi antennae oriented horizontally on a 

sectional tower and connected to a Lotek SRX series receiver (http://www.lotek.com). 

BOEM funded the purchase and installation of three Lotek-style stations, which were 

deployed on the coast at Cedar Tree Neck sanctuary (Sheriff’s Meadow Foundation 

property) and at the Nature Conservancy’s Hoft Farm Preserve about 1.7 km from the 

coast, both on Martha’s Vineyard, as well as at a coastal site on Naushon Island (Table 

3.1). We also deployed a Motus-style station at a coastal site at Sheriff’s Meadow 

Foundation’s Goethals sanctuary on Martha’s Vineyard, funded by a Martha’s Vineyard 

Vision Fellowship grant to BiodiversityWorks. 

 
Interpretation of automated telemetry data  

The Motus network returns data from automated telemetry stations indicating 

station location, antenna bearing, NanoTag ID number, timestamp, and signal strength of 

detections of registered NanoTags. Detection power is strongest along the direct beam of 
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a receiving antenna, and falls off to either side of that bearing, such that for the antennae 

used at our stations, detection power drops below 50% beyond 22.5° to either side of the 

antenna bearing. The antenna also has some detection power behind the antenna, but this 

is limited in our antennae by a high front/back ratio for power of detection. Thus, for a 

station with six equally-spaced antennae, there are six regions of relatively high detection 

power directly in line with each antenna, and six 15° gaps between each pair of antennae 

where detection power falls below 50%. Of course, for radio signals transmitted 

immediately adjacent to the telemetry station, power of detection is high, and there are 

likely to be no gaps in detection. Conversely, for radio signals transmitted far from the 

telemetry station, power of detection may be below 50% at all antennae, even if the 

signal is directly in line with the antenna bearing.  

The power of detection of a radio transmission within an antenna beam is 

sensitive to altitude of the radiotransmitter relative to the ground, orientation of the 

radiotransmitter antenna in space, noise in the frequency range of interest, topography, 

other obstructions to signal transmission (such as trees), and additional factors. Previous 

studies have documented detection ranges of up to 12 km for migrating passerines (Mills 

et al. 2011, Smetzer et al. 2017, in review), and near-simultaneous detections have been 

recorded at stations 50 km apart for migrating eastern red bats (unpublished data), 

indicating a maximum detection range of at least 25 km. However, detection range is 

expected to be significantly lower for bats foraging at low height above ground, 

especially under forest canopy. Northern long-eared bats tagged in the vicinity of a 

“Motus-style” telemetry station at Great Bay NWR were detected ~75% of the time by 

the near station (~100m from the capture site), but only intermittently recorded by a 
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station 2 km away (Nancy Pau, personal communication), suggesting detection range is 

significantly lower than 12 km for this species during foraging. Birds at ground level 

outfitted with NanoTags can typically be detected within 0.5-2 km of an automated 

telemetry station (Taylor et al. 2011). Bat roost sites in houses, tree crevices, and under 

bark may dampen radio signals relative to bird roosting sites, further decreasing signal 

detection range during roosting.  

In general, we can assume that detections with higher signal strength are likely to 

represent a radiotransmitter at greater height above ground level, more directly within the 

center of an antenna beam, and/or closer to the telemetry station where detection 

occurred. Research efforts funded by BOEM and others are underway to model predicted 

radiotransmitter location and movement pathways based on signal strength, biangulation 

between antennae, and other factors. Unfortunately, currently available models are highly 

simplistic and have error ranges of ~3 km (Jen Smetzer, personal communication). These 

models are useful for considering long-distance movement pathways of migrating 

animals, but cannot be practically applied to foraging and roosting bats if detection 

distance falls below three km. Further, these models are sensitive to input factors 

including height above ground and the orientation of the radiotransmitter antenna in 

space. We know little about foraging heights for northern long-eared bats, beyond the 

fact that they are often captured in mist-nets deployed 0-8 m above ground height, and 

based on morphology, are unlikely to forage in open spaces above the canopy. In 

addition, we would expect that antenna orientation would change frequently as bats make 

multiple foraging passes through an area.  
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For the purposes of analysis of northern long-eared bat activity, we report 

roosting and foraging detections by antenna sector, with the assumption that detections 

by a single antenna likely indicate presence of the bat in a beam within 30° to either side 

of an antenna bearing, and more likely within 22.5°. Unlike sensorgnome receivers, 

Lotek receivers cannot provide simultaneous detections from multiple antennae. In our 

system, Lotek receivers cycled through each of six antennae in turn, “listening” at each 

antenna for 20.5 seconds. Hence, consecutive detections within a < 3 min period by 

antennae on a single telemetry station approximate a simultaneous detection. Where there 

are consecutive detections by more than one antenna, we average signal strength over a 3 

min period and assume the bat was within the antenna sector which showed the highest 

average signal strength. In these cases, the bat is likely closer to the station than at other 

times, and might more easily pass between adjacent antenna sectors over a short time 

period while foraging. 

 
Acoustic data  

To increase our chances of successful bat capture, we deployed SM3BAT 

acoustic detectors for periods of 1-8 nights at potential trapping sites in the summer and 

fall, with length of deployment dependent on weather conditions, trap site needs, and 

convenience. We analyzed the full spectrum data collected by these detectors using 

KaliedoscopePro, which includes auto-classification software to identify bat echolocation 

calls. Because auto-classification is prone to error, especially in discriminating among 

members of the Myotis genus, we grouped all Myotis recordings together, rather than 

considering only calls identified as northern long-eared bats. BiodiversityWorks 



 

40 

collaborated to deploy acoustic detectors and conduct analyses of results. We include 

results of this analysis where it is deemed relevant to the study questions.  

 
Nantucket research  

As part of a separate pilot study conducted in concert with UMass, the USFWS, 

and Nantucket Conservation Foundation, we deployed NanoTags on seven northern long-

eared bats on the nearby island of Nantucket in 2016. We report on results of this study as 

well, insofar as they relate to the question of offshore movements. 

 
Results 

Year 2015  

The information provided for 2015 is included as background for efforts 

conducted in 2016 under this agreement.  

 
Bat capture and tagging  

In 2015, we trapped for a total of 19 nights in foraging habitats, and six nights at 

known bat roost locations (based on visual observation of bats or fresh guano). We 

captured a total of 20 bats, including 12 northern long-eared bats (MYSE), five big brown 

bats (Eptesicus fuscus, EPFU), two little brown bats (MYLU), and one eastern red bat 

(Lasiurus borealis, LABO). The capture rate for free-ranging MYSE at flight corridor 

locations (not roost sites) was 0.26 bats per night. We tagged the 11 adult MYSE 

captured. Eight female MYSE were tagged in late May or June during the maternity 

period, when females are pregnant or lactating, one MYSE was tagged in late July during 

the volancy period, when juveniles are flying, and two were tagged in September, during 

the time period when we suspected MYSE would move to hibernation sites.  



 

41 

 

Manual and automated tracking  

All eight bats tagged during the maternity period were captured in the northwest 

part of Martha’s Vineyard, in the vicinity of Hoft Farm, and roosted in that vicinity until 

the tag dropped off the animal (4-17 days) (Table 3.2). In July, the lone bat tagged was 

captured at Job’s Neck in the south-central part of the island, and also roosted in the same 

vicinity for three days following capture until its tag was recovered in the State Forest, 

approximately 3 km north. The two bats captured in September were tracked to roosts in 

the same vicinity for 15 and 17 days following capture. 

In 2015, there were no operational telemetry stations on the island. During this 

time, the closest telemetry stations were at Waquoit Bay on the south shore of Cape Cod, 

on Noman’s Island southwest of Martha’s Vineyard, on Muskeget Island, east of the 

Vineyard, and at Eel Point on the western shore of Nantucket, also to the east of the 

Vineyard (Figure 3.1). None of these telemetry stations recorded detections of the tagged 

bats. 

 
Year 2016  

Telemetry station deployment  

In 2016, we erected three automated telemetry stations on the northwest part of 

Martha’s Vineyard, at the Hoft Farm, Goethals Sanctuary, and Cedar Tree Neck 

Sanctuary. We also deployed a station on neighboring Naushon Island, 6.5 km to the 

north of the Cedar Tree Neck station (Figure 3.2). The three Lotek-style stations had a 

technical issue which was resolved for the Hoft and Cedar Tree Neck stations on July 6. 

These stations functioned through the remainder of the season until they were dismantled 
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on November 26 and November 28 respectively, except for a period from October 10 to 

25, and again from October 26 to 29, when the Cedar Tree Neck station was non-

functional, apparently due to a problem with the software in the receiver. The Naushon 

station continued to have technical issues through July 21, but then functioned through 

the remainder of the season until it was dismantled on December 4. As in 2015, a number 

of other telemetry stations were on-line throughout the Cape and Islands region (Figure 

3.1), as well as along the Atlantic coast, from Nova Scotia as far south as Florida, and in 

inland Massachusetts along the Connecticut River. 

 
Bat capture and tagging  

Between June 14 and November 3, we trapped for a total of 43 nights in foraging 

habitats, and nine nights at roost sites. We conducted 20 nights of mist-netting between 

mid-June and mid-July, 17 of which were at sites in the northwest Vineyard study area 

adjacent to telemetry stations. We trapped for four nights in late July and six in August, 

of which three nights each were in the northwest Vineyard study area. We trapped for 

two nights in September, outside of the study area. Because the two MYSE tagged in 

2015 did not make obvious movements towards a hibernaculum in September, we 

focused our 2016 migration period efforts in October, trapping for 16 nights during that 

month, 14 of which we spent at sites within the northwest Vineyard study area. On other 

nights in October, we were not able to trap, due to cold temperatures, rain, or windy 

conditions, which rendered capture unlikely or potentially hazardous to bats.  

We captured a total of 56 bats in 2016, including 13 MYSE, four MYLU, 30 

EPFU, and nine LABO. Five MYSE females were captured at a house roost 0.69 km 

from the Hoft station on July 6; we tagged four of these individuals (Table 3.3), the fifth 
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escaped the net during capture. In mid-July, we captured three adult female MYSE and 

three juveniles at a house roost on the eastern side of the island, 6.69 km from the Hoft 

station. Because this was outside the area covered by our telemetry stations, we only 

tagged two of the adults. We also tagged one adult female captured in the south-central 

part of the island in late August, 9.06 km from the Hoft station. Finally, in October, we 

tagged an adult MYSE female within the northwest study area. The capture site was 1.62 

km from the Cedar Tree Neck station, 4.82 km from the Goethals station, and 6.11 km 

from the Hoft station.  

Due to low capture numbers of MYSE during the maternity period, we decided to 

expand our tagging to other hibernating species within the northwest Vineyard study 

area. In July and August, we tagged three MYLU roosting in a barn 1.54 km from the 

Cedar Tree Neck station and 5.95 km from the Hoft station. In October, we tagged three 

EPFU, two near the Hoft station (0.31 km from station) and one near the Cedar Tree 

Neck station (0.67 km from station). As part of a separate project, we also tagged three 

LABO, one near the Hoft station (0.31 km), and two near the Cedar Tree Neck station 

(0.67 km), in October.  

In summary, we tagged a total of 17 bats, including 8 MYSE (Table 3.3). 

Fourteen bats were tagged in the northwest study area within the vicinity of our telemetry 

stations; three MYSE were tagged on other parts of the island. The capture rate for 

MYSE in corridor settings (not roost sites) was 0.05 MYSE per night. 

 
Manual and automated tracking  
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Northern Long-eared Bats 

Tagged MYSE were manually tracked daily to roost sites through the life of the 

tag, or until the tag fell off the bat. In July, BiodiversityWorks tracked the four tagged 

MYSE to the house maternity roost where they were captured, or to additional tree or 

house roosts within 0.75 km of the capture site and 1.34 km of the Hoft station (Table 

3.4). Tags remained on the bats for 5-12 days following capture. The four tagged 

northern long-eared bats were only detected by the closest automated station, the Hoft 

station located 0.69 km from their capture location (Table 3.4). None of these bats were 

detected by any of the coastal stations including the Goethals station, which was less than 

2.6 km from any identified roost (Figure 3.2).  

These bats were only intermittently detected while roosting, and only detected at 

the RT09 roost site (Table 3.5), which was the closest roost to the Hoft station (0.69 km 

away). They were never detected during daylight hours at other roost sites 0.84-1.42 km 

away from station. The RT09 roost was at a bearing of 37.5° from the Hoft station. Bats 

were detected in the roost by the Hoft 2 antenna, bearing 55°, but not by antennae with 

bearings of 355° or 115°. 

Given that we never detected these northern long-eared bats at the Goethals 

station (2-2.8 km from roosts), and did not consistently detect bats exiting roosts within 

1.5 km of the Hoft station, our data suggests detection distance was typically less than 2 

km, even when the bats were in flight. These bats were likely foraging under the canopy, 

where tree cover obstructed signal transmission.  

When our tagged northern long-eared bats were detected by the Hoft station, they 

were primarily detected within the range of the Hoft 2 antenna (Figure 3.3). MYSE 277 
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was only recorded by this antenna. MYSE 279 was briefly recorded by antenna 1 on July 

13, with signal strength higher at this antenna than the preceding detection at antenna 2, 

suggesting the bat was foraging into Hoft antenna sector 1. MYSE 284 was briefly 

detected by antenna 5 on July 10, but signal strength was higher at antenna 2, suggesting 

it remained in the antenna 2 sector. MYSE 280 was frequently detected by multiple 

antennae consecutively on the nights of July 7 and 8, which indicates it was likely 

foraging closer to the Hoft telemetry station than other tagged bats, although it also could 

have been flying higher than the other northern long-eared bats tracked. Variation in the 

sector with highest signal strength across consecutive detections suggests it flew through 

multiple sectors over the course of both evenings.  

In October, MYSE 281 was tracked to a series of tree roosts located 40-150 m 

from her capture site, for 39 days following capture. This bat was not detected by any 

automated telemetry stations. The three MYSE tagged outside of the northwest Vineyard 

study area were also not detected by automated stations. 

 
Little Brown Bats  

Due to low capture rates for northern long-eared bats, we attached NanoTags to 

three little brown bats, but because little brown bats were not the focal species for our 

roost study, we did not track little brown bats to their roost every day. However, 

BiodiversityWorks re-visited the barn roost where the bats were initially captured to 

determine if they were still roosting on site. 

Following capture of MYLU 276 on July 19, the bat was manually detected at the 

barn roost site during daylight hours on July 21 and 26 (Table 3.6). MYLU 276 was not 

detected by the local automated stations we deployed, but was detected briefly on the 
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night of July 27 by the telemetry station on Noman’s Island, 19 km to the southwest 

(Table 3.6). Signal strength was low for this detection, but it is likely the bat travelled at 

least as far as the southern part of Martha’s Vineyard to be detected by this station. On 

August 4, the tag had dropped off the bat and was found at the barn roost site.  

Following the capture of MYLU 278 and MYLU 286 on August 15 at the barn 

roost, the barn was re-visited on August 18, 21, 24, 29, 31, and September 6 (Table 3.6). 

On August 29 and 31, there was no longer a signal for MYLU 286, but MYLU 278 was 

still detected at the roost. On September 6, there was no signal from either bat. Between 

August 15-September 6, MYLU 278 was detected on one night by the Hoft station, six 

nights by the Cedar Tree Neck station, and five separate nights by the Naushon station 

(Figure 3.4). Between August 19 at 23:02 and August 23 at 20:29, there were no 

detections of this bat by Vineyard stations, but the bat was picked up by the Naushon 

station every night. There were near simultaneous detections (1.5 minutes apart) for this 

bat between the Naushon south-bearing antenna and Hoft south-bearing and south-

southwest bearing antenna on August 23. Signal strength was slightly higher for the Hoft 

station (54 versus 52 dB). There were again near simultaneous detections (1.5 minutes 

apart) for this bat between the Cedar Tree Neck east-southeast-bearing antenna and the 

Naushon south-bearing antenna on August 31. Average signal strength was slightly 

higher at Naushon (56 dB versus 49 dB). The final night of detection for this bat was 

September 1 by the Cedar Tree Neck station, for the west-northwest-bearing antenna, 

which suggests the bat may have departed the island at this time. It was not recorded at 

the barn roost on the subsequent visit (September 6), but was also not detected by off-

island stations. Between August 15-August 25, MYLU 286 was detected on four nights 
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by Cedar Tree Neck and five nights by the Hoft station (Figure 3.4). On the night of 

August 25, the final night of detection by Hoft, she departed the island. She was next 

detected in the early hours of August 26 by an automated telemetry station in Falmouth, 

and ~3:15 in the morning by a station in Wellfleet on the eastern side of Cape Cod (Table 

3.7). 

 
Big Brown Bats  

The EPFU captured at Hoft Farm in October were tracked daily to roost sites from 

October 22-30, and were again tracked on November 8 (Table 3.6). Throughout this time 

period, each bat remained in a single roost. EPFU 275 was located in a house roost 0.55 

km from the capture site and 0.84 km from the Hoft station, but was never detected by 

any telemetry station. This bat roosted in the same location throughout the period it was 

tracked. It may have dropped its tag immediately, but signal strength at the roost location 

was stronger in warmer weather and weaker in cooler weather, suggesting the tag 

remained on the bat as it shifted position in the roost. It is possible this individual entered 

hibernation and did not emerge in the cold conditions which followed the night of 

capture. EPFU 258 was located in a hollow tree 0.57 km from the capture site and 0.78 

km from the Hoft station. This bat used the EP2 roost at a bearing of 330° relative to the 

station, and was intermittently detected by the Hoft 1 antenna, bearing 355°, while 

roosting, but not by antennae with bearings of 295° or 55° (Table 3.5). EPFU 258 was 

detected on three nights by the Hoft station, and on the fourth night by the Goethals 

station (Table 3.5, Figure 3.5), at a west-southwest bearing suggestive of offshore 

movement. EPFU 271, tagged near Cedar Tree Neck, was detected by the Hoft station 

(Table 3.6). We were not able to obtain permission to track bats to roost sites at Cedar 
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Tree Neck sanctuary in October, and therefore did not attempt to track EPFU 271 to a 

defined roost site. However, EPFU 271 was detected from the road to the Cedar Tree 

Neck sanctuary on October 25 and 29. 

 
Eastern Red Bats  

The tags placed on the three LABO operated with a longer burst interval rate, 

which allows for a longer tag lifespan. However, the longer burst interval rate is not 

conducive to manual tracking. We therefore did not attempt to track these bats to roost 

sites.  

The eastern red bats tagged in October showed wider detectability than our 

northern long-eared bats. LABO 470, tagged near the Hoft station, was detected by this 

station on seven nights, but also detected at the Goethals station on eight nights (Figure 

3.6). LABO 475, tagged near the Cedar Tree Neck station, was detected by this station on 

three nights, but also detected by the Hoft station on one night, the Goethals station on 

one night, and the Naushon station on three nights (Figure 3.6). LABO 473, tagged in the 

vicinity of the Cedar Tree Neck station, was detected locally by the Hoft station on one 

night and the Naushon station on two nights. On October 19, the second night it was 

detected by the Naushon station, the bat departed the island. It was detected the following 

morning by an automated telemetry station in Cape May, NJ, and several days later by a 

station off the Eastern Shore of Maryland (Table 3.7). 

 
Acoustic data  

We deployed acoustic detectors for a total of 38 site-nights between early June 

and mid-July, at 11 sites for 2-6 nights each. Myotis species were detected on 28 nights 
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(74%), and at all sites except one. Myotis calls were recorded throughout the night during 

this time period, from sunset to sunrise. We again deployed acoustic detectors for four 

nights in late July at one site, four nights in late August at another site, and 1-6 nights 

each at four sites in early September. Myotis bats were recorded on three of the four 

nights sampled in July (75%), all four nights sampled in August (100%), and 10 of the 15 

nights sampled in September (67%). As in the maternity period, Myotis calls were 

recorded throughout the night hours, from just after sunset until ~5:15 in the morning.  

In October, we deployed detectors for a total of 83 site-nights, sampling 20 sites 

for 1-9 nights each. Myotis were recorded on 24 nights (29%). Six sites showed no 

Myotis activity, although most of these sites were only sampled 1-2 nights.  

In November, we sampled a total of 27 site-nights, at four sites for 5-8 nights 

each. Myotis were recorded on 3 nights (11%), November 15, 16, and 18. The final 

detection of a Myotis bat was November 18 at 5:38 PM in the forest near where we 

captured and tagged a northern long-eared bat in October.  

Temperature and wind data were obtained from the local airport weather station. 

A qualitative analysis of these data showed that most fall Myotis activity was during 

periods of low-moderate wind speed (<7 m/s) and warm temperatures (>10°C). It is 

important to note that weather data may not reflect local conditions experienced by the 

bats. Local temperatures may be lower or higher; wind speeds are likely lower under the 

forest canopy where acoustic detectors were deployed, as compared to the open airport 

environment. Further analysis of these results may be conducted by BiodiversityWorks.  
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Nantucket data  

In 2016, we mist-netted for bats at three sites on Nantucket. In July, we caught 9 

MYSE in one night of trapping, and attached NanoTags to three adult females. One 

female was tracked to two tree roosts within 200 m of the capture site, another was 

tracked to a house roost 1.9 km from the capture site. On October 30 at the same site, we 

captured and tagged one MYSE in two hours of trapping, before a rainstorm interrupted 

netting efforts. This bat was tracked to a crawl space beneath a house located 2.39 km 

from the West Gate capture site. We identified the tagged bat and four other Myotis 

roosting in a crawl space beneath a private residence. On November 1, we deployed 

NanoTags on three additional MYSE roosting in the crawl space. Nantucket 

Conservation Foundation staff re-entered the space on December 8 and identified at least 

one individual MYSE hibernating at the site.  

The closest automated telemetry stations during our study were on Coatue Point 

and Great Point on Nantucket, and neighboring Muskeget Island. These stations were 9, 

16, and 15 km respectively from the capture site, and 7, 15, and 17 km from the crawl 

space hibernaculum. No bats tagged on Nantucket were detected by telemetry stations at 

coastal sites on the island, or anywhere off-island.  

 

Other tag detections  

Table 3.8 shows detections of NanoTags from other projects by our telemetry 

stations during the 2016 deployment period. 
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Discussion 

We did not observe offshore movement by northern long-eared bats during our 

study. In 2016, we tagged four adult female northern long-eared bats in the northwest 

Vineyard study area during the summer maternity period. In general, individual female 

northern long-eared bats are known to occupy small home ranges during the maternity 

period. Roosting home ranges typically are <10 ha in size, and average distances between 

summer roosts <0.8 km (Silvis et al. 2016). Our tagged bats roosted within 0.75 km of 

their capture site for the 5-12 days they were tracked. From these roost locations, less 

than 3 km from the coast, they could easily have accessed the offshore environment. 

Flight speeds for northern long-eared bats have not been reported in the published 

literature, but we do have data for congenerics. The Indiana bat has been recorded flying 

at speeds of 2.5-6.7 m/s (Patterson & Hardin 1969), while the little brown bat has been 

variously reported traveling at speeds of 2.2-8.5 m/s (Gould 1955, Mueller & Emlen 

1957, Patterson & Hardin 1969). Other Myotis species reportedly fly at speeds of 4.0-

10.8 m/s (Hayward & Davis 1964, LaVal et al. 1977). Even at a moderate 5 m/s, a 

northern long-eared bat could reach three nautical miles from shore in less than 20 

minutes of sustained flight. Lactating females could forage offshore and still return to 

nurse pups multiple times per night. However, it appears unlikely that this species is 

foraging far offshore during the summer months, given what is known about northern 

long-eared bat biology and the limited observations made in this study. Our tagged 

lactating females were only detected by the inland telemetry station close (0.69 km) to 

where they were captured, and never by the neighboring coastal station (2.6 km away). 

Foraging home ranges reported in the literature are somewhat larger than roosting home 
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ranges, but still below 100 ha (Owen et al. 2003, Broders et al. 2006, Silvis et al. 2016), 

with maximum movements of up to 1.8 km recorded (Broders et al. 2006, Henderson & 

Broders 2008). While we did not have telemetry stations on the Vineyard in 2015, 

northern long-eared bats captured on the island during the summer of that year showed 

similar patterns of behavior to 2016, roosting within a small home range (42-665 m from 

capture site).  

We also did not observe northern long-eared bats leaving the island in the fall. 

Only one northern was tagged in the northwest study area in fall 2016. This bat was not 

recorded by any telemetry stations, and roosted in a small area. We anticipated cold 

temperatures in October would cause the bat to move to a warmer hibernation site, but we 

saw no evidence of this behavior. The bat switched roost sites through November 3, and 

we recorded changes in signal strength day-to-day (indicative of the tag remaining on the 

bat) through November 8. It is possible that the bat entered hibernation within the final 

tree cavity in which it roosted. Tree cavities can maintain above-freezing temperatures 

throughout much of the winter, and it has been suggested that Myotis species on marine 

islands could hibernate in cavities in northern climes (Burles et al. 2014). The two 

northern long-eared bats manually tracked in September and October 2015 remained 

locally until transmitters dropped (BiodiversityWorks, unpublished data). In 2016, late 

season deployment of acoustic detectors intermittently picked up northern long-eared bat 

calls at multiple sites on the island throughout October and into mid-November.  

One of our goals in conducting this study was to address the question of whether 

northern long-eared bats are remaining on Martha’s Vineyard throughout the year, or 

leaving for the winter months. The presence of a WNS-infected northern long-eared bat 
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on the island in February 2017 (BiodiversityWorks, unpublished data, 

https://vineyardgazette.com/news/2017/03/22/bats) requires that one of two explanations 

be true – either northern long-eared bats are leaving the island, and becoming infected at 

mainland hibernation sites, or northern long-eared bats remain on the island, but other 

species travel between the island and the mainland and have brought WNS to the island, 

which has since infected local northern long-eared bats. Of course, these alternative 

explanations are not mutually exclusive. It is possible, and frankly, entirely likely, that 

these bats exhibit a range of behaviors, with some venturing to mainland hibernation 

sites, while others remain on-island. Little brown bats in the same maternity colony have 

been shown to use different hibernation sites 51-554 km away (Norquay et al. 2013). The 

drop in overall capture rates of northern long-eared bats since the 1990s strongly suggests 

that WNS has affected populations on the island, but our observations of healthy 

maternity colonies could lend support to the hypothesis that subpopulations have 

remained locally on the island in small hibernacula thus far free of WNS. Collectively, 

our evidence points to the idea that at least some northern long-eared bats are hibernating 

locally – this is supported by late season residency behavior of tagged individuals, by 

late-season acoustic data, and perhaps most strongly, by the February occurrence of bats 

on the island, and the discovery of a hibernaculum on neighboring Nantucket 

(unpublished data). A number of summer houses on the Vineyard are heated through the 

colder months, but remain unoccupied; among other locations, these residences could 

easily be providing habitat to hibernating bats.  

Our telemetry system recorded wider-ranging movements of little brown, big 

brown, and eastern red bats. Off-island movements were detected for at least two 
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individuals, suggesting our system worked to detect these movements when they 

occurred. Of the eight bats tagged in 2016 that were not northern long-eared bats, seven 

were detected by stations at least 2.6 km from their capture location. In contrast, none of 

the northern long-eared bats were detected by stations more than 0.69 km away.  

We documented migration of a little brown bat from Martha’s Vineyard to the 

mainland. One of the three little brown bats tagged was recorded departing the island on 

the night of August 25, and made migratory movements along the south and east sides of 

Cape Cod. It was last detected by a telemetry station in Wellfleet, 82 km from its initial 

capture and roost location. We also recorded evidence that the second little brown bat 

tagged in August appeared to make offshore movements, traveling to Naushon Island or 

foraging over Vineyard Sound. This bat was last detected at a bearing of west-southwest 

off the Cedar Tree Neck station on September 1. The detection direction suggests the bat 

may have migrated off-island at this time, and it was not detected at its roost site or by 

Vineyard or Naushon stations after this date, although it was also not detected by off-

island stations aside from Naushon. The timing for departure of these bats is consistent 

with results from other studies, which found most little brown bats departing summer 

roost sites between mid-August and mid-September (Cope 1976, Kunz et al. 1998, 

Townsend et al. 2008) or describe capture of these species at cave swarming sites in mid-

August to early October (Schowalter 1980, Burns et al. 2014). In addition, one of the 

tagged big brown bats was last detected by an ocean-bearing antenna on the Goethals 

station in late November, suggesting it was also moving offshore. It may have departed 

the island at this time, but was not detected by any off-island stations. One of the three 



 

55 

tagged eastern red bats departed the island on October 19, and was recorded making 

migratory movements as far south as Maryland.  

While we did not detect offshore migration by northern long-eared bats in our 

study, we did not track these bats in late August, and therefore cannot rule out the 

possibility that some northern long-eared bats may depart summer roosts at a comparable 

time to little brown bats. We could not identify any studies tracking northern long-eared 

bats as they move from summering grounds to winter hibernacula, and because their 

maternity colonies are often smaller than those of little brown bats, it is difficult to 

determine departure dates from summer roost sites for this species. Several studies do 

report northern long-eared bats arriving at swarming sites from the end of July through 

mid-October (Carceres & Barclay 2000, Broders & Forbes 2004). Seasonal patterns of 

bat activity on Martha’s Vineyard vary by habitat (Buresch 1999), so it remains unclear 

whether a population decrease for northern long-eared bats occurs in late summer.  

The timing of northern long-eared bat activity on Martha’s Vineyard varied by 

season. During the maternity period, automated stations recorded activity of our tagged 

northern long-eared bats throughout the night, from shortly after sunset to shortly before 

sunrise. In a similar manner, acoustic detectors recorded Myotis calls throughout the night 

hours. In the fall, however, we primarily detected Myotis acoustic activity in the 2-2.5 

hours post-sunset, although occasional calls were recorded throughout the night. The 

majority of echolocation calls in October were recorded under low-moderate wind speed 

conditions and in relatively mild temperatures (>10°C). If northern long-eared bats are 

making offshore forays, we might expect them to be active throughout the night in 

summer, but likely only active for several hours post-sunset in the late fall.  
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Conclusions 

The five northern long-eared bats tracked in this study in 2016 were not detected 

making offshore movements. However, our tracking system was adequate to detect wide-

ranging and offshore movements by other bat species tagged as part of these efforts. Data 

in the published literature suggest female northern long-eared bats occupy small home 

ranges for foraging and roosting during the maternity season, and these findings are 

consistent with our limited data from Martha’s Vineyard. During the summer months, 

female northern long-eared bats on the island were active throughout the night and could 

easily have accessed offshore environments for foraging under calm conditions. 

However, published reports suggest northern long-eared bat females are unlikely to 

forage greater than 2 km from roost sites during the maternity season, which would 

indicate they are unlikely to travel into federal waters (5.6 km offshore) during this time 

period, and we recorded no movements which exceeded 2 km. The behavior of adult 

male northern long-eared bats during the maternity season is largely unreported 

throughout their range, and we did not capture adult males on the Vineyard in 2015 or 

2016.  

We did not detect off-island movements by the two northern long-eared bats 

tagged in September 2015, or the single northern tagged in October 2016. Our study 

strongly suggests that some northern long-eared bats are hibernating locally on Martha’s 

Vineyard. In contrast, our limited data show some little brown bats make offshore 

movements or depart the island in late August. Given the small number of northern long-

eared bats we were able to track in the fall, and the timing of those efforts, we cannot rule 

out the possibility that some northern long-eared bats may migrate off-island.  
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Low capture rates due to WNS are likely to be a continuing issue for future 

studies of northern long-eared bats on the island. We offer the following 

recommendations regarding future studies:  

1. Monitoring known northern long-eared bat maternity roosts and trapping at 

these sites is likely to be the most efficient means of capture for this species during the 

maternity season. Efforts to further document offshore bat movements during this time 

period should focus on capture at identified roosts near the coastline in order to increase 

the sample size of tagged bats.  

2. Off-island migration of northern long-eared bats could be occurring in late 

August. We did not focus our mist-netting efforts during this time period. It could be 

highly revealing to radio-tag northern long-eared bats during this time, although capture 

rates are likely to be low. Capture of little brown bats at their barn roost site was more 

time-efficient, and it would be informative to tag individuals of this species at known 

roosts on the Vineyard in late August, to further document timing and locations of 

offshore movement. If possible, individuals of both sexes should be tagged.  

3. Capture rates were high at our Nantucket capture site during pilot mist-netting 

efforts. If northern long-eared bats continue to persist on this island in 2017, it could be a 

good location for future studies. However, the dynamics of WNS spread on islands is not 

well understood, and unfortunately, we could easily find similar declines in northern 

long-eared bat populations on Nantucket in coming years.  

4. Offshore acoustic monitoring could be an effective way to identify timing of 

offshore movements by Myotis spp., relative to season and weather conditions. However, 

it is important to recognize the inherent difficulties in differentiating among Myotis spp. 
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echolocation calls, and the degree of error and uncertainty associated with both manual 

and automatic classification of these calls. 
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CHAPTER IV 

TRACKING COASTAL MOVEMENTS OF LONG-DISTANCE MIGRATORY 

BATS 

 

Abstract 

Existing evidence suggests long-distance migratory tree bats may congregate 

along the Eastern Seaboard during the late summer-fall migration season, but little is 

known about their migratory routes or behavior.  These species experience high fatality 

rates at some terrestrial wind facilities, and could be at risk from offshore wind 

development planned for North Atlantic waters.  We deployed coded radio-transmitters 

on 39 eastern red bats and 3 hoary bats at coastal sites in New England during the late 

summer and fall of 2014-2016, and tracked movements of individuals using the Motus 

Wildlife Tracking system of automated telemetry stations.  Eastern red bats were detected 

up to 803 km southwest from point of capture, and exhibited average migratory speeds of 

4-94 km/night.  We also found evidence of stopover of at least 14 days and northeastward 

movements of at least 44 km.  We observed use of coastal routes, and detected red bats at 

numerous island telemetry stations, including the Block Island, Rhode Island station 

located near the site of the first offshore wind facility in U.S. waters.  A hoary bat tagged 

in coastal Maine in late August 2015 traveled 130 km northeast along the coast and 

crossed at least 15 km of open ocean in one night.  Further research is necessary to 

determine how great a risk offshore wind facilities pose to long-distance migratory bats at 

a population scale, but our data suggest these species should be considered in offshore 

wind development planning. 
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Introduction 

Eastern red bats [Lasiurus borealis] and hoary bats [L. cinereus] are 

insectivorous, tree-roosting vespertilionids native to North America.  Along with silver-

haired bats [Lasionycteris noctivagans], they are characterized as long-distance migrants, 

capable of travelling hundreds of kilometers between wintering grounds and summer 

territories.  Museum specimen records indicate eastern red bats are largely confined to the 

southeastern United States and northeastern Mexico during the winter months, but 

expand across much of the United States and Canada east of the Continental Divide in the 

summer (Cryan 2003).  In winter, hoary bats are found in California, Mexico, and 

scattered locations elsewhere; in summer, female hoary bats occur across large regions of 

Canada and the northeastern United States, while males primarily are found in the 

mountainous West (Cryan 2003).  Initial identification of these species as long-distance 

migrants was based on behavioral observations and occurrence data (e.g. Griffin 1940, 

Carter 1950, Shump and Shump 1982, Timm 1989, Cryan 2003), but recent isotopic 

analyses have confirmed these bats can be found at great distances from their summer 

territories in the fall (Cryan et al. 2014, Pylant et al. 2016).   

Museum specimen records further suggest that movement towards coastlines is 

common during the fall migration season; high numbers of eastern red bats have been 

collected along the Atlantic Coast during this period, and hoary bats have been observed 

at both Atlantic and Pacific Coast locales (Cryan 2003).  Isotopic signatures support the 

idea that hoary bats make longitudinal movements towards coastlines in the fall (Cryan et 

al. 2014).  In addition, there is a long anecdotal history of sightings of migratory bats in 
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coastal habitats, on marine islands, and over the ocean during this season (e.g. Nichols 

1920, Thomas 1921, Griffin 1940, Carter 1950, Cryan and Brown 2007).  Recent acoustic 

surveys in the Gulf of Maine have recorded increased migratory bat activity at coastal 

and offshore sites between mid-August and mid-September (Peterson et al. 2014), and 

red bats are commonly recorded at sites in coastal Rhode Island from July to October 

(Smith and McWilliams 2016).  Eastern red bats have been detected acoustically 1.2-21.9 

km off the mid-Atlantic coast (Sjollema et al. 2014) and on coastal barrier islands 

(Johnson et al. 2011b) in the late summer and fall; daytime surveys have also resulted in 

sightings 16.9-44 km offshore in September (Hatch et al. 2013).  Hoary bats have been 

acoustically recorded 5.4-11.5 km off the mid-Atlantic coast during migration (Sjollema 

et al. 2014).  Taken together, these pieces of evidence suggest coastal and offshore travel 

may represent a significant component of fall movements by migratory bats. 

An in-depth understanding of bat migratory movements nevertheless remains 

elusive.  It has historically been difficult to track small-bodied animals over long 

distances (Cryan 2011), and there have been no concerted efforts in North America to 

band large numbers of long-distance migratory bat species (O’Shea & Bogan 2003, 

Schorr et al. 2014).  Acoustic data can identify periods of high activity, but without 

tracking of individual animals, it is impossible to characterize movement patterns or 

migratory behavior.  The timing, nature, and routes of bat migration in general, and along 

the Atlantic Coast in particular, therefore remain poorly understood.   

Meanwhile, the recent development of an expansive network of automated 

telemetry stations has allowed for the long-distance tracking of animals outfitted with 

coded radio-transmitters (Taylor et al. 2017).  The Motus Wildlife Tracking system has 
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proven invaluable in the collection of data on coastal migratory movements of a variety 

of bird species, including small-bodied passerines (e.g. Brown & Taylor 2015, 

Woodworth et al. 2015, Crysler et al. 2016).  Limited deployment on bats suggests this 

tracking system can also provide information about nightly activity patterns (White et al. 

2017), as well as stopover behavior (Taylor et al. 2011, McGuire et al. 2012, Hatch 

2015), and speed of migratory movements (Jonassen 2017).  However, no studies to date 

have characterized movements of long-distance migratory bats along the Atlantic coast. 

A greater understanding of migratory bat movements along the Atlantic coast is of 

special importance in light of increasing wind energy development in the offshore 

environment.  Terrestrial wind development is associated with significant bat mortality 

(Arnett & Baerwald 2013, Hayes 2013, Smallwood et al. 2013, Frick et al. 2017), and 

offshore wind facilities could present similar threats to bats.  Hoary and eastern red bats 

experience the highest rates of land-based wind energy mortality among bat species in the 

eastern United States, and peaks in fatalities appear to coincide with their late summer-

fall migration period (Arnett et al. 2008).   Within New England, some of the strongest 

wind resources are in coastal and offshore areas (Schwartz et al. 2010, Musial et al. 

2016).  These areas tend to be close to high demand centers for electricity, and are likely 

to be sites of wind development over the coming decades (Manwell et al. 2002, ISO New 

England 2016).  The Bureau of Ocean Energy Management holds 11 current leases with 

developers for construction of wind energy facilities in federal waters along the Atlantic 

Coast.  Maine has set a goal of 5,000 MW of power generation from offshore wind by 

2030 (An Act to Implement the Recommendations of the Governor’s Ocean Energy Task 

Force 2010), and Massachusetts has instructed electricity utility companies within the 
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state to contract with generators for development of up to 1,600 MW of offshore wind 

capacity (An Act Relative to Energy Diversity 2016).  The first offshore wind farm in the 

United States - 30-MW 5-turbine facility off of Block Island, Rhode Island - came on-

line in 2016.  

The purpose of this study was to use the Motus Wildlife Tracking system to 

qualitatively describe the late summer and fall behavior of migratory tree bats along the 

North Atlantic coast.  Our goals were to 1) document long-distance movements of 

migratory bats, 2) characterize any observable patterns in migratory behavior, 3) consider 

timing of bat movements, relative to season and time of night, and 4) identify any 

offshore movements. 

 

Study Area 

Mist-netting was conducted at multiple forested sites in coastal regions of New 

England (Figure 4.1).  We trapped in the Downeast region of Maine (ME) within 0.5 km 

of the coast in Jonesboro and Roque Bluffs, as well at the Petit Manan Point National 

Wildlife Refuge (NWR) in Steuben.  We mist-netted within Acadia National Park on Isle 

au Haut, the Schoodic Peninsula, and Mount Desert Island, ME.  In New Hampshire 

(NH), we trapped at Great Bay NWR, adjacent to a tidal estuary ~10 km from the coast.  

In Massachusetts (MA), we mist-netted at a coastal site at Parker River NWR, and on the 

islands of Martha’s Vineyard and Nantucket.  At all locations, mist-nets were strung 

across roads running through forest or scrub forest, or were deployed to perpendicularly 

intersect a wetland/forest boundary over marsh habitats and freshwater ponds.   
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Methods 

Bat capture and radio-tag deployment 

We mist-netted for bats in the late summer and fall (1 August-31 October) in 

2014, 2015, and 2016.  We used single, double, and triple-high set-ups of 6, 9, and 12 m 

mist nets, and deployed 2-5 mist-net set-ups at each location.  Trapping was conducted at 

a given location for 1-3 nights in succession (almost always 2), from near sunset until 3-5 

hours post-sunset, depending on trapping success and weather conditions.  On cold 

(<10°C) or windy nights, nets were occasionally closed earlier.  Mist-netting work was 

conducted through collaboration among the U.S. Fish & Wildlife Service, the National 

Park Service, University of Massachusetts Amherst, Biodiversity Research Institute, 

BiodiversityWorks, and Nantucket Conservation Foundation.    

All bats were handled in accordance with American Society of Mammalogists 

standards (Sikes & Gannon 2011).  Bats were identified to species, aged as adult or 

juvenile based on ossification of the metacarpal-phalangeal joint (Brunet-Rossini & 

Wilkinson 2009), sexed, weighed, and measured along the forearm.  For captured eastern 

red and hoary bats, a small area was shaved between the scapulae, and a radio-tag was 

attached using animal ID tag cement (Nasco). Radio-tags were Lotek NTQB-1 (0.29 g) or 

NTQB-2 (0.35 g) NanoTag series coded units, with burst intervals of 6.7-19.9 seconds, 

and operating lives of 24-71 days (Lotek Wireless, www.lotek.com).  To reduce the risk 

of negative effects of tagging, no transmitter constituted greater than 5% of bat body 

weight (Aldridge & Brigham 1988).  Animal handling was conducted under an approved 

IACUC protocol (UMass Amherst protocol Sievert 2014-0033); all gear was treated in 
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accordance with National White-Nose Syndrome Decontamination Protocols (U.S. Fish 

& Wildlife Service 2012, 2016c).   

 

Automated tracking 

NanoTags (Lotek Wireless, www.lotek.com) are coded radio-transmitters 

operating on a single frequency; in combination with automated radiotelemetry stations, 

they allow for the simultaneous tracking of potentially thousands of individual organisms 

(Taylor et al 2017).  In order to track local movements of radio-tagged bats, where 

possible, we deployed stationary automated telemetry receiver towers in close proximity 

to trapping sites.  We deployed an automated telemetry station within 5 km of most 

capture locations, except at Acadia National Park (Table 4.1).  In 2014, 2015, and 2016, 

there was one telemetry station located 7.75-9.11 km from all successful capture sites on 

Mount Desert Island.  In 2016, we deployed a second station which was 0.7-2.1 km from 

capture locations on the island.  Unfortunately, a series of deployment issues meant that 

both Mount Desert Island stations only functioned intermittently during the 2016 study 

period. 

Long-distance movements of radio-tagged bats were tracked using the greater 

Motus Wildlife Tracking system of automated telemetry stations.  Stations consisted of 

yagi or omni-directional antennae deployed on buildings, lighthouses, pop-up masts, or 

sectional towers; the antennae were attached via BNC cables to a radio receiver, which 

monitored for coded radio-tags transmitting at a single frequency.  In the Gulf of Maine 

region, most stations consisted of a “Motus-style” arrangement of 3 9-element yagi 

antennae oriented horizontally and connected to a hand-built telemetry receiver 

http://www.lotek.com/
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(www.sensorgnome.org) which monitored all antennae simultaneously.  In the Cape Cod 

and Islands region, most stations consisted of a “Lotek-style” arrangement, consisting of 

6 9-element yagi antennae oriented horizontally and connected to a Lotek SRX series 

receiver (Lotek Wireless, www.lotek.com).  This receiver systematically rotated through 

monitoring each antenna, sampling all antennae over a period of 1-2 minutes.   

Bats were tracked using data obtained from the network through the Motus 

website (www.motus.org).  The system returns data from detections of registered radio-

tags, including a tag identification number, timestamp of detection, signal strength, 

antenna bearing, and the latitude and longitude of the telemetry station where the signal 

was detected.  In the presence of radio noise within the target radio-tag frequency, 

telemetry stations may record false detections, which are not always removed by the 

Motus detection algorithm.  We screened detection records for suspect detections before 

analysis.  We identified “noisy stations” where the radio-tag under consideration or other 

tags within the same numbered series were frequently reported as detected before tags 

were deployed, and removed detections from these stations.  We also removed records in 

which fewer than 3 detections were recorded consecutively, unless a run of 2 detections 

occurred within 25 km and 5 days of another detection (Woodworth et al. 2015, Crysler 

et al. 2016). 

 

Tracking analysis 

Capture site residency and stopover behavior 

The minimum duration of capture site residency was calculated for bats detected 

within 13 km of their capture site after release, either through tag detection by a local 

http://www.sensorgnome.org/
http://www.lotek.com/
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automated telemetry station or recapture of the individual.  We used 13 km based on the 

typical maximum detection range for Motus Wildlife Tracking System telemetry stations 

in other studies (Mills et al. 2011, Taylor et al. 2011).  Capture site residency duration 

was defined as the length of time from the point of capture until the last known record of 

the individual within 13 km of the capture site.  In cases where bats were detected by a 

local station but not by other stations in the Motus network, we generated signal strength 

versus time plots to confirm that the capture site residency duration did not include time 

when the radio-transmitter had fallen off the bat but was still being recorded by the 

telemetry station, which would have generated a relatively unvarying signal strength over 

time.  For bats which remained in the capture vicinity for multiple days, and were 

detected by local stations for greater than 50% of this time, we examined plots of signal 

strength over time to assess patterns of roosting and foraging activity (White et al. 2017).  

We also calculated stopover duration at sites other than the capture location where 

individual bats were detected for multiple days, based on first detection at a site and last 

detection within 13 km of that site. 

 

Single-night between station flights 

Ground speeds were calculated for bats making movements between telemetry 

stations >20 km apart over the course of a single night.  Ground speed has been 

calculated in various ways as part of automated telemetry studies (Mitchell et al. 2015, 

Jonassen 2017, Smetzer et al. 2017, Wright et al. 2018).  We calculated ground speed as 

the distance between the two stations, divided by the time between the midpoint of 

detection at the first station and the midpoint of detection at the second station.  For 
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departures from the capture site location, we could not use the midpoint of detection, 

since bats were often detected at the capture site for multiple nights.  At these sites, we 

estimated the depature time from the first station as the time of maximum signal strength 

within 1/2 hour of final detection at the capture site location. 

 

Migratory speed 

For bats tracked >20 km southwest from point of capture, we estimated average 

migratory speed.  The distance between initial capture and southernmost detection was 

divided by total time between capture and final detection, to determine average migratory 

speed over the entire tracking period (km/night).   

 

Results 

Bat capture and radio-tag deployment 

We trapped for a total of 122 nights (~1,665 net-hours) at coastal locations in 

Maine, New Hampshire, and Massachusetts between 2014-2016 (Table 4.1).  We 

captured 393 bats, and deployed radio-tags on 39 eastern red bats and 3 hoary bats.  

There was a trend towards a greater proportion of males among eastern red bats captured 

later in the season [first half of August – 4/9 (44%) bats were males, second half of 

August – 5/11 (45%) males, first half of September – 7/10 (70%) males, second half of 

September – 5/6 (83%) males, October – 2/3 (66%) males], but both sexes were captured 

in all months and at all study locations where more than one individual was captured.  

Differentiating adult from juvenile bats can be difficult late in the season; we identified 

25 red bats as adults, 12 as juveniles, and 2 as indeterminable.  Both adults and juveniles 
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were captured at most study locations.  On Martha’s Vineyard, all 3 red bats tagged were 

identified as adults, but this was in mid-October, by which point ossification of the wing 

joint may have occurred for juvenile bats.   

We deployed NanoTags on 1 adult female and 1 male adult hoary bat captured on 

Mount Desert Island, ME, and 1 adult female hoary bat captured at Parker River NWR, 

MA. 

 

Automated tracking – Eastern Red Bats 

Of 39 eastern red bats tagged, 8 were not detected after release, and 18 were 

solely re-located within 13 km of their capture location.   One bat was last detected 21 km 

northeast of its point of capture.  The remaining 12 red bats were detected making 

movements >20 km southwest from point of capture (Table 4.2).   

The likelihood that eastern red bats were detected within the vicinity of their 

capture location after release was strongly related to the proximity of local telemetry 

stations.  Sixteen bats were tagged within 1 km of a functioning automated telemetry 

station, and these bats were all recorded by local stations.  Of 7 bats tagged within 1-5 km 

of a functioning station, 5 were recorded by the local station. Of 8 bats tagged within 5-

10 km of a functioning station on Mount Desert Island in 2014 and 2015, only 1 was re-

detected by a local station.  However, 2 of these bats were recaptured locally in mist nets, 

and 1 was relocated using manual telemetry.  On Mount Desert Island in 2016, we 

deployed 2 telemetry stations, one within 5 km of all capture sites, and the other within 

10 km.  However, both local stations had deployment issues which resulted in limited 
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function during the study period.  These stations recorded 1 of 2 bats tagged within 1 km 

of a station, and 1 of 6 bats tagged within 1-5 km. 

We calculated a minimum capture site residency duration for the 27 eastern red 

bats relocated within 13 km of their initial capture location (Table 4.2).  Red bats were re-

detected locally for up to 11.9 days following release at Great Bay NWR, for up to 14.0 

days at Parker River NWR, and up to 24.0 days on Martha’s Vineyard.  The lone bat 

captured at Petit Manan Point NWR was re-detected in the capture vicinity for 3.2 days 

following release, and dropped its tag in the vicinity, although not within range of the 

station.  On Mount Desert Island, one bat was intermittently detected by a local station 

for up to 12.8 days after release, and another bat was recaptured at its original capture site 

14 days later.  Across sites, several bats were detected in the vicinity of their capture 

location for only 0.1 days following release, but these data points could either have 

represented an immediate departure from the area or a dropped tag, since these bats were 

not subsequently re-detected elsewhere.  Mean minimum capture site residency across all 

red bats re-detected locally was 6.8 ± 6.9 days (median=4.0 days, range=0.1-24 days).  

Minimum capture site residency calculations could over-estimate residency duration, if 

bats left the area but returned thereafter to the same vicinity.  However, we did not record 

any bats at non-local stations in between detections at local stations, and some bats were 

detected nearly continuously by local stations.   

Local detectability was low at most sites, but where bats were tagged within 0.5 

km of an automated station, local detections could represent a significant fraction of the 

time bats remained in the vicinity.  At Parker River NWR in 2016, 12 eastern red bats 

were tagged 0.41 km from an omni-directional antenna and 4.19 km from a station with 3 
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directional antenna. Three of the bats which remained in the vicinity for multiple days 

were recorded by one or both stations for > 50% of the time they remained there.  The 

first of these bats, tagged in late August, was detected for 70.0% of the time from release 

for 11.9 days following capture.  This bat was active nightly from approximately 1/2 hour 

after sunset until within an hour of sunrise.  In early September 2016, 2 red bats captured 

in the same net at Parker River NWR were detected for 52.2% and 92.2% of the time 

from release for 3.9 days following capture.  These bats were detected in flight from 

within five minutes after sunset through as late as 05:15 the following morning, although 

activity appeared to cease as early as 22:00 on some nights.  At Great Bay NWR in mid-

September 2014, 2 bats tagged 0.15 km from the closest telemetry station and 1.89 km 

from the second-closest station were detected for 84.3% of 9.0 days, and 89.0% of 11.9 

days, respectively, following capture.  These bats emerged close to sunset, and were 

active as late as midnight on some nights, although on cooler nights (temperature at dusk 

~13°C) they were only active for ~1 hour following emergence.  On one cold night 

(temperature at dusk ~8.5°C), there was no clear indication that either bat emerged to 

forage. 

Twelve eastern red bats were recorded making movements 27-803 km southwest 

from their capture location (Table 4.2).  The greatest movement recorded was for a bat 

tagged on Mount Desert Island, which was last recorded along the coast of Cape May, 

NJ, 12.1 days after release.  The second-longest movement recorded was 656 km for a bat 

tagged on Martha’s Vineyard, MA, and last recorded by a station on Skidmore Island, 

VA, 7.0 days after release.  We recorded one case of reverse migration, in which a red bat 

tagged on Mount Desert Island in early September was recorded by 2 stations 29.3 and 
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43.5 km northeast from its capture site between 11 and 19 days after capture, before 

ultimately being detected travelling south through mid-coast Maine (22 days after 

capture), northeastern Massachusetts (23 days after capture), and southwest Rhode Island 

(29 days after capture).  Average southwestward travel among bats that ultimately 

migrated southwest averaged 31 km/night, but these calculations revealed a high degree 

of variability in average migratory speed (4.3-93.5 km/night) (Table 4.2).  Among bats 

tracked, we saw no obvious trend towards shorter stopover durations or faster average 

migratory speeds as the season progressed.  The red bat showing the fastest average 

migratory speed was tagged on 17 October 2017 on Martha’s Vineyard, MA, but 2 other 

red bats tagged on the island during the same week remained in the capture vicinity for 

21.0 ad 24.0 days following release.   

Calculations of speed over one night between telemetry stations indicate 

migrating eastern red bats were flying at speeds of 10.1-27.8 m/s (Table 4.3), with the 

exception of 1 span between 2 stations located 23.4 km apart in which estimated speed 

was only 1.5 m/s ( overall mean=14.8 ± 7.0 m/s).  The longest flight between stations 

recorded in one night (333 km) was by a red bat traveling between Montauk Point, NY 

and Cape May, NJ.  The bat maintained an average speed of 14.9 m/s over 6.18 hours.     

The majority of eastern red bats were only detected at non-local stations while 

making “fly-bys”, in which they spent < 2 hr within detection range of a station antenna, 

and were either next detected elsewhere, or where this represented the final detection for 

the bat.  Detection periods at a single antenna were typically quite brief – out of 38 fly-

bys recorded, only 4 exceeded 30 minutes in duration, and only 1 exceeded 45 minutes 

(mean: 12 ± 20.5 min, median: 4 min).  Fly-bys were recorded at all hours of the night, 
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from 18:26-05:15.  In addition to fly-bys, we recorded 2 incidents of longer-term 

detection at non-local sites, both cases in which bats were detected by a non-local station 

antenna for > 24 hr.  One red bat captured on Mount Desert Island was recorded by a 

telemetry station on Metinic Island, ME on 27 September 2014, the night following its 

capture, from 21:57 to 22:25.  After a break in detection, this bat was again detected by 

the Metinic Island station on 29 September 2014 from 18:35-18:55.  A red bat tagged at 

Parker River NWR was detected after its departure from the capture vicinity by a 

telemetry station on Cape Cod, MA.  This bat continued to be intermittently recorded by 

6 stations in the Cape Cod region for an additional 13.9 days, with the final detection at 

the same Cape Cod station where it was first recorded.  Over this time period, the bat was 

recorded as early as 18:49 and as late as 01:30. 

The maximum detection range observed for tagged bats was ~32 km for an 

individual bat simultaneously detected by two automated telemetry stations located 64 

km apart in the Cape Cod, MA region.  Most other instances of simultaneous detections 

between “Lotek-style” stations occurred between stations located ≤ 25 km apart, 

suggesting a typical maximum detection range of 12-13 km.  This is the expected 

maximum detection range for use of Motus-style towers to detect NanoTags on 

songbirds, although greater detection distances are known (Mills et al. 2011, Taylor et al. 

2011).  Among “Motus-style” stations, we only recorded simultaneous detections where 

stations were < 5 km apart. 

Of the 12 eastern red bats recorded making long-distance migratory movements, 8 

were recorded by island telemetry stations other than the local station near where they 

were captured.  Several islands were close to the mainland (e.g. Orr’s Island, ME; Plum 



 

74 

Island, NY), but bats were also recorded by stations on Great Duck Island, ME (9 km to 

mainland), Metinic Island, ME (9 km), Noman’s Island, MA (30 km), and Muskeget 

Island, MA (30 km).  Five bats were detected by a Block Island, RI station (21 km from 

the mainland), 1 of which was detected by southeast and south-bearing antennae of a 

station on the south end of the island, pointed in the direction of the Deepwater Wind 

energy facility.  Given the maximum detection range we recorded for tagged bats, it 

would be theoretically possible for bats to be detected by island telemetry stations while 

flying over the mainland rather than the ocean at most locations.  However, 6 bats 

traveling through the Cape Cod & Islands region were detected by offshore-bearing 

antennae of coastal and island stations, which would indicate these bats were traveling 

over the ocean.   

 

Automated tracking - Hoary Bats 

All 3 hoary bats tagged were detected after release, but the bat tagged at Parker 

River NWR was only detected by local stations for several hours.  The bat tagged on 

Mount Desert Island, ME in 2016 was detected on the night following capture by a 

telemetry station 27.1 km southwest of the capture site.  The bat captured on Mount 

Desert Island in 2015 was not detected by local telemetry stations, but was detected using 

manual telemetry, roosting in the vicinity of its trapping location on the evening 

following capture.  That night, the individual was detected flying 130 km northeast along 

the coast, and crossing at least 15 km of open ocean to reach Grand Manan Island, New 

Brunswick, Canada (Figure 4.2c).   
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Discussion 

This study is one of the first efforts in North America to track migratory tree bats 

over long distances (>20 km), and one of the few world-wide to follow individual bats 

using a system of automated telemetry stations.  We recorded evidence that migratory 

bats use coastal routes during the fall migration season, and regularly travel offshore.  

Twelve of 39 eastern red bats radio-tagged in the course of this study were detected 

making movements along the New England coast 27-803 km southwest from their point 

of capture.  These bats were frequently detected by island telemetry stations and antennae 

pointed offshore.  We also recorded a hoary bat moving 130 km northeast along the 

coast, and crossing at least 15 km of open ocean to reach Grand Manan Island.  The fact 

that this bat was only tracked for 1.1 days from time of capture suggests long-distance 

movements of this nature may not be unusual for this species. 

We observed a variety of fall behaviors among tracked bats, including directed 

flights southwestward, lengthy periods of residency behavior, stopover behavior, and at 

least occasional northeastward movements.  Ten eastern red bats were recorded making 

directed flights southwestward; with one exception, between-station flight speeds for red 

bats were >10 m/s.  Flight speeds recorded for bats exceeded known foraging speeds for 

the species (Salcedo et al. 1995), and on average were about 2.5 m/s higher than those 

recorded in a previous migration study (Jonassen 2017).  Few studies of North American 

bat migration are available for comparison, but hoary bats averaged 10.8 m/s, and silver-

haired bats averaged 13.8 m/s, during fall migration through Ontario (Jonassen 2017).  

Smaller-bodied Indiana bats [Myotis sodalis] tracked by airplane have been recorded 
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migrating between winter and summer habitats at speeds averaging 10 m/s (Roby et al. 

2016).   

We also observed northeastward movements by two eastern red bats and one 

hoary bat in our study.  These movements may reflect distinct fall behavior, given that 

long-distance movements (>20 km) are not typical of most North American bats in the 

summer season.  Eastern red bats generally have small summer home ranges and make 

only short commutes to foraging grounds (McCracken et al. 1997, Carter 1998, 

Hutchinson and Lacki 1999, Elmore et al. 2005, Walters et al. 2006, Amelon et al. 2014).  

Little data are available regarding hoary bats, but they also appear to make only short-

distance movements during the summer (Sparks et al. 2005, Bonaccorso et al, 2015).   

In addition to these behaviors, we observed eastern red bats remaining for 

extended periods of time at their capture location, which could either be indicative of 

migratory stopover or summer residency behavior continued late into the putative 

migration season.  Nineteen red bats remained at one location for at least 2 nights during 

the time they were tracked, and individual bats remained in their capture vicinity for 11-

24 days at 4 out of 5 tagging locations.  We could not determine whether newly captured 

bats were local summer residents at tagging locations, or migrants captured along their 

migratory route.  However, subsequent re-detections provided definitive evidence of 

stopover for two red bats - one bat was detected on Metinic Island, ME for 2 days after 

migrating from further north, and one bat remained in the Cape Cod region for 14 days 

after it travelled from northeastern Massachusetts. 

According to optimal migration theory, observed migratory behavior should 

reflect a balance between time spent in movement towards a destination and time spent 
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re-fueling in order to power further movement (Hedenstrom 2009).  Some bats may 

employ a “fly-and-forage” strategy, feeding en route to a destination (Suba et al. 2012), 

while others forage at a stopover site prior to engaging in directed migratory flight (Roby 

et al. 2016).  Our study provides evidence that eastern red bats use the latter strategy.  

Rough calculations further suggest that the time spent in directed flight matches well with 

theory.  Red bats tracked southwestward in our study travelled at an average rate of 31 

km/night, the equivalent of only a 0.7 m/s flight speed if bats were flying steadily 

throughout a 12-hour night.  This speed is only 1/25-1/15 the rate of speed we observed 

for bats making directed flights in a single night, suggesting red bats in our study spent 

on average only ~1/20 of night hours engaged in directed southwestward migratory 

flight.  This estimate matches well with theoretical calculations provided by Hedenstrom 

for the proportion of time bats would be expected to spend on directed migratory flight 

based on time and energy optimization models (2009).  On the other hand, McGuire et al. 

(2014) suggest bats may migrate under reduced energy and time constraints relative to 

birds, given that use of torpor can reduce energy expenditures during stopover by up to 

91%.  These authors predict that use of torpor should result in limited need for stopover 

and re-fueling en route (McGuire et al. 2014).  If the red bats we observed remaining at 

one location for long periods of time were not primarily fueling for migratory flight, it is 

possible they were engaging in other activities, such as lekking (Cryan et al. 2012). 

In regard to stopover, eastern red bats may differ from other North American 

long-distance migrants.  McGuire et al. (2012) found that silver-haired bats captured 

along Lake Erie in the fall typically foraged for a short time on the night following 

capture, and then left the study area, presumably continuing their migration.  The 
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researchers estimated these bats had sufficient fuel reserves to complete their southward 

migration without additional fat accumulation, and suspected they made directed flights 

and employed little stopover (McGuire et al. 2012).  Outside of our study, there is some 

evidence for greater stopover rates for red bats relative to other species.  Hatch (2015) 

found that of 17 red bats moving along Lake Erie in the spring, 11 engaged in stopover 

periods of 2-20 days.   Of 12 silver-haired bats captured, only 2 stayed more than one 

night, and the lone hoary bat radio-tagged had a stopover duration of 2 days (Hatch 

2015).  Jonassen (2017) described fall stopover by red bats in southwestern Ontario of 6-

50 days, but did not report stopover among silver-haired or hoary bats tracked during the 

same period.  Among the 3 hoary bats we tracked, none remained at the capture site for 

more than one night; however, our sample size was small. 

We observed a high degree of variability in average migratory rates among red 

bats that ultimately travelled south, with a range from 4.3-94 km/night.  Jonassen (2017) 

found similarly wide variation in estimated fall migratory speeds for bats moving along 

Lake Erie (eastern red bats: 46.7 and 76.9 km/night; hoary bats: 14.6 and 179.4 km/night; 

silver-haired bats 8.8-281.2 km/night).   Individual variability in migratory speed is also 

commonly documented among European bats, including Nathusius’ pipistrelle 

[Pipistrellus nathusii] (Petersons 2004, Rydell et al. 2014) and the common noctule 

[Nyctalus noctula] (Dechmann et al. 2014).  Differences in migratory rates in our study 

could not easily be explained by demographic or morphological features, and we saw no 

obvious trend towards shorter stopover durations or faster average migratory speeds as 

the season progressed.  The red bat showing the fastest average migratory speed was 

tagged on 17 October 2017 on Martha’s Vineyard, MA, but 2 other red bats of 
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comparable weight tagged on the island during the same week remained in the capture 

vicinity for 21 and 24 days following release. Interestingly, we did not observe any long-

distance movements by eastern red bats before late August.  Acoustic and observational 

data from other sources indicate that migratory tree bats may be accumulating in coastal 

areas beginning in mid-July (e.g Peterson et al. 2014), but it is possible red bats do not 

begin to move south until later in the season.  It is also possible that some individual 

long-distance migratory bats may not migrate at all, but hibernate locally in caves (Quay 

and Miller 1955, Izor 1979). 

If bats engage in a variety of behaviors during the migration season, it raises the 

question of whether certain activities, such as directed flights southward, may render bats 

more vulnerable to mortality at wind facilities than other activities, such as foraging at a 

stopover site.  In general, eastern red bats are thought to be at greater risk during the fall 

migration season, and fatalities at wind facilities peak during this period, but it is not 

clear if this is an effect of season on bat distribution in the landscape, bat physiology 

during the fall, or particular behaviors that bats engage in during the fall and not during 

other seasons (Arnett et al. 2008, Cryan and Barclay 2009).  Collision risk for little brown 

bats [Myotis lucifugus] changes in mid-late August, associated with hormonal and 

physiological changes and changes in swarming and mating activities (Orbach and 

Fenton 2010).  It is entirely possible that red bats enter a higher-risk state associated with 

physiological changes in the fall.  However, our detection range data corroborate other 

evidence that red bats are likely flying at higher altitude during directed flights compared 

to foraging flights (Menzel et al. 2005, Hatch et al. 2013).  Higher altitude flight could 

make wind turbines visible to bats from a greater distance away, bring bats into the rotor-



 

80 

swept zone, and potentially render them more vulnerable to wind farm mortality.  Further 

research is needed to determine if vulnerability to wind turbine mortality varies with 

different types of activities. 

 

Management Implications 

Our study confirms that coastal and offshore movements by long-distance 

migratory bats are likely to be common and widespread during the fall migration period.  

The northeastward movements we observed suggests bat exposure to coastal and offshore 

wind facilities could also involve multiple rather than single passes by turbines, 

increasing the risk of mortality.  Regulatory agencies should consider potential effects of 

offshore wind development on these species as part of the planning process, and 

implement strategies to either monitor and respond to fatalities, or prevent them outright.   

We found that for eastern red bats, foraging bouts became more limited in 

duration as the season progressed, but that migrating bats continued to be recorded 

making directed flights throughout the night hours, from sunset to sunrise.  Further 

research is needed to determine if directed long-distance flights render bats more 

vulnerable to wind facility mortality than other activities, such as foraging.  If red bats are 

at low risk during stopover foraging bouts, near-ground-mounted acoustic monitoring 

devices have the potential to record high acoustic activity during periods when bats are 

not particularly vulnerable to mortality. 
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CHAPTER V 

THE LOW COST OF CURTAILMENT FOR BATS AT OFFSHORE WIND 

FACILITIES 

 

Abstract 

Mounting evidence suggests North American bats could be at risk from the 

dramatic expansion in offshore wind energy capacity planned for North Atlantic waters. 

Operational curtailment is presently the sole effective strategy available to curb wind 

turbine-associated bat mortality in the onshore environment, where it can reduce fatality 

rates by over 50%.  We used publicly-available weather and pricing data to estimate costs 

of preventative curtailment at offshore sites along the Atlantic coast of the United States.  

Our calculations indicate that standard curtailment for bats would result in ≤ 1.12% 

decrease in energy production, and ≤ 0.88% revenue losses based on local marginal price 

data. Curtailment appears to be a cost-effective strategy for limiting bat fatalities at 

offshore wind facilities. 

 

  

Introduction 

Wind energy can play an important role in reducing greenhouse gas emissions 

associated with electricity generation (Sims et al., 2003); however, development of wind 

resources has environmental trade-offs, including negative effects on bats (Government 

Accountability Office, 2005).  An estimated 600,000 bats were killed at terrestrial wind 

facilities in the United States in 2012, and this figure is expected to increase as capacity 
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expands (Hayes, 2013).  Wind power-associated mortality could have population-scale 

consequences for both long-distance migrants and cave-hibernating species (Erickson et 

al., 2016; Frick et al., 2017).  In the absence of a successful bat deterrent device (Arnett et 

al., 2013a), operational curtailment is the only effective means of reducing bat fatalities at 

wind energy sites. 

Curtailment restricts the operation of wind turbines during time periods and 

weather conditions when bat activity and mortality are expected to be high.  Curtailment 

studies have demonstrated that reducing blade operation or turbine rotational speeds 

under low wind conditions can decrease bat mortality by 44-93% during the late summer-

fall migration season (Baerwald et al., 2009; Arnett et al., 2011, 2013b; Martin, 2015).  

Curtailment for bats is now a requirement at some New England land-based wind 

facilities throughout the active season on warm nights during periods of low wind speed 

(Maine Department of Inland Fisheries & Wildlife, 2013; Vermont Agency of Natural 

Resources, 2016).  The few economic analyses that have been conducted suggest 

curtailment is likely to result in <2% loss of energy production at onshore sites in the 

United States if restricted to high mortality periods (Arnett et al., 2011, 2013b; Martin, 

2015). 

In Scandinavia, bats have been observed foraging in the vicinity of offshore wind 

turbines, and even attempting to roost in turbine nacelles (Ahlen et al., 2009).  Multiple 

lines of evidence suggest North American bats also fly offshore, and that long-distance 

migratory bats may follow coastal routes, travel over the ocean during migration, and use 

marine islands as stopover sites (Cryan & Brown, 2007; Johnson et al., 2011b; Hatch et 

al., 2013; Peterson et al., 2014; Sjollema et al., 2014; Smith & McWilliams, 2016).  The 
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risks offshore wind development may pose to North American bats remain largely 

unknown, but there is a growing need to consider this conservation issue.  The first 

offshore wind facility in the United States came into operation in 2016, off the coast of 

Block Island, Rhode Island.  The Bureau of Ocean Energy Management (BOEM) 

maintains eleven active leases with developers for construction of offshore wind energy 

facilities in federal waters along the Eastern Seaboard.  Meanwhile, the Massachusetts 

legislature has instructed utility companies within the state to contract with developers for 

up to 1,600 MW of offshore wind capacity (Act to Promote Energy Diversity of 2016, 

M.G.L. ch.23M §83C), over 10 times the state’s current onshore capacity; Maine has set 

a goal of 5,000 MW of offshore wind by 2030 (Act to Implement the Recommendations 

of the Governor’s Ocean Energy Task Force of 2010, M.P.L. ch. 615), over 5 times its 

current onshore capacity. 

We used publicly-available data to calculate the costs of curtailment for bats in 

terms of energy production and revenue loss, for theoretical offshore wind facilities 

located along the Eastern Seaboard. 

 

Methods 

We constructed a deterministic model in R (R Core Team 2017) to calculate 

energy production and revenue at theoretical offshore wind facilities, with and without 

curtailment for bats.  We calculated potential energy production based on wind speed 

data obtained from seven National Oceanic & Atmospheric Administration (NOAA) 

weather buoys (2017) located within, or as close as possible to, designated BOEM Wind 

Energy Areas (Fig. 1).  We used the wind profile power law to estimate an adjusted wind 
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speed at hub height (90 m) relative to anemometer height on NOAA buoys (4-5 m), 

incorporating an alpha value of 0.11 (Hsu et al., 1994).  We then used the power curve 

for the National Renewable Energy Laboratory (NREL) 5-megawatt (MW) reference 

turbine (Jonkman et al., 2009) to determine energy production.  We obtained 

contemporaneous air temperature data from NOAA buoys, and generated sunrise and 

sunset times for each site in R (R Core Team, Package: maptools).  Our “standard” 

curtailment regime reflected common curtailment guidelines at land-based facilities, 

designed to encompass the conditions under which the majority of bat activity occurs.  

This standard regime ran for six months between April 15 and October 15, was in effect 

from 30 minutes before sunset to 30 minutes after sunrise, and required curtailment at 

wind speeds < 6 m/s when temperatures were > 10°C.  When all these conditions were 

present, the power under curtailment was zero.  At all other times, energy production was 

not curtailed and was equal to the potential energy production.  Offshore wind power 

purchase agreements in the United States have typically been negotiated based on a fixed 

price per megawatt-hour (MWh), and hence revenue losses within these contracts would 

scale with losses in energy production.  Because future offshore wind-generated 

electricity may be sold on the wholesale competitive market, we also obtained local 

marginal price (LMP) data for relevant electricity markets from regional transmission 

organizations, in order to calculate revenue losses in a competitive market scenario (ISO 

New England, 2017b; New York ISO, 2017a; Pennsylvania-New Jersey-Maryland 

Interconnection, 2017).  We also analyzed energy production under a series of altered 

curtailment requirements at the Montauk Point station using 2016 data to examine the 

sensitivity of energy production loss to varied curtailment requirements. 
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We also used the model to evaluate curtailment costs for the Block Island Wind 

Farm off of Block Island, Rhode Island.  We used temperature and wind speed data from 

the Montauk Point station (mean wind speed = 9.45 m/s) as a proxy for the Block Island 

site (mean wind speed = 9.69 m/s) (AWS Truepower, 2012).  We calculated energy 

production losses based on the power curve for the Alstom Haliade 6 MW turbine in use 

at the Block Island facility (del Arco et al., 2015), and assumed a capacity factor of 0.475 

and annual net production of 124,799 MWh of electricity (AWS Truepower, 2012). 

We compared the economic impacts of curtailment offshore with comparable 

calculations for terrestrial sites, using an NREL IEC Class I turbine scaled to a 2 MW 

capacity (King et al., 2014), weather data from coastal and inland sites in Massachusetts 

(University of Massachusetts Wind Energy Center, 2017; University of Utah Department 

of Atmospheric Sciences, 2017), and a standard alpha value of 0.142857.   

To explore relationships between wind resource quality and effects of curtailment, 

we calculated the relative contribution of low wind speeds to total energy production for 

a series of theoretical sites over a range of mean wind speeds.  We used the Rayleigh 

distribution to model theoretical wind probability distributions for a series of sites with 

annual mean wind speed values of 5.6, 6.4, 7.0, 7.5, 8.0, 8.5 and 8.8 m/s at 50 m.  The 

values chosen represent the limits of wind resource classes, which are categorized based 

on mean annual wind speeds at 50 m.  Class 1 (0-5.6 m/s) and Class 2 (5.6-6.4 m/s) sites 

are not considered viable for commercial production, while Class 4 (7.0-7.5 m/s) sites 

and higher classes are considered commercially viable; Class 3 (6.4-7.0 m/s) sites may be 

developed under some circumstances. 
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Results 

We found that loss of energy production was between 0.53% and 1.12% for the 

offshore sites and years sampled, using our standard curtailment regime; all but one site 

had losses well under 1% (Table 5.1).  Standard curtailment for bats had a negligible 

effect on calculated capacity factors, especially relative to normal inter-annual variation 

in energy production.  Revenue calculations based on LMP showed smaller percentage 

losses than losses based on a fixed price per MWh, reflecting the tendency for 

curtailment to occur during hours of lower average LMP.   LMP-based revenue losses 

were below 1% at all sites analyzed, and ranged from 0.36-0.88% (Table 5.1).  Standard 

curtailment had a considerable effect on turbine operation; for example, at the Montauk 

Point station in 2016, we calculated that turbines would be feathered for 704 hours 

annually, or 8.03% of the year, concentrated during the six months when curtailment was 

in effect.  However, during 250 of these curtailed hours, the wind speed was below 3 m/s, 

and the turbine would not have otherwise been generating power.  Overall, <6 m/s wind 

speeds contributed only 2.4% of annual energy production in this site-year.   

Energy production loss at the Montauk site in 2016 was fairly insensitive to 

temperature requirements, sunrise/sunset offsets, and expansion of the season when 

curtailment was in effect (Table 5.2).  Shortening the curtailment season to July 15-

October 15, when bat mortality typically peaks at North American wind facilities, saved 

0.3% of annual production, relative to standard curtailment.  Raising or lowering the 

curtailment cut-in speed had the strongest effect on annual energy production losses.  

Cut-in speeds of 6.5 m/s and 7.0 m/s resulted in 0.98% and 1.32% losses of energy 

production, respectively, compared to a 0.64% loss under standard curtailment.  
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Reducing the cut-in speed to 5.5 m/s resulted in a 0.46% loss of annual production, while 

a cut-in of 5.0 m/s resulted in only a 0.28% loss.  

We found that standard curtailment at the Block Island Wind Farm would lead to 

a 0.71% loss of energy production each year.  We calculated that without curtailment, the 

5-turbine facility would generate ~$30.5 million in revenue in the first year (at 

$244/MWh) (Rhode Island Public Utilities Commission, 2017).  With a 0.71% loss in 

annual energy production, standard curtailment would cost the facility $216,157 in 2017.  

Because conventional generation would be needed to cover the curtailed wind generation, 

standard curtailment would also result in additional greenhouse gas emissions of ~300 

metric tons of CO2 annually, assuming an average displaced electricity grid carbon 

intensity of 339 kg CO2/MWh (ISO New England, 2017a). 

Energy production losses due to standard curtailment at terrestrial sites were more 

variable than at offshore locations (Table 5.S1).  In general, lower percentage energy 

production losses were associated with higher quality wind resources.   Coastal sites in 

Nantucket and Truro had relatively high capacity factors without curtailment (0.492 and 

0.447 respectively), and each experienced only 0.62% loss of energy production annually 

under standard.  By contrast, an inland site in Savoy, with a capacity factor without 

curtailment of 0.107, showed losses of 4.54% annually under curtailment.   

Calculations using the Rayleigh distribution supported the finding that at good 

wind resource sites, <6 m/s wind speeds provide a relatively minor contribution to annual 

energy production for both onshore and offshore model turbines (Table 5.S2).  For Class 

4 and above resource areas, <6 m/s wind speeds should contribute less than 5% to annual 

energy production.   
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Discussion 

Our results indicate that curtailment for bats would have relatively minor 

economic consequences for offshore wind facilities, resulting in less than 1% loss of 

energy production and revenue at most sites along the Atlantic coast.  The low wind 

speed conditions (<6 m/s) associated with curtailment contribute relatively little to annual 

energy production at offshore sites, where the wind resource quality is high.  At terrestrial 

sites with a low quality wind resource, low wind speeds contribute a greater proportion of 

annual energy production, and curtailment can reduce energy production by a larger 

percentage (up to 4.54% at the inland sites we examined).  

We found that alterations in wind speed and seasonal curtailment requirements 

have the potential to more significantly moderate effects of curtailment on energy yield 

than do temperature or time of night specifications.  For example, raising or lowering the 

temperature curtailment requirement by 2°C only altered energy production by 0.04%, 

but lowering the wind speed requirement by 1 m/s increased energy production by 

0.36%.  More detailed studies of North American bat activity patterns relative to fine-

scale gradations in wind speed are warranted, particularly in the offshore environment, 

where bat behavior may differ from onshore.  Bats are generally known to be more active 

at low wind speeds, with most fatalities at wind facilities occurring on nights with wind 

speeds <6 m/s (Arnett et al., 2008).  However, if future research reveals that bats are most 

active at speeds below 5.0 or 5.5 m/s, for example, more efficient curtailment regimes 

could further minimize loss of energy production while protecting bats from wind farm 

mortality.  If field mortality studies cannot be conducted in such a way as to relate 
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fatalities to fine gradations in wind speed, acoustic data collected at turbine nacelles can 

help define mortality risk under varying wind speeds (Korner-Nievergelt et al, 2013; 

Behr et al., 2017).  Acoustic studies related to bat collision risk should include collection 

of local weather data at a fine temporal scale to precisely define relevant conditions.  

Our model was based on four factors.  Models incorporating additional variables 

or interactions among variables can also lead to more efficient curtailment practices 

(Weller et al, 2012), but increases in energy production associated with more -

sophisticated curtailment models are not always large enough to warrant the expense 

involved in collecting and incorporating additional data (Behr et al., 2017).   

Efforts are currently underway to design a bat deterrent to be used on wind 

turbines (Arnett et al., 2013a; U.S. Department of Energy, 2017).  If an effective and 

reliable device can be developed, it may prove a less costly alternative to curtailment.  In 

the absence of such a device, strong consideration should be given to the use of 

curtailment as a preventative measure to minimize effects of wind development on bats in 

the offshore environment.  Skeptics may question whether preventative curtailment is 

solving a problem that does not exist, given that bat mortality has not been documented at 

offshore wind energy sites in North America.  The presence of carcasses beneath wind 

turbines was the first evidence of bat mortality at land-based wind facilities, and carcass 

counts continue to be the primary measure by which investigators evaluate bat mortality 

at these sites (Korner-Nievergelt et al, 2011), but bat carcasses would quickly be lost in 

the offshore environment.  Meanwhile, a wealth of evidence suggests both long-distance 

migratory species and regional migrants are active over the ocean (Johnson et al., 2011b; 

Hatch et al., 2013; Peterson et al., 2014; Sjollema et al., 2014; Smith & McWilliams, 
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2016).   Migratory bat population sizes are notoriously difficult to estimate (O’Shea & 

Bogan, 2003), and the sampling efforts required to identify even large declines in species 

abundance are likely unattainable (Schorr et al., 2014).  Current models suggest existing 

wind capacity may already threaten the population viability of the hoary bat and other 

long-distance migrants (Frick et al., 2017).  If preventative action is not taken, 

recognition of negative effects at the population scale could come too late. 

 

Acknowledgements 

Thank you to Blake Massey for review of the curtailment code generated in R.  

Many thanks to Elizabeth Dumont, James Manwell, Jonathan Reichard, and Paul Sievert, 

who reviewed this manuscript. This work was partially supported by the NSF-sponsored 

IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant 

Number 1068864). 

 

Supporting Information 

Data selection and method details 

We obtained 10-minute wind speed data and hourly air temperature data from 

seven NOAA offshore weather data buoys through the National Data Buoy Center 

(2017).  We selected three buoys from the Northeast region, two from the mid-Atlantic, 

and two from the Southeast, located within, or as close as possible to, designated BOEM 

Wind Energy Areas.  For each site, we identified the three most recent years over the last 

decade (2007-2016) with >95% complete temperature and wind speed data, for analysis.  

In addition, we obtained 10-minute wind speed data from six onshore meteorological 
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towers in coastal and inland Massachusetts collected between 2005-2009 (University of 

Massachusetts Wind Energy Center, 2017).  For three onshore sites, hourly temperature 

data was also available at the tower; for the remaining three onshore sites (Nantucket, Mt. 

Tom, Savoy), we used temperature data from National Weather Service weather stations 

located at Nantucket Memorial Airport, Pittsfield Municipal Airport, and Westover Air 

Force Base, respectively (University of Utah Department of Atmospheric Sciences 

MesoWest, 2017).  The weather stations were located 9.6, 11.5, and 32.7 km from their 

respective towers.  Because only limited 10-minute wind data were available from 

onshore sites, we used sites with >90% complete temperature and wind data, and 

included data collected over 12 consecutive months, rather than in a single calendar year.  

We generated sunrise and sunset times for each site within R (R Core Team, Package: 

maptools) using the appropriate latitude and longitude. 

We used the NREL 5 MW offshore wind turbine (Jonkman et al., 2009) as a 

model system for the purposes of calculating energy production at offshore sites.  The 

model turbine has a cut-in speed of 3 m/s, a cut-out speed of 25 m/s, and a hub height of 

90 m.  We used the wind profile power law to estimate an adjusted wind speed at hub 

height relative to the anemometer height on NOAA data buoys (4-5 m), incorporating an 

alpha value of 0.11 (Hsu et al., 1994).  We did not attempt to adjust air temperature by 

height, since temperature profiles are inconsistent across time and space.  For onshore 

analysis, we used a normalized power curve derived by NREL for an IEC Class I turbine, 

and scaled the power output values for a 2 MW capacity (King et al., 2014).  The model 

turbine has a cut-in speed of 3 m/s, a cut-out speed of 25 m/s, and a hub height of 100 m.  

We used the wind profile power law to estimate an adjusted wind speed at hub height 
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relative to the anemometer height on meteorological towers (20-50 m), incorporating a 

standard alpha value of 0.142857.  We did not adjust air temperature by height.   

We used the adjusted wind speed and power curve for the model turbine to 

calculate potential energy production at each site.  We then used adjusted wind speed, air 

temperature, sunrise and sunset times, and date to determine when the turbine would be 

curtailed under a given curtailment regime.  Because wind data and temperature data 

were available on different time intervals, we assumed that the decision to curtail or not 

to curtail was determined at a ten-minute interval for wind, while air temperature held 

steady from the time when it was measured through the hour until the next measurement.   

Our standard curtailment regime ran for six months between April 15 and October 

15, was in effect from 30 minutes before sunset to 30 minutes after sunrise, and required 

curtailment at wind speeds <6 m/s and temperatures >10°C.  When all these conditions 

were present, the power under curtailment was zero.  At all other times, energy 

production was not curtailed and was equal to the potential power.  We did not attempt to 

adjust for any loss of energy production associated with additional start-up time required 

to bring blades from a feathered, low-rotational speed condition up to full rotational 

speed.  We analyzed energy production under various altered curtailment regimes at the 

Montauk site using 2016 data to examine the sensitivity of energy output to alternative 

curtailment regimes.  Capacity factors were calculated based solely on meteorological 

data; we did not attempt to incorporate any assumptions about maintenance or 

curtailment for other purposes. 

We estimated revenue loss under curtailment for offshore sites.  Potential revenue 

loss under a fixed price per MWh scaled with energy production loss; potential revenue 
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loss under a competitive market scenario was calculated based on LMP data. We 

obtained archived LMP data from the appropriate regional transmission organization for 

the area likely to be served by a wind facility developed at the site for which we obtained 

weather data.  For Nantucket Sound, MA, we used LMP data obtained from ISO New 

England for the SEMASS region (2017b).  For Montauk and Long Island, NY, we used 

LMP data obtained from New York ISO for the Long Island region (2017a).  For Long 

Beach, NJ, and Delaware Bay, DE, we used Pennsylvania-New Jersey-Maryland 

Interconnection data for the Indian River substation (2017), an established 

interconnection point for offshore wind.  We were not able to obtain LMP data for the 

Carolinas.  The time-interval of price data available varied by provider, with data 

available on a 5-minute basis at some sites, while only available on an hourly basis at 

others.  Because 5-minute data occasionally were recorded at intermittent time intervals 

(e.g. some 2-3 minute data), we extracted 10-minute time-interval data and assumed the 

price held consistent over each ten-minute interval.  For hourly data, we assumed that the 

price remained consistent over the entire hour for which data was obtained.  In all cases, 

we had >95% contemporaneous LMP data for the year being analyzed.   

We also estimated losses from curtailment for the Block Island wind facility.  We 

used 10-minute wind and hourly temperature data from the Montauk weather buoy in 

2016; this was the closest site to the Block Island wind facility with publicly available 

offshore weather data.  We approximated energy production values using a graphical 

power curve presented by Alstom (del Arco, 2015) to estimate the percent energy 

production loss under curtailment for an Alstom Haliade 6 MW turbine.  For the purposes 

of estimating absolute energy and revenues losses, we based our calculations on the net 
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facility energy production estimate provided in a wind resource assessment obtained by 

Deepwater Wind for the Block Island site (AWS Truepower, 2012).  This estimate 

incorporated wake effects, availability, turbine performance, and other factors that could 

affect energy production, which were not considered elsewhere in our curtailment 

analysis.  We used the 2017 price of $243.95/MWh approved by the Rhode Island Public 

Utilities Commission in the Power Purchase Agreement between Deepwater Wind and 

National Grid for purchase of energy and RECs from the Block Island wind facility 

(2017).  This price is scheduled to increase by 3.5% on an annual basis. 

We also calculated the cost of curtailment to greenhouse gas reduction, using a 

rate of 339 kg CO2/MWh (ISO New England, 2017a). 

To explore relationships between wind resource quality and effects of curtailment, 

we calculated the relative contribution of low wind speeds to total energy production for 

a series of theoretical sites over a range of mean wind speeds.  We used the Rayleigh 

distribution to model theoretical wind probability distributions via the equation: 
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Where F(U)=the cumulative distribution function, U = wind speed, Uav= average 

wind speed 

Calculations were performed for a series of sites with annual mean wind speed 

values of 5.6, 6.4, 7.0, 7.5, 8.0, 8.5 and 8.8 m/s at 50 m, representing the limits of wind 

resource classes.  Class 1 (0-5.6 m/s) and Class 2 (5.6-6.4 m/s) sites are not considered 
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viable for commercial production, while Class 4 (7.0-7.5 m/s) sites and higher classes are 

considered commercially viable; Class 3 (6.4-7.0 m/s) sites may be developed under 

some circumstances.  We used cumulative probabilities from the Rayleigh distribution to 

estimate the proportion of the year the wind speed fell into each 1 m/s bin (e.g. 0-1 m/s, 

1-2 m/s, etc.) at each theoretical site.  For each site, we then used power curves for the 2 

MW and 5 MW NREL reference turbines to calculate annual energy generation for each 

1 m/s bin.  We summed the energy production over all bins and over the 0-6 m/s bins 

(these bins represent the wind speeds subject to the standard curtailment regime).    We 

then divided the 0-6 m/s value by total energy production, to evaluate the contribution of 

energy generated at wind speeds that could be curtailed to total annual energy production 

at each theoretical site.  This calculation resulted in a maximum energy loss due to 

curtailment, as additional curtailment conditions (temperature, hour of day, and season) 

further reduce the need for curtailment.  

 

 



 

 

Table 2.1:  Acoustic study sites surveyed on Nantucket, 2015-2016.  Numbers before station refer to map locations in Figure 1.  *Due to the large 
volume of calls we did not separate noise files from probable bat call files at this site before performing auto-classification analysis. 
 

Station Site description Dates deployed 

Nights analyzed  
(% of nights 
deployed) 

Nights with bat 
activity  
(% of nights 
analyzed) Total bat calls 

(1) Gibbs Farm scrub oak edge of large kettle pond, near 
active cranberry bog and hardwood forest 

8/25/2015 - 11/13/2015 55 (69%) 13 (24%) 93 

(2) Medouie 1 shrub treeline on edge of salt marsh 4/29/2015 - 11/13/2015 114 (58%) 40 (35%) 161 
(3) Medouie 2 shrub edge of brackish marsh, surrounded by 

mature forested and shrub swamp  
4/30/2015 - 11/13/2015 166 (84%) 44 (27%) 419 

(4) Norwood 1 small kettle pond surrounded by scrub oak 
shrubland 

4/30/2015 - 11/13/2015 184 (93%) 102 (55%) 551 

(5) Norwood 2 forest edge in mosaic of fields, scrub oak, 
and hardwood forest 

4/30/2015 - 11/13/2015 165 (84%) 119 (72%) 691 

(6) Squam 1 hardwood forest edge by grazed field 4/29/2015 - 11/13/2015 138 (70%) 49 (36%) 755 
(7) Squam 2 clearing in hardwood forest 4/29/2015 - 8/21/2015 104 (100%) 24 (23%) 61 
(8) Stump 1 scrub oak edge of large pond, surrounded by 

hardwood forest 
4/30/2015 - 11/13/2015 182 (92%) 136 (75%) 2821 

(9) Stump 2 field adjacent to scrub oak wetland, 
surrounded by mosaic of hardwood forest 
and fields 

4/30/2015 - 11/13/2015 136 (69%) 67 (49%) 286 

(6) Squam 1 hardwood forest edge by grazed field 5/2/2016 - 12/7/2016 201 (91%) 107 (53%) 3876 
(8) Stump 1 scrub oak edge of large pond, surrounded by 

hardwood forest 
5/2/2016 -7/24/2016  84 (100%) 39 (46%) 535 

(10) Ram Pasture edge of shrub forest near pitch pine stand, 
wetland complex 

5/2/2016-12/12/2016 186 (83%) 152 (82%) 58,000* 

(11) West Hummock low shrub edge large pond 5/2/2016-8/14/2016 91 (87%) 52 (57%) 627 
(12) Lost Farm pitch pine forest edge by field, large pond 

nearby 
5/2/2016-12/12/2016 115 (51%) 42 (37%) 2024 

(13) Sconset east side of small wetland, in hardwood 
stand 

8/19/2016-10/13/2016 42 (75%) 25 (60%) 339 

(14) Pout Pond grassy pond shore edge 7/25/2016-12/7/2016 120 (88%) 52 (43%) 266 
(15) Beattie forested residential area 11/4/2016-12/10/2016 37 (100%) 7 (19%) 13 

  



 

 

Table 2.2:  Bat species estimated to be present at 14 stations on Nantucket in 2015 and 2016 based on EchoClass software.  P value indicates the 
likelihood the species was misidentified. Squam 2 (2015) and Beatties (2016) are not shown due to lack of calls identified to species at these sites.  
N=# of nights with calls, C=# of calls.  LABO=Lasiurus borealis, LACI=L. cinereus, LANO=Lasionycteris noctivagans, EPFU=Eptesicus fuscus, 
MYLE=Myotis leibii, MYLU=M. lucifugus, MYSE=M. septentrionalis, MYSO=M. sodalis, PESU=Perimyotis subflavus. 
 Species presence        
Station LABO LACI LANO EPFU MYLE MYLU MYSE MYSO PESU 
Gibbs Farm 
2015 

P > 0.1 
 (3N, 3C) 

- - P > 0.1  
(1N, 1C) 

- - - P > 0.1  
(1N, 1C) 

- 

Medouie 1 
2015 

P = 0  
(3N, 5C) 

P > 0.1  
(1N, 1C) 

- P > 0.1  
(1N, 1C) 

- - - - - 

Medouie 2 
2015 

P=0 
(12N, 28C) 

P  = 0.023 
(6N, 10C) 

P = 0 
(3N, 30C) 

P = 0  
(2N, 16C) 

- - - - P > 0.1  
(1N, 1C) 

Norwood 1 
2015 

P = 0  
(12N, 19C) 

- - P > 0.1  
(1N, 1C) 

- - - - P > 0.1  
(1N, 1C) 

Norwood 2 
2015 

P > 0.1 
 (4N 4C) 

- - - - - - - - 

Squam 1 
2015 

P = 0  
(6N, 10C) 

- - - - - - - - 

Stump 1 
2015 

P = 0  
(29N, 111C) 

P = 0.0054 
(8N, 15C) 

P > 0.1 
 (2N, 2C) 

P > 0.1 
 (3N, 3C) 

- - - P = 0 
(1N, 2C) 

- 

Stump 2 
2015 

P = 0 
(10N, 12C) 

- - - - - - - - 

Squam 1 
2016 

P = 0  
(16N, 54C) 

- - - - - - - - 

Stump 1 
2016 

P = 0  
(3N, 14C) 

- - - - - - - - 

Ram Pasture 
2016 

P = 0 
(120N, 3932C) 

P = 0 
(24N, 94C) 

P > 0.1 
 (2N, 2C) 

P = 0 
 (3N, 4C) 

P > 0.1 
 (33N, 86C) 

P = 0 
(14N, 24C) 

P = 0 
(100N, 1383C) 

P = 0 
(51N, 138C) 

P = 0 
(5N, 7C) 

West 
Hummock 
2016 

P = 0 
(12N, 27C) 

P = 1 
(3N, 3C) 

P > 0.1 
 (1N, 1C) 

- - - P > 0.1 
 (2N, 2C) 

P > 0.1 
 (1N, 1C) 

- 

Lost Farm 
2016 

P = 0 
(27N, 186C) 

P > 0.1 
(1N, 1C) 

P = 0.086 
 (3N, 4C) 

P > 0.1 
 (2N, 2C) 

- P > 0.1 
(1N, 1C) 

P = 0 
(17N, 60C) 

P = 0 
(7N, 15C) 

- 

Sconset 
2016 

P = 0 
(1N, 4C) 

P > 0.1 
(1N, 1C) 

- - - - - - - 

Pout Pond 
2016 

P = 0  
(24N, 64C) 

- - - - P > 0.1 
(1N, 1C) 

P > 0.1 
(5N, 5C) 

P > 0.1 
(3N, 3C) 

P = 0 
 (1N, 1C) 



 

 

Table 2.3: Bat species estimated to be present at 15 stations on Nantucket in 2015 and 2016 based on KaleidoscopePro software.  P-value 
indicates the likelihood the species was misidentified at a site. Squam 2 (2015) not shown; 1 LACI call identified at this site.  N=# of nights with 
calls, C=# of calls.  LABO=Lasiurus borealis, LACI=L. cinereus, LANO=Lasionycteris noctivagans, EPFU=Eptesicus fuscus, MYLE=Myotis 
leibii, MYLU=M. lucifugus, MYSE=M. septentrionalis, MYSO=M. sodalis, PESU=Perimyotis subflavus. 

 Species presence        
Station LABO LACI LANO EPFU MYLE MYLU MYSE MYSO PESU 
Gibbs Farm 
2015 

P < 0.0001  
(3N, 6C) 

- P < 0.0001 
(4N, 8C) 

P = 0.92  
(2N, 2C) 

- - - P = 0.068  
(1N, 1C) 

P = 0.39  
(1N, 1C) 

Medouie 1 
2015 

P < 0.0001 
(8N, 9C) 

P = 0.27  
(2N, 2C) 

P < 0.0001 
(6N, 56C) 

P = 1 
(4N, 4C) 

- - - - - 

Medouie 2 
2015 

P < 0.0001 
(17N, 46C) 

P < 0.0001 
(9N, 17C) 

P < 0.0001 
(9N, 130C) 

P = 1 
(5N, 20C) 

- - P = 0.15  
(1N, 1C) 

- P = 0.15  
(3N, 4C) 

Norwood 1 
2015 

P = 1 
(18N, 41C) 

P < 0.0001 
(14N, 192C) 

P = 1 
 (11N, 14C) 

P = 1 
(3N, 4C) 

- - P < 0.0001 
(2N, 5C) 

P = 0.59 
 (1N, 1C) 

- 

Norwood 2 
2015 

P < 0.0001 
(10N, 12C) 

P = 0.038  
(2N, 2C) 

P < 0.0001 
 (5N, 16C) 

P = 1 
 (1N, 1C) 

- - - - - 

Squam 1 
2015 

P < 0.0001 
(10N, 18C) 

P = 0.74  
(1N, 1C) 

P < 0.0001    
(3N, 39C) 

P = 0.74  
(1N, 9C) 

- P = 1 
(1N, 1C) 

- - - 

Stump 1 
2015 

P < 0.0001 
(52N, 266C) 

P < 0.0001 
(12N, 29C) 

P < 0.0001 
(30N, 452C) 

P = 1 
(13N, 20C) 

P = 0.0057 
 (2N, 3C) 

P = 1  
(5N, 11C) 

- P < 0.0001 
 (2N, 6C) 

P = 1 
(1N, 2C) 

Stump 2 
2015 

P < 0.0001 
(6N, 7C) 

- P = 1 
(3N, 3C) 

- - - P < 0.0001 
(5N, 6C) 

- - 

Squam 1 
2016 

P = 0 
(57N, 102C) 

P = 0 
(13N, 13C) 

P=0.0001  
(19N, 19C) 

P = 0.24 
(11N, 11C) 

- P = 0 
(10N, 25C) 

P = 0.028 
(3N, 4C) 

- P = 1 

Stump 1 
2016 

P = 0.0082 
(2N, 2C) 

P < 0.0001 
(5N, 5C) 

P = 1 
(1N, 1C) 

P < 0.0001 
(2N, 8C) 

- - P = 0 
(4N, 18C) 

- - 

Ram Pasture 
2016 

P = 0 
(98N, 2125C) 

P = 0 
(23N, 132C) 

P = 1 
(31N, 156C) 

P = 0 
(109N, 1363C) 

P = 0 
(65N, 223C) 

P = 0 
(93N, 779C) 

P = 0 
(122N, 6764C) 

P = 1 
(75N, 249C) 

P = 1 
(29N, 65C) 

West 
Hummock 
2016 

P = 0 
(6N, 14C) 

P = 0 
(6N, 15C) 

P = 1 
(2N, 2C) 

P = 0.0091 
(4N, 6C) 

P = 0.030 
(1N, 1C) 

P = 1 
(1N, 1C) 

P = 0 
(15N, 24C) 

- P = 0. 20 
(2N, 2C) 

Lost Farm 
2016 

P = 0 
(12N, 34C) 

P = 0.17 
(1N, 2C) 

P = 1 
(4N, 5C) 

P = 0 
(15N, 26C) 

P < 0.0001 
(3N, 4C) 

P < 0.0001 
(17N, 37C) 

P = 0 
(27N, 341C) 

P = 1 
(9N, 10C) 

P = 0.00030  
(3N, 4C) 

Sconset 
2016 

P < 0.00001 
(4N, 6C) 

P < 0.0001 
(2N, 4C) 

- - - - - - P = 0.38 
(1N, 1C) 

Pout Pond 
2016 

P = 0 
(29N, 110C) 

- P = 0.012  
(2N, 3C) 

P = 1 
(1N, 1C) 

P = 0.28  
(1N, 1C) 

P = 0.073 
(14N, 19C) 

P = 0 
(22N, 30C) 

P = 0.18 
(6N, 6C) 

P < 0.0001 
(7N, 11C) 

Beatties 
2016 

P = 0.041 
(1N, 1C) 

- - - - - - - - 



 

 

 
Table 2.4: Morphological data and tracking information for Northern Long-eared Bats captured on Nantucket, Massachusetts.   

Capture 
date 

Capture 
location Bat ID Age Sex 

Reproductive 
status 

Forearm length  
(mm) 

Body mass 
(g) 

Days 
tracked  

Roosts 
identified 

7/20/2016 Ram Pasture F259 adult female lactating 36.9 7.6 2 2 
7/20/2016 Ram Pasture n/a juvenile female non-reproductive 36.2 5.7 - - 
7/20/2016 Ram Pasture n/a juvenile female non-reproductive 37.5 6.4 - - 
7/20/2016 Ram Pasture F264 adult female lactating 36.5 7.1 2 1 
7/20/2016 Ram Pasture n/a juvenile female non-reproductive 36.7 6.4 - - 
7/20/2016 Ram Pasture n/a juvenile female non-reproductive 37.0 6.4 - - 
7/20/2016 Ram Pasture F247 adult female lactating 37.0 6.7 <1 0 
7/20/2016 Ram Pasture n/a juvenile male non-reproductive 35.8 5.8 - - 
7/20/2016 Ram Pasture n/a adult female lactating 36.4 7.0 - - 

10/30/2016 Ram Pasture M269 adult male non-reproductive 36.1 9.0 12  1 
11/1/2016 crawl space F272 adult female non-reproductive 35.3 7.2  7 1 
11/1/2016 crawl space F260 adult female post-lactating 36.8 8.7  24 1 
11/1/2016 crawl space M257 adult male non-reproductive 35.2 8.4  20 1 

 
  



 

 

Table 3.1:  Automated telemetry stations deployed on Naushon Island and Martha’s Vineyard in 2016 as part of this study.  
 
Site name Latitude Longitude Installation       Deconstruction Receiver type Installation type 
Goethals 41.4463 -70.6691 6/16/2016 11/27/2016 Sensorgnome 9 m pop-up mast, 3 

antennae 
Cedar Tree Neck 41.4274 -70.7021 6/14/2016 11/28/2016 Lotek 6 m Rohn tower, 6 

antennae 
Hoft Farm 41.4466 -70.6482 6/13/2016 11/26/2016 Lotek 12 m Rohn tower, 6 

antennae 
Naushon Island 41.4694 -70.7573 6/19/2016 12/6/2016 Lotek 12 m lighthouse 

tower, 6 antennae 
 
  



 

 

Table 3.2: Bats tagged and tracked in 2015 on Martha’s Vineyard.  All tagged bats were adult female northern long-eared bats.  No bats were 
recorded by off-island telemetry stations. 
 

  Capture details     

ID Datetime Site type Latitude Longitude 
Days tracked 
post-capture 

Nearest automated 
telemetry station (km) 

248 6/2/2015 21:10 Trails, wetland area 41.45024 -70.6438 7 
Waquoit,  
Cape Cod (16) 

252 6/2/2015 21:10 Trails, wetland area 41.45024 -70.6438 17 
Waquoit,  
Cape Cod (16) 

255 6/2/2015 22:15 Trails, wetland area 41.45024 -70.6438 10 
Waquoit,  
Cape Cod (16) 

266 6/18/2015 20:45 House roost 41.45319 -70.6410 17 
Waquoit,  
Cape Cod (16) 

253 6/24/2015 20:43 House roost 41.45319 -70.6410 8 
Waquoit,  
Cape Cod (16) 

256 6/24/2015 20:41 House roost 41.45319 -70.6410 9 
Waquoit,  
Cape Cod (16) 

248B 6/24/2015 20:39 House roost 41.45319 -70.6410 10 
Waquoit,  
Cape Cod (16) 

255B 6/24/2015 20:43 House roost 41.45319 -70.6410 4 
Waquoit,  
Cape Cod (16) 

256B 7/20/2015 23:00 Forest trails 41.36421 -70.5768 3 
Waquoit,  
Cape Cod (21) 

282 9/3/2015 20:25 Forested trails by brook 41.35391 -70.7258 15 Noman's Island (13) 

285 9/19/2015 13:32 Bird nest box 41.41166 -70.5719 17 
Waquoit,  
Cape Cod (16) 

 
  



 

 

Table 3.3  Bats tagged in 2016 on Martha’s Vineyard.  All tagged bats were adult females, with the exception of LABO 470 and 473, which were 
adult males.  MYSE=Myotis septentrionalis, MYLU=Myotis lucifugus, LABO=Lasiurus borealis, EPFU=Eptesicus fuscus.  House roost 
coordinates are approximate; distance to nearest telemetry station is accurate. 
 

 Capture details   

ID Datetime Site type Latitude Longitude Days tracked post-
capture 

Nearest automated 
telemetry station (km) 

MYSE 277 7/6/2016 23:38 House roost 41.45063 -70.6424 12 Hoft (0.7) 
MYSE 280 7/6/2016 20:38 House roost 41.45063 -70.6424 5 Hoft (0.7) 
MYSE 279 7/6/2016 21:00 House roost 41.45063 -70.6424 9 Hoft (0.7) 
MYSE 284 7/6/2016 21:05 House roost 41.45063 -70.6424 5 Hoft (0.7) 
MYSE 284B 7/14/2016 20:30 House roost 41.42385 -70.57289 7 Hoft (6.7) 
MYSE 280B 7/14/2016 20:32 House roost 41.42385 -70.57289 4 Hoft (6.7) 
MYLU 276 7/19/2016 15:15 Barn roost 41.4138 -70.7045 16 Cedar Tree Neck (1.5) 
MYLU 286 8/15/2016 20:01 Barn roost 41.4138 -70.7045 16 Cedar Tree Neck (1.5) 
MYLU 278 8/15/2016 20:02 Barn roost 41.4138 -70.7045 22 Cedar Tree Neck (1.5) 
MYSE 283 8/21/2016 22:45 Forested trails 41.3672 -70.6241 9 Hoft (9.0) 
MYSE 281 10/13/2016 18:35 Forested trails 41.4133 -70.7065 39 Cedar Tree Neck (1.6) 
LABO 473 10/17/2016 18:40 Woods road, 

parking area, 
trails 

41.4322 -70.6972 0 Cedar Tree Neck (0.7) 

EPFU 271 10/17/2016 19:05 Woods road, 
parking area, 
trails 

41.4322 -70.6972 0 Cedar Tree Neck (0.7) 

LABO 475 10/18/2016 18:10 Woods road, 
parking area, 
trails 

41.4322 -70.6972 0 Cedar Tree Neck (0.7) 

LABO 470 10/21/2016 18:10 Woods road 41.4477 -70.6516 0 Hoft (0.3) 
EPFU 275 10/21/2016 18:30 Woods road 41.4477 -70.6516 18 Hoft (0.3) 
EPFU 258 10/21/2016 18:30 Woods road 41.4477 -70.6516 18 Hoft (0.3) 

 
  



 

 

Table 3.4:  Roost sites and tower detections for northern long-eared bats tagged near the Hoft station in July 2016.  These bats were never detected 
by the Goethals station. Coordinates listed for RT_09 are approximate. 
 

ID Date Roost ID Latitude Longitude 

Distance 
to  

Hoft 
station  
(km) 

Distance to 
Goethals 
station 
(km) 

Detected 
 by  

Hoft station 
(hour:min) 

MYSE 
277 7/6/2016 RT09 

 
41.45063 

 
-70.6424 0.69 2.24 - 

  7/7/2016 RT09 
41.45063 -70.6424 

0.69 2.24 
21:04-21:14; 0:01-0:35; 4:25-

4:26 

  7/8/2016 RT09 
41.45063 -70.6424 

0.69 2.24 
8:03; 8:39-8:40; 11:45; 23:41-

2:13 

  7/9/2016 RT09 
41.45063 -70.6424 

0.69 2.24 21:31-21:32; 23:43-3:49 

  7/10/2016 RT09 
41.45063 -70.6424 

0.69 2.24 1:00-2:47 

  7/11/2016 RT09 
41.45063 -70.6424 

0.69 2.24 0:20-4:34 

  7/12/2016 RT26 41.45766 -70.6395 1.42 2.77 0:01-0:16, 2:23-2:26 

  7/13/2016a - - - - - - 

  7/14/2016 RT28 41.45578 -70.6418 1.15 2.51 - 

  7/15/2016 RT30 41.45497 -70.6408 1.11 2.55 - 

  7/16/2016 RT30 41.45497 -70.6408 1.11 2.55 - 

  7/17/2016 RT30 41.45497 -70.6408 1.11 2.55 - 

  7/18/2016b - 41.45497 -70.6408 1.11 2.55 - 
 

MYSE 
279 7/6/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

  7/7/2016 RT09 41.45063 -70.6424 0.69 2.24 19:53; 0:22 

  7/8/2016 RT09 41.45063 -70.6424 0.69 2.24 
10:02; 10:15; 22:10; 23:05-

23:14; 2:19; 4:40; 4:44 



 

 

  7/9/2016 RT09 41.45063 -70.6424 0.69 2.24 21:44; 0:54; 2:02; 3:04-3:26 

  7/10/2016 RT09 41.45063 -70.6424 0.69 2.24 
15:27-18:02; 19:21-22:27; 1:30-

4:02 

  7/11/2016 RT09 41.45063 -70.6424 0.69 2.24 11:10-23:18; 0:26-4:47 

  7/12/2016 RT09 41.45063 -70.6424 0.69 2.24 20:46-21:10; 0:11-2:20 

  7/13/2016 RT27 41.45236 -70.6369 1.14 2.77 22:48-22:54; 2:38 

  7/14/2016 RT29 41.45732 -70.6478 1.19 2.16 - 

  7/15/2016b - 41.45868 -70.6478 1.34 2.25 - 
 

MYSE 
280 7/6/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

  7/7/2016 RT09 41.45063 -70.6424 0.69 2.24 20:57-4:21 

  7/8/2016 RT09 41.45063 -70.6424 0.69 2.24 20:46-4:46 

  7/9/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

  7/10/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

  7/11/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

 
MYSE 

284 7/6/2016 RT09 41.45063 -70.6424 0.69 2.24 - 

  7/7/2016 RT25 41.45414 -70.6469 0.84 2.05 22:50-22:53; 3:08-3:26 

  7/8/2016 RT09 41.45063 -70.6424 0.69 2.24 21:50-23:44; 2:11 

  7/9/2016 RT09 41.45063 -70.6424 0.69 2.24 
11:36; 20:46; 23:12-23:57; 3:00-

6:29 

  7/10/2016 RT09 41.45063 -70.6424 0.69 2.24 20:40-22:42 

  7/11/2016 RT09 41.45063 -70.6424 0.69 2.24 8:13-12:59 
a Roost not found  b Dropped tag 



 

 

Table 3.5:  Automated detections of tagged bats while in roost (i.e. during daylight hours).  Bats were only detected intermittently while in roosts, 
and only by the telemetry station antenna with the bearing closest to that of the actual bearing from the telemetry station to the roost site.  Northern 
long-eared bats were only detected at the RT09 house roost, 0.69 km from the Hoft station.  EPFU 258 was 0.78 km from the Hoft station. 
 

ID Roost Latitude Longitude Station 
Actual bearing:  
Station to roost 

Datetime 
detected Antenna 

Antenna 
bearing 

         
MYSE 

277 RT09 41.45063 -70.6424 Hoft 37.5 
7/8/2016 

8:03 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/8/2016 8:39-

8:40 2 55 
RT09 41.45063 -70.6424 Hoft 37.5 7/8/2016 11:45 2 55 

         
MYSE 

279 RT09 41.45063 -70.6424 Hoft 37.5 
7/8/2016  

10:02-10:03 2 55 
RT09 41.45063 -70.6424 Hoft 37.5 7/8/2016 10:15 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/10/2016 

15:27 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/10/2016  

18:02-18:05 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/10/2016 

19:21-19:36 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/11/2016 

11:10-15:25 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/11/2016 

19:49 2 55 
         

MYSE 
284 

RTO9 41.45063 -70.6424 Hoft 37.5 7/9/2016 11:36 2 55 

RT09 41.45063 -70.6424 Hoft 37.5 
7/11/2016 
8:13-12:59 2 55 

         
EPFU 
258 EP2 41.4527 -70.6529 Hoft 330.0 

10/22/2016 
7:05-13:12 1 355 

 
  



 

 

Table 3.6: Roost sites and local tower detections for little brown bats (MYLU) and big brown bats (EPFU) tagged on Martha’s Vineyard in 2016. 
 

ID 
Date 

Tagged Roost type 
Detected at 

roost 
Absent from 

roost Hoft Goethals Cedar Tree Neck Naushon 
MYLU 

276 7/19 
Barn, maternity 

colony 7/21, 7/26 
8/4 - dropped tag 

found - - - - 

MYLU 
286 8/15 

Barn, maternity 
colony 

8/18, 8/21, 
8/24 8/29, 8/31, 9/6 

8/16 20:21-21:06;  
8/17 20:38-21:29;  

8/18 0:54-1:09;  
8/24 22:42-22;23;  
8:25 20:10-20:12 - 

8/17 22:45-23:41;  
8/18 1:20-3:15;  

8/19 23:36-23:49;  
8/23 0:50-5:06;  
8/24 1:26-4:39 - 

MYLU 
278 8/15 

Barn, maternity 
colony 

8/18, 8/21, 
8/24, 8/29, 

8/31 9/6 8/23 20:29-23:11 - 

8/17 22:24-23:44;  
8/18 2:24;  

8/19 4:52, 23:02;  
8/31 20:18;  

9/1 22:40-22:41 

8/19 23:16-23:59;  
8/20 0:00-2:48;  
8/21 3:50-3:52; 
 8/22 4:03-4:06; 

 8/23 20:25-20:26;  
8/31 20:16-20:17 

EPFU 
258 10/21 tree 

10/22-10/30, 
11/8 - 

10/21 22:30-10/22 
13:12;  

11/3 18:08-20:31;  
11/15 21:24-22:01 

11/16 2:09-
2:12 - - 

EPFU 
275 10/21 house  

10/22-10/30, 
11/8 - - - - - 

EPFU 
271 10/17 

on sanctuary, 
not tracked to 

precise location 10/25, 10/29 - 11/3 19:56-19:58 - - - 
 
 
 

  



 

 

Table 3.7: Motus network detections for little brown bats (MYLU) and one eastern red bat (LABO) tagged on Martha’s Vineyard that were 
detected by telemetry stations outside of the study area. 
 

ID Last study area detection Network detection 

  Datetime  Location Datetime  Location 
MYLU 276 7/27/2016, 

8/4/2016 (dropped tag) 
manual detection at barn roost site 7/27/2016 20:36-20:38 Noman's Island, MA 

MYLU 286 8/25/2016 20:12 Hoft 8/26/2016 0:26-0:34 Falmouth, MA 

8/26/2016 3:15-3:16 Welfleet, MA 
LABO 473 10/19/2016 21:41 Naushon 10/20/2016 5:09-5:15 Cape May, NJ 

10/24/2016 18:33-18:59 Skidmore Island, VA 
 
 
  



 

 

Table 3.8: Detections of NanoTags from other projects by the telemetry stations deployed on Martha’s Vineyard and Naushon Island in 2016. 
 

Station 
Detection 

date ID # Species Date  
deployed Location deployed 

Hoft 7/20/2016 5504 Black-crowned Night-Heron 7/15/2015 Oak Harbor, OH 

Hoft 7/24/2016 5504 Black-crowned Night-Heron 7/15/2015 Oak Harbor, OH 

Goethals 7/24/2016 6158 Semipalmated Plover 6/25/2016 unknown 

Hoft 7/24/2016 6158 Semipalmated Plover 6/25/2016 unknown 

Hoft 7/26/2016 8402 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 7/26/2016 8849 Sanderling 5/28/2016 Chaplin Lake, SASK 

Naushon 7/26/2016 8849 Sanderling 5/28/2016 Chaplin Lake, SASK 

Goethals 7/27/2016 8849 Sanderling 5/28/2016 Chaplin Lake, SASK 

Hoft 7/29/2016 8403 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 7/29/2016 8424 Black-crowned Night-Heron 7/5/2016 West Sister Island, OH 

Hoft 7/30/2016 5504 Black-crowned Night-Heron 7/15/2015 Oak Harbor, OH 

Hoft 7/30/2016 8403 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 7/30/2016 8423 Black-crowned Night-Heron 6/21/2016 West Sister Island, OH 

Hoft 7/31/2016 8402 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 8/1/2016 8402 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 8/1/2016 8417 Black-crowned Night-Heron 6/21/2016 West Sister Island, OH 

Hoft 8/2/2016 8402 Black-crowned Night-Heron 6/14/2016 West Sister Island, OH 

Hoft 8/2/2016 8410 Black-crowned Night-Heron 6/21/2016 West Sister Island, OH 

Hoft 8/3/2016 8410 Black-crowned Night-Heron 6/21/2016 West Sister Island, OH 

Naushon 8/11/2016 7889 Sanderling 5/22/2016 unknown 

Naushon 8/19/2016 10387 Semipalmated Plover 8/8/2016 James Bay, ONT 

Naushon 8/29/2016 6198 Sanderling 7/9/2016 Polar Bear Pass, NUN 

Naushon 9/1/2016 8935 Semipalmated Sandpiper 8/27/2016 unknown 

Naushon 9/4/2016 8602 Semipalmated Sandpiper 8/8/2016 Popham Beach, ME 

Naushon 9/5/2016 8939 Semipalmated Sandpiper 8/27/2016 unknown 



 

 

Naushon 9/23/2016 6162 Semipalmated Plover 9/7/2016 unknown 

Naushon 10/11/2016 9526 Red-eyed Vireo 10/8/2016 Block Island, RI 

Naushon 10/26/2016 9126 Saltmarsh Sparrow 10/3/2016 Newburyport, MA 

Goethals 10/27/2016 9126 Saltmarsh Sparrow 10/3/2016 Newburyport, MA 

Goethals 10/31/2016 9490 Saltmarsh Sparrow 10/6/2016 Wells, ME 

Goethals 11/12/2016 9133 Sharp-tailed Sparrow 10/13/2016 Newburyport, MA 

Goethals 11/19/2016 9557 Hermit Thrush 11/7/2016 Block Island, RI 
 
  



 

 

Table 4.1 Capture effort and bats tagged at mist-netting locations along the New England coast. 
 
 

  

Region Location Year Number of nights   Tagged bats Distance to closest 
telemetry station 
(km) 

Downeast/Acadia ME Mount Desert Island, Acadia National Park 2014 7 
 

2 LABO 7.75 
2015 34 

 
6 LABO, 1 LACI 6.96, 7.75, 9.11 

2016 25 
 

8 LABO, 1 LACI 0.73, 1.79, 2.19 
Isle au Haut 2015 4 

 
0 28.90 

Schoodic Peninsula, Acadia National Park 2016 6 
 

0 1.02 
Petit Manan Point NWR 2015 4 

 
1 LABO 0.32 

Roque Bluffs 2015 2 
 

0 5.15 
Jonesboro 2015 2 

 
0 0.10 

Coastal NH Great Bay NWR 2014 8 
 

2 LABO 0.15 
2015 4 

 
3 LABO 1.89 

Coastal MA Parker River NWR 2014 2 
 

1 LABO 2.36 
2015 2 

 
1 LABO 2.36 

2016 7 
 

12 LABO, 1 LACI 0.41 
Islands, MA Martha's Vineyard 2016 13 

 
3 LABO 0.31, 0.67 

Nantucket 2016 2   0 2.38 



 

 

Table 4.2: Tracking summary data for tagged eastern red and hoary bats. M=male, F=female, A=adult, J=juvenile, I=indeterminate, * indicates a 
northeastward movement, all other movements were southwestward.  PMP, ME= Petit Manan Point, Maine; MDI, ME=Mt. Desert Island, ME; 
GB NWR, NH = Great Bay NWR, New Hampshire; PKR NWR, MA=Parker River NWR, Massachusetts; MV, MA=Martha’s Vineyard, MA. 

Individual ID Capture location Capture datetime 

Total time 
tracked 

(days) 

Minimum capture 
site residency 

(days) 
Distance traveled 

(km) 

Average migration 
speed 

(km/night) 
Lasiurus borealis       
 M507 (A) Parker River NWR, MA 8/4/16 20:50 4.2 4.2 0.4 - 

 F110  (A) Parker River NWR, MA 8/4/16 21:30 0.1 0.1 0.4 - 

 F505  (A) Parker River NWR, MA 8/4/16 21:30 0.1 0.1 0.4 - 

 F116  (J) Parker River NWR, MA 8/4/16 23:05 14.0 14.0 0.4 - 

 M508 (A) Petit Manan Point, ME 8/10/15 22:00 3.1 3.1 0.3 - 

 F501  (A) Mt. Desert Island, ME 8/19/15 22:00 42.0 14.0 470.2 11.2 

 F111  (A) Parker River NWR, MA 8/22/16 20:30 7.1 5.0 145.5 20.4 

 M118 (A) Parker River NWR, MA 8/22/16 20:30 12.0 12.0 0.4 - 

 F509  (A) Parker River NWR, MA 8/22/16 21:15 1.0 1.0 4.1 - 

 F516  (A) Parker River NWR, MA 8/22/16 22:55 1.6 1.6 0.4 - 

 F395  (A) Parker River NWR, MA 8/22/16 23:35 1.9 1.9 4.1 - 

 M515 (J) Mt. Desert Island, ME 8/23/15 21:15 0.2 0.2 0.0 - 

 M506 (A) Mt. Desert Island, ME 8/24/16 0:30 12.8 12.8 0.7 - 

 M512 (A) Mt. Desert Island, ME 8/26/16 0:45 2.1 1.8 27.1 13.2 

 F517  (J) Mt. Desert Island, ME 9/1/15 20:15 2.3 - 173.7 74.6 

 F127  (A) Great Bay NWR, NH 9/1/15 21:24 8.9 7.3 38.2 4.3 

 M126 (A) Great Bay NWR, NH 9/2/15 21:26 1.1 1.1 1.9 - 

 M373 (A) Mt. Desert Island, ME 9/5/14 19:35 29.3 - 449.0 15.3 

 M472 (I) Parker River NWR, MA 9/6/16 22:15 19.0 19.0 0.4 - 

 M236 (J) Parker River NWR, MA 9/7/16 20:30 18.0 4.0 134.7 7.5 

 M237 (A) Parker River NWR, MA 9/7/16 20:30 4.0 4.0 0.4 - 

 M129 (J) Parker River NWR, MA 9/9/15 19:30 5.3 - 187.6 35.6 

 M521 (A) Mt. Desert Island, ME 9/16/15 0:15 12.1 - 803.0 66.5 

 M119 (J) Great Bay NWR, NH 9/17/14 21:45 11.9 11.9 0.2 - 



 

 

 M115 (J) Great Bay NWR, NH 9/18/14 21:19 9.0 8.9 38.2 4.3 

 F374  (I) Mt. Desert Island, ME 9/23/15 19:00 3.1 3.1 2.7 - 

 M113 (J) Parker River NWR, MA 9/25/14 17:45 3.2 3.2 4.2 - 

 M511 (A) Mt. Desert Island, ME 9/26/14 22:10 2.9 1.1 85.4 29.8 

 M473 (A) Martha's Vineyard, MA 10/17/16 18:40 7.0 2.1 655.9 93.5 

 F475  (A) Martha's Vineyard, MA 10/18/16 18:10 24.0 24.0 20.6* - 

 M470 (A) Martha's Vineyard, MA 10/21/16 18:10 21.0 21.0 1.5 - 
Lasiurus cinereus       
 M393 (A) Parker River NWR, MA 8/22/16 23:50 0.1 0.1 4.1 - 

 F520  (A) Mt. Desert Island, ME 8/24/15 1:15 1.2 0.6 129.6*  - 
  F518  (A) Mt. Desert Island, ME 8/31/16 20:05 1.0 - 27.1 26.2 

  



 

 

Table 4.3: Speed of travel for bats detected moving > 20 km over the course of a single night.   
 

Individual ID 
Distance  
(km) 

Speed 
(m/s) 

Lasiurus borealis   
 F501 27.5 27.8 

 M512 23.4 1.5 

 F517 24.8 14.5 

 F127 36.5 10.1 

 M115 38.2 10.8 

 M511 41.2 17.4 

 M129 62.9 18.9 

 M511 73.3 13.1 

 M521 83.2 24.8 

 M473 91.1 12.9 

 M236 134.3 10.6 

 M473 332.6 14.9 
Lasiurus cinereus   
 F520 21.1 12.1 
  F520 43.9 3.7 

  



 

 

Table 5.1:  Effects of standard curtailment on capacity factor, energy production and LMP-based revenue loss. 
 

Region 
Site  
(NOAA Station) Year 

Capacity factor Energy production 
loss Standard 
curtailment 
(%) 

LMP revenue loss 
Standard curtailment 
(%) 

LMP 
Region, source, & interval 

No 
curtailment 

Standard 
curtailment 

Northeast Nantucket Sound, MA  
(44020) 

2010 
2011 
2012 

0.546 
0.501 
0.483 

0.543 
0.497 
0.480 

0.58 
0.76 
0.72 

0.55 
0.68 
0.63 

SEMASS, ISO New England, 
hourly data 

Montauk Point, NY  
(44017) 

2007 
2013 
2016 

0.531 
0.535 
0.529 

0.527 
0.531 
0.526 

0.73 
0.65 
0.64 

0.54 
0.38 
0.52 

Long Island, New York ISO, 
10-minute data 

Long Island, NY  
(44025) 

2010 
2012 
2016 

0.539 
0.500 
0.519 

0.535 
0.496 
0.515 

0.74 
0.76 
0.71 

0.55 
0.62 
0.52 

Long Island, New York ISO, 
10-minute data 

Mid-
Atlantic 

Long Beach, NJ  
(44066) 

2014 0.539 0.535 0.75 0.36 Indian River Substation, PJM 
Interconnection, hourly data 

Delaware Bay, DE  
(44009) 

2006 
2007 
2011 

0.467 
0.470 
0.440 

0.462 
0.465 
0.436 

0.99 
1.06 
1.12 

0.75 
0.79 
0.88 

Indian River Substation, PJM 
Interconnection, hourly data 

Southeast Frying Pan Shoals, NC  
(41013) 

2006 
2012 
2013 

0.521 
0.540 
0.571 

0.518 
0.536 
0.568 

0.70 
0.65 
0.53 

n/a n/a 

Charleston, SC  
(41004) 

2011 
2015 
2016 

0.524 
0.560 
0.547 

0.520 
0.556 
0.544 

0.73 
0.59 
0.57 

n/a n/a 

 
  



 

 

Table 5.2:  Effects of alternative curtailment requirements on energy production loss and capacity factor, using data from the Montauk Point 
station in 2016. 
 

Alternative curtailment parameters 
Energy production loss 
 (%) 

Capacity 
factor 

no curtailment 0.00 0.529 
standard curtailment 0.64 0.526 
temperature to 8°C 0.70 0.525 
temperature to 9°C 0.67 0.526 
standard curtailment 0.64 0.526 
temperature to 10.5°C 0.61 0.526 
temperature to 11°C 0.59 0.526 
temperature to 12°C 0.58 0.526 
wind speed to 5.0 m/s 0.28 0.528 
wind speed to 5.5 m/s 0.46 0.527 
standard curtailment 0.64 0.526 
wind speed to 6.5 m/s 0.98 0.524 
wind speed to 7 m/s 1.32 0.522 
wind speed to 7.5 m/s 1.87 0.519 
wind speed to 8 m/s 2.49 0.516 
wind speed to 8.25 m/s (equivalent of 6 m/s at 5 m) 2.82 0.514 
curtailment July 15 to October 15 0.34 0.521 
standard curtailment 0.64 0.526 
curtailment year-round 0.74 0.525 
curtailment sunset to sunrise 0.57 0.526 
standard curtailment 0.64 0.526 
curtailment 1 hour before sunset to 1 hour after sunrise 0.70 0.525 
cut-in speed of 6 at all times 2.41 0.516 
Alstom Haliade 6 MW, standard curtailment 0.71 0.640 



 

 

 
Table 5.S1: Effects of standard curtailment at terrestrial sites, using a 2 MW reference turbine.  
 

Site Year(s) 

Mean wind speed 
at hub height ± SD 
(m/s) 

Energy production 
loss  
Standard curtailment 
(%) 

Capacity factor Energy generated at 
wind speeds <6 m/s 
(% of annual 
production) 

Time curtailed 
(hours) 

No 
curtailment 

Standard 
curtailment 

Nantucket 2005-2006 8.84 ± 3.96 0.62 0.492 0.489 2.65 518 
Truro 2006-2007 8.39 ± 3.56 0.62 0.447 0.444 3.18 425 
Welfleet 2007 7.11 ± 3.46 1.75 0.312 0.306 7.02 844 
Plymouth 2007-2008 5.79 ± 2.72 3.82 0.190 0.183 16.30 1172 
Mt Tom 2008 4.15 ± 4.56 1.45 0.170 0.168 5.75 1163 
Mt Tom 2009 6.10 ± 3.53 2.61 0.223 0.217 9.49 1096 
Savoy 2005 4.66 ± 2.64 4.54 0.107 0.102 18.81 1452 

 
  



 

 

Table 5.S2:  The contribution of <6 m/s winds to annual energy production, for theoretical sites of varying mean wind speed, using the Rayleigh 
distribution.  Mean wind speeds at 50 m represent the limits of wind power classes. 
 

Wind power class 
Mean wind speed at 50 m  
(m/s) 

Mean wind speed at 100 m 
± Rayleigh SD 
(m/s) 

Energy generated at wind speeds <6 m/s 
(% of annual production) 
2 MW onshore turbine 5 MW offshore turbine 

Class 1 0.0 0.0 - - 
5.6 6.18 ± 3.22 8.68 8.90 

Class 2 

6.4 7.07 ± 3.67 5.74 5.89 

Class 3 

7.0 7.73 ± 4.01 4.39 4.50 

Class 4 

7.5 8.28 ± 4.31 3.59 3.69 

Class 5 

8.0 8.83 ± 4.59 3.00 3.08 

Class 6 

8.8 9.71 ± 5.05 2.32 2.38 

Class 7 

11.9 13.14 ± 6.83 1.15 1.17 



 

118 

Figure 2.1:  Acoustic sites (n = 15) monitored for bats on Nantucket from 2015–2016.  Numbers 
refer to stations as listed in Table 1.  Basemap courtesy of TerraMetrics (2017).    
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Figure 2.2:  Seasonal variation in likelihood of bat detection by two-week period on Nantucket, 
Massachusetts in 2015 and 2016.  Values are summed across all stations by year, except Ram 
Pasture (sampled 2016) is displayed separately, due to unusually high detection rates. 
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Figure 2.3:  Temperature and relative humidity within the crawl space hibernation site during the 
hibernation period (15 November 2016 – 15 April 2017).  Temperature logger failed to collect 
data after 24 February 2017. 
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Figure 3.1:  Local and regional telemetry stations in the Martha’ Vineyard area.  The four stations 
on Martha’s Vineyard and Naushon Island were not deployed in 2015; the other stations were 
present in both years. 
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Figure 3.2:  The northwest Martha’s Vineyard study area, with local telemetry stations, mist-
netting sites, and roost sites of northern long-eared bats in the study area in 2016. 
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Figure 3.3:  Local detection (signal strength versus time) plots for northern long-eared bats 
recorded by the Hoft telemetry station in July 2016.  Three bats primarily foraged in the antenna 2 
sector of the Hoft station.  No northern long-eared bats were detected by other stations. 
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Figure 3.4:  Local detection (signal strength versus time) plots for two little brown bats 
intermittently recorded by multiple telemetry stations in the northwest Vineyard study area.   
MYLU 286 migrated off-island and was later recorded by two telemetry stations on Cape Cod. 
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Figure 3.5:  Local detection (signal strength versus time) plot for one big brown bat 
intermittently recorded by multiple telemetry stations in the northwest Vineyard study area.   A 
second big brown bat was recorded briefly by the Hoft station. 
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Figure 3.6:  Local detection (signal strength versus time) plots for two eastern red bats 
intermittently recorded by multiple telemetry stations in the northwest Vineyard study area.   
LABO 473 was also recorded by a local station before migrating off-island on October 19. 
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Figure 4.1: Mist-netting locations along the New England coast sampled in this study.  Dot in 
circle indicates successful tagging location. 
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Figure 4.2: Tracking data for a) red bat M373, b) red bat M473, and c) hoary bat F520 along the Atlantic 
Coast. 

 

a)  

b)  
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c)  
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Figure 5.1: Sites of theoretical East Coast offshore wind facilities analyzed in this paper.  Circles 
indicate locations of sampled NOAA data buoy stations (see Table 5.1).  Dark shading shows 
BOEM wind energy lease and planning areas.   
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