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Introduction:Offshore wind energy development (OWED) has been identified as

a major contributor to the aspired growth in Norwegian renewable energy

production. Spatially explicit vulnerability assessments are necessary to select

sites that minimize the harm to biodiversity, including seabird populations.

Distributional data of seabirds in remote areas are scarce, and to identify

vulnerable areas, species, and seasons it is necessary to combine data sets and

knowledge from different sources.

Methods: In this study, we combined seabird tracking data, data from dedicated

coastal and seabird at-sea surveys, and presence-only data from citizen science

databases to develop habitat suitability maps for 55 seabird species in four

seasons throughout the Norwegian exclusive economic zone; in total 1 million

km2 in the Northeast Atlantic. The habitat suitability maps were combined with

species-specific vulnerability indicators to yield maps of seabird vulnerability to

offshore wind farms (OWFs). The resulting map product can be used to identify

the relative vulnerability of areas prospected for OWED with respect to seabird

collision and habitat displacement. More detailed assessments can be done by

splitting the spatial indicators into seasonal and species-specific components.

Results and discussion: Associated with higher diversity of seabirds near the

coast, the cumulative vulnerability indicator showed a strong declining gradient

from the coast to offshore waters while the differences in vulnerability between

ocean areas and seasons were negligible. Although the present map product

represents the best currently available knowledge, the indicators are associated

with complex uncertainties related to known and unknown sampling biases. The

indicators should therefore be used cautiously, they should be updated regularly

as more data become available, and we recommend that more detailed

environmental impact assessments based on dedicated seabird surveys,

tracking of birds from potentially affected populations and population viability

analyses are conducted in areas ultimately selected for OWED.
KEYWORDS

seabirds, offshore wind farms, species distribution models (SDM), collision,
displacement, marine spatial planning, strategic environmental assessment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1335224/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1335224/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1335224/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1335224&domain=pdf&date_stamp=2024-03-13
mailto:per.fauchald@nina.no
https://doi.org/10.3389/fmars.2024.1335224
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1335224
https://www.frontiersin.org/journals/marine-science


Fauchald et al. 10.3389/fmars.2024.1335224
1 Introduction

Offshore wind energy development (OWED) has been

identified as a major contributor to the aspired growth in

Norwegian renewable energy production before 2030, and

potential areas for OWED have been suggested in 20 marine

areas comprising 55,371 km2 in the Norwegian exclusive

economic zone (EEZ) (NVE, 2023). However, Norwegian waters

hold significant proportions of European seabird populations

(Fauchald et al., 2015), and the impact of offshore wind farms

(OWFs) on seabirds through collision, disturbance and habitat

displacement (Garthe and Hüppop, 2004; Furness et al., 2013) is

accordingly a major environmental concern. As a first step in a

strategic environmental assessment, a spatially explicit vulnerability

analysis of seabirds that potentially could be affected by OWED is

necessary to select sites that minimize the harm to vulnerable

seabird populations (Croll et al., 2022).

To achieve a precise and unbiased strategic assessment of

OWED, detailed knowledge with respect to the spatial

distribution and the potential consequences of OWF are needed

for all seabird populations present in the assessment area. However,

datasets that document a species’ spatial distribution, the impact of

OWF on its vital rates and the consequences for population

dynamics are rare. One solution is to restrict the analyses to a few

well-studied species and monitoring sites with the implicit

assumption that this selection is a representative sample of the

seabird populations in the assessment area. However, discarding

species or areas based on data scarcity could result in an assessment

bias towards well studied species and data rich areas (e.g., Halpern

and Fujita, 2013).

One strategy to mitigate assessment bias related to data

availability is to combine all available datasets as well as expert

assessments into composite indicators (e.g., Halpern et al., 2008,

Halpern et al., 2012; Issaris et al., 2012). The philosophy behind this

approach is to synthesize the best available knowledge of all relevant

components of the system into indicators using a transparent

framework consisting of a set of procedures with associated

assumptions (Halpern and Fujita, 2013). Procedures often involve

the use of expert opinions to systematically weigh the importance

and impacts of stressors and environmental components,

specification of algorithms for correcting sampling bias and

methodological discrepancies, and statistical modelling for spatial

and temporal interpolations (Halpern and Fujita, 2013). Using “best

available knowledge” means that the indicator should be updated

regularly as more insight of the system, more data, and improved

statistical methods become available. The indicator approach has

gained traction in recent years as large open-access databases, fast

computing, and programing environments for data management

and statistical modeling have improved and become increasingly

available (for assessments of birds and wind farms see e.g., Bradbury

et al. (2014); Kelsey et al. (2018); Goodale et al. (2019); Perrow

(2019); Cleasby et al. (2020); May et al. (2020); May et al. (2021)).

Here, we use the indicator approach to develop a data product

for vulnerability assessment of marine birds (including seabirds,
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marine ducks and geese) in the Norwegian EEZ with respect to

OWED. Spatial datasets on marine birds in the area are limited, and

we used a combination of seabird tracking data, survey data and

citizen science data to develop standardized habitat suitability maps

in four seasons for relevant marine birds in the assessment area. The

habitat suitability maps were combined with indicators of species-

specific vulnerability with respect to collision with wind turbines

and displacement from OWF areas (Garthe and Hüppop, 2004;

Furness et al., 2013; Robinson Willmott et al., 2013; Dierschke et al.,

2016) to yield spatially explicit species-specific vulnerability

indicators (Bradbury et al., 2014; Kelsey et al., 2018). Wind farms

can also attract seabirds such as gulls, cormorants and shags by

providing roosting opportunities and enhanced feeding conditions

due to e.g., “reef effects” (Vanermen et al., 2015; Dierschke et al.,

2016). Effects of attraction are not explicitly considered in the

present indicators; however, it should be noted that attraction

could represent both a negative effect through increased collision

risk as well as positive effects through e.g., enhanced food

availability (Vanermen et al., 2015).

The indicators were summed into a cumulative vulnerability

map for marine birds in the assessment area. Our approach builds

on the methods developed by Garthe and Hüppop (2004) and

Furness et al. (2013) for quantifying species-specific vulnerability,

and on Bradbury et al. (2014) and Kelsey et al. (2018) for

distributing the vulnerability scores in the assessment area using

spatial models of seabird distribution. As a further refinement of

Bradbury et al. (2014) and Kelsey et al. (2018), our approach

combines different data sources to model habitat suitability,

making it possible to assess the vulnerability of relevant species in

the entire assessment area.
2 Materials and methods

The workflow of analyses is shown in Figure 1. Seabird

observation data and environmental data were combined in

species distribution models (SDMs) to yield maps of habitat

suitability for each species and season. From the literature, data

on conservation status and vulnerability with respect to OWF were

compiled and combined to OWF vulnerability scores. From the

vulnerability scores and habitat suitability models, vulnerability

maps were calculated for each species and season. The maps were

combined and normalized to the minimum - maximum values in

the assessment area to yield a map product comprising three levels

of detail: Maps of vulnerability of each species and season; maps of

seasonal vulnerability for all species combined; and a map of total

seabird vulnerability.
2.1 Study area and species

The assessment area for the vulnerability analyses was defined

by the Norwegian EEZ, which extends from the coastline of the

Norwegian mainland and 200 nautical miles offshore, comprising
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an area of 1 million km2 in the Northeast Atlantic (Figure 2).

Within this area, assessment units were defined by the cells in a

10x10 km2 regular grid (WGS 84/UTM zone 33N, EPSG:32633)

often used in environmental assessments of offshore energy

development in Norway.

Following the definition of Croxall et al. (2012), seabirds are

defined as “species for which a large proportion of the total

population rely on the marine environment for at least part of the

year”. Globally, Dias et al. (2019), identified 359 extant species that

met this criterion. From this list, we identified 53 species that

according to our datasets (see section 2.2 below) were regularly

observed in the study area. In addition to these 53 “true” seabird

species, we added 13 bird species that, in at least part of the year,

were observed in Norwegian marine and coastal areas and therefore

could be affected by OWFs. The total list of 66 species is given in

Supplementary Table 1.

Analyses were conducted separately for four seasons chosen to

approximate the annual cycle of seabirds in the area: Spring,

migration period (February-April); Summer, breeding period

(May-July); Autumn, moulting and migration period (August-

October); and Winter, winter period (November-January).

The number of observations for some species and seasons were

too low to provide reliable estimates of habitat suitability from the

species distribution models (SDMs); i.e., the models did not

converge or provided unreliable predictions. Note that the lower

threshold of sample size for a reliable SDM depends on the spatial

distribution of observations and the threshold did therefore vary

among models. For 11 relatively rare species, we were not able to

model habitat suitability in any season and these species were

accordingly removed from the assessment, giving a final list of 55

species (Supplementary Table 1).
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2.2 Habitat suitability maps

Habitat suitability maps for six of the seabird species were

compiled from the NEAS dataset (section 2.2.1). For the rest of the
FIGURE 2

Study area. The study area was defined by the Norwegian exclusive
economic zone (EEZ) (blue area). Green areas are areas proposed
for further evaluation with respect to development of offshore wind
energy. Delineation of the Barents Sea, Norwegian Sea and North
Sea is indicated by lines.
FIGURE 1

Workflow, including input data sets (blue boxes) and analyses (green boxes) to obtain a map product of seabird vulnerability to offshore wind
farms (OWF).
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species, habitat suitability was estimated using SDMs developed

according to the target group (TG) method (Phillips et al., 2009).

The observations of each species were modelled by environmental

variables, and habitat suitability was predicted for each cell in the

assessment area. The SDMs were based on three datasets with

spatial explicit observations of marine birds in the study area. These

datasets were: seabird at-sea survey data (section 2.2.2); systematic

coastal survey data (section 2.2.3); and citizen science presence-only

data (section 2.2.4).

All analyses were conducted using the R Statistical language

version 4.2.3 (R Core Team, 2023).

2.2.1 NEAS dataset
For six species (Atlantic fulmar (Fulmarus glacialis), black-

legged kittiwake (Rissa tridactyla), thick-billed murre (Uria

lomvia), common murre (Uria aalge), little auk (Alle alle) and

Atlantic puffin (Fratercula arctica)), maps of habitat suitability were

collected from the NEAS dataset. The NEAS dataset was developed

by the SEATRACK program (SEATRACK, 2023) and is based on

tracking data of 2356 birds using geolocation (GLS) loggers in 25

seabird colonies in the Northeast Atlantic. The dataset and methods

are described in detail in Fauchald et al. (2021). In short, the maps

combine SDMs based on tracking data of birds from the network of

seabird colonies with data on population sizes to provide monthly

maps of densities of birds from Northeast Atlantic colonies. The

dataset covers 87% of the Northeast Atlantic populations, however

in Norwegian waters this coverage is even higher, and close to 100%.

From the NEAS dataset, density values for the six pelagic species

were retrieved for the Norwegian EEZ and average estimates for

each cell and season were calculated.

2.2.2 Seabirds at-sea data
Data from seabirds at-sea surveys were retrieved from the ESAS

(European Seabirds at Sea) database (ESAS, 2022) and from the
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SEAPOP seabird at-sea dataset (Fauchald, 2011). SEAPOP is the

national monitoring program for seabirds in Norway. The seabirds

at-sea data were collected through standardized strip transect

sampling where individuals of all bird species were counted from

the bridge of a ship in a 300 m wide strip while the ship was

steaming at a constant speed and direction (Tasker et al., 1984).

Species that are commonly attracted to ships (e.g., fulmars and

gulls), and therefore over-estimated in strip transect sampling, were

counted as point observations at regular time intervals (most

commonly every 10 minutes). Small and diving species (e.g.,

auks) are more difficult to detect or might avoid the ship and

their abundance is therefore often under-estimated in at-sea

surveys. In the analyses, observations were not corrected for

distance to ship.

In total, seabirds at-sea data contributed with 120,717

observations of individual marine birds within the study area

(Figure 3A). The dataset covered the entire study area however,

inshore coastal areas and fjords generally had a low coverage and

the large offshore areas of the Norwegian Sea had a lower coverage

than the Barents Sea and the North Sea.

2.2.3 Coastal survey data
Coastal survey data on seabirds were retrieved from the

SEAPOP database (SEAPOP, 2023). This dataset consists of data

from systematic mapping and monitoring of marine birds in

specified areas or locations along the Norwegian coast and

Svalbard. Observations were made from small boats, by UAVs,

airplanes or on foot. The dataset includes counts of breeding

populations as well as systematic counts of migrating, molting

and wintering birds. In total, this dataset comprised 256,610

observations of individual marine birds in the study area

(Figure 3B). All observations were made inshore with a

particularly high coverage in permanent monitoring plots along

the coast.
A B C

FIGURE 3

Datasets used in species distribution modeling (SDMs). Maps show number of observations of seabirds in 10x10 km2 cells in the study area from
three datasets: (A) Seabirds at sea data, (B) coastal survey data, and (C) citizen science data.
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2.2.4 Citizen science data
Finally, seabird observations were retrieved from the Norwegian

national species observations system (Artsobs, 2023). This database

is a collection of data from many different sources. Species are

registered to lowest taxonomic level together with parameters such

as behavior, observer id, method, time and position. BirdLife

Norway has contributed with a large number of standardized

high-quality observations, and we included only observations

registered as a part of BirdLife’s activity. For the Norwegian EEZ,

this dataset comprised 3,965,542 observations of individual marine

birds (Figure 3C). Almost all observations were found along the

coast, with “hot spots” in areas with high density and activity of

bird watchers.

2.2.5 Environmental data
We included seven environmental variables in the SDMs:
Fron
1.Depth. Depth is an important parameter determining marine

productivity and the availability of food for seabirds.

Bottom depth is particularly important for benthic

feeding birds such as cormorants and sea ducks. Depth

data were retrieved from the ETOPO 1 Global Relief Model

(Amante and Eakins, 2009) developed by National

Geophysical Data Center (NGDC), an office of the

National Oceanic and Atmospheric Administration

(NOAA). From the dataset, the average depth was

calculated for each cell in the assessment area.

2. Slope. Bottom topography is important for physical

oceanographic processes generating productive areas such

as fronts and up-welling areas that attract seabirds. From

the depth data, we calculated the slope in depth in the 8-cell

neighborhood of each cell in the assessment area using the

terrain function in the terra package in R (Hijmans, 2023).

3. SST. Sea-surface temperature (SST) is often a good predictor

for the habitats of marine species. We retrieved the Daily

Optimum Interpolation Sea Surface Temperature

(DOISST) Version 2.1 provided by the National Oceanic

and Atmospheric Administration (NOAA) (Huang et al.,

2021) and assigned each cell in the assessment area with an

average value for each season.

4. TGrad. The spatial gradient in sea surface temperature

reflects fronts where different water masses meet. Such

areas are often productive and might attract foraging

seabirds. Using the SST data, we calculated the “gradient”

in SST in the 8-cell neighborhood of each cell in the

assessment area using the terrain function in the terra

package in R (Hijmans, 2023).

5. SSS. Sea surface salinity is an important environmental

parameter affecting biological productivity and the

habitats of coastal marine birds. SSS varies with the

distance to land, the strength of the coastal current and

the runoff from land. SSS data from surface waters (< 5

meters) were retrieved from the CTD (conductivity,

temperature, and depth) dataset hosted by the ICES data

portal (ICES Data Portal, 2022). Average interpolated SSS
tiers in Marine Science 05
values for each season were calculated for each cell in the

assessment area.

6. DFCoast. The distance from coast is important for biological

production, availability and selection of food items, the

exposure to wind and waves and not least the birds’

connection to their breeding locations. Distance from

coast was calculated for each cell in the assessment area.

7. DACoast. The Norwegian coastal current runs close to the

coast from the Swedish border in southeast to the Russian

border in northeast. It forms an important bio-climatic

gradient and is responsible for the dispersion of plankton

along the coast. To mirror this bio-climatic gradient, the

distance along the coast was calculated for each cell in the

assessment area as the projected distance along a line

running along the coast from southeast to northeast.
Several of the environmental variables describe, at least partly,

similar physical or biological features. There was accordingly a

strong collinearity between DACoast and SST (Pearson’s |r| = 0.93)

and a collinearity between Depth, Slope, SSS and DFCoast

(Pearson’s |r| ranging from 0.51 to 0.73) (Supplementary

Table 2). However, for several models, removal of variables due

to collinearity reduced the models’ ability to predict presences. We

therefore decided to include all variables in the initial models and

subsequently remove variables to optimize model performance and

parsimony. In other words, although the collinearity among the

variables is likely to preclude the interpretation of the relationship

between bird observations and specific environmental features, we

prioritized the model prediction accuracy over the interpretability

of the spatial predictors (Legendre and Legendre, 2012).
2.2.6 Sampling bias and the target
group approach

While seabirds at-sea data have a standardized registration of

sampling effort, the coastal dataset includes several different

observation methods with different measures of effort, and the

citizen science data are “presence-only” data with no information

of observer effort. Consequently, it was not feasible to correct for

any direct measures of observer effort in the analyses, and all

datasets were aligned to the “presence-only” format.

The observations in the resulting dataset were highly biased

with “hot spots” along the coast with more than 10,000 seabird

observations per cell, and remote offshore cells with zero or only a

few observations (Figure 3). To reduce the effect of a skewed

sampling effort we decided to randomly subsample each dataset

to a maximum of 1000 observations per cell.

Due to heterogeneous sampling effort (Figure 3), a random

selection of background or pseudo-absence points would create

biases towards areas with high sampling intensity (Elith and

Leathwick, 2009). To control for heterogeneous sampling effort, we

used the Target Group (TG) approach suggested by (Phillips et al.,

2009). Instead of using a random or regular sampling of background

points as a contrast to the presences, the TG method uses the

observations of other species within the same species group (TG).

In principle, this means that the TGmethod introduces the same bias
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in the background points as is present in the observations. It has been

shown that the TG method efficiently removes sampling biases in

SDMs (e.g., Barber et al., 2022). However, areas with high density of

other species within the target group will also give a higher number of

background points, resulting in an under-estimation of habitat

suitability in areas with high biodiversity or abundance of the

target group (Ranc et al., 2017; Vollering et al., 2019).

To control for some of the spatial heterogeneity in diversity, the

species were divided into two target groups; (1) strictly coastal

species, and (2) species that can be found both offshore and along

the coast. The Target Groups are defined in Supplementary Table 1.

2.2.7 Species distribution models (SDMs)
Except for the species from the NEAS dataset (section 2.2.1),

SDMs were conducted for all identified marine bird species (section

2.1; Supplementary Table 1). For each species and season, the

relationship between the species observations and environmental

variables was analyzed using the cells in the assessment area as the

unit of analysis. In line with the TG approach, the response variable

was defined as the proportion of the number of observations of the

analyzed species (number of presences) and the sum of observations

of other species (number of background points). A logistic model was

used to fit the relationship between the response variable and the

environmental variables. We used GAM (Generalized Additive

Model), where the response is modeled as a combination of non-

lineal smooth functions to account for non-linear relationships

(Wood, 2017). Several modelling methods are regularly used in

SDMs (Norberg et al., 2019). In the present study, we fitted 196

models of relatively large datasets (> 50,000 observations) and

efficiency with respect to computation and interpretation, as well as

flexibility in model formulation were important. GAM is a

computationally efficient and well-proven method with

straightforward interpretation and built-in regularization of the

predictor function to avoid overfitting (Wood, 2017). We used

thin-plate regression splines as smoothers and the optimal degree

of smoothing was determined by Generalized Cross-validation

(GCV). In cases when the model did not converge or produced

unrealistic predictions due to over-fitting, the complexity of the

model was constrained by specifying a maximum number of knots

in the smooth function and/or removing environmental variables

from the model. All analyzes and predictions were conducted using

the terra package (Hijmans, 2023) and the mgcv package (Wood,

2017) in R.

The initial model was formulated as:

gam(Presence=Backround)
e

s(Depth) + s(Slope) + s(SST)

+ s(TGrad) + s(SSS) + DFCoast + s(DACoast),   family

= binomial (1)
2.2.8 Calculation of habitat suitability
Based on the predicted presence from the SDMs Equation 1 or

NEAS dataset, habitat suitability was calculated in the assessment area

for each species and season. The predicted presences were standardized

to the season with the highest sum of predicted presence in the
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assessment area. Thus, habitat suitability c in cell i in season j was

calculated as:

ci,j = n� pi,j
maxjoipi,j

(2)

Where n is the number of cells in the assessment area and p is

the predicted values from the SDM or predicted density values from

the NEAS dataset.

Note that habitat suitability Equation 2 is standardized to the

season with highest predicted presence, meaning that habitat

suitability is independent of the general abundance or rarity of

the species but will vary geographically and seasonally according to

how the species migrate in and out of the assessment area.
2.3 Species-specific vulnerability

The calculation of species-specific vulnerability to OWF was

based on the methods developed by Garthe and Hüppop (2004) and

refined by Furness et al. (2013); Bradbury et al. (2014) and Kelsey

et al. (2018). The vulnerability indicator combines three factors

considered important for seabirds’ vulnerability to OWF: (1)

conservation status, (2) direct impact of OWF through increased

mortality due to collisions with wind turbines, and (3) indirect

impact of OWF through habitat disturbance causing birds to avoid

the impacted area. The indicators are scaled from 1 (least

vulnerable) to 5 (most vulnerable).

Indicator values were either based on published data (Garthe

and Hüppop, 2004; King et al., 2009; Furness et al., 2013; Robinson

Willmott et al., 2013; Dierschke et al., 2016) or assessments made by

an international expert group (named in Furness et al. (2013)). For

species for which there was insufficient information, we used values

from closely related and comparable species. Indicator values and

references are given in Supplementary Tables 3–5.

2.3.1 Conservation status
The general vulnerability of seabird populations to acute or

indirect mortality is related to factors such as population size,

population trends and demography. Garthe and Hüppop (2004);

Furness et al. (2013); and Bradbury et al. (2014) used the

unweighted average of scores from (1) biogeographical population

size, (2) threat status, and (3) adult survival as an indicator of

conservation status. In accordance with this, but specific to the

Norwegian context, we included: (1) National (Norwegian)

proportion of the European population (a), (2) red list status on

the Norwegian red list (b), and (3) adult survival (c) to define

conservation status (CS):

CS =
a + b + c

3
(3)

The Norwegian proportion of the European population (a) was

based on the number of breeding individuals in Norway (incl.

Svalbard) retrieved from the Norwegian red list for species

(Artsdatabanken, 2022) and the number of breeding individuals

in Europe obtained from BirdLife International (2021). The variable
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was classified as follows: 1 for populations with< 1% of the

European population; 2 for 1-4%; 3 for 5-9%; 4 for 10-19%; and 5

for > 19%.

The Norwegian red list status (b) was obtained from the

Norwegian red list for species (Artsdatabanken, 2022) and

classified as follows: 1 for species classified as LC; 2 for NT; 3 for

VU; 4 for EN; and 5 for CR.

Long-lived species with high adult survival are expected to be

more vulnerable to increased mortality. Adult mortality (c) was

classified as follows: 1 for species with adult survival< 0.749; 2 for

0.75-0.799; 3 for 0.8-0.849; 4 for 0.85-0.899; and 5 for > 0.90.

Several species of marine ducks and geese breed in coastal

freshwater habitats and are thus less exposed to offshore wind

turbines during summer. To account for this, we multiplied the CS

for these species with 0.5 during summer.

Supplementary Table 3 shows the classification of the variables

in Equation 3 and the resulting indicator for conservation status

(CS) for each species considered. The long-lived pelagic seabirds,

including common murre, Atlantic puffin, Atlantic fulmar, and

thick-billed murre obtained the highest conservation scores, with

CS ranging from 4.7 to 5.0 (Supplementary Table 3). Lowest scores

were obtained by some of the duck and geese species; Greater white-

fronted goose (Anser albifrons), Mallard (Anas platyrhynchos), and

Tufted duck (Aythya fuligula) with CS ranging from 1.0 to 1.3.

2.3.2 Collision risk
Two separate indicators for sensitivity with respect to OWF

were calculated (Furness et al., 2013): Vulnerability from increased

mortality due to collision with wind turbines (VC) and increased

vulnerability due to disturbance and displacement from the area

occupied by OWF (VD).

The indicator for collision risk (VC) was defined by four

variables: (1) Nocturnal flight activity (d), (2) Proportion of time

flying (e), (3) Proportion of time spent at rotor height (f), and (4)

Flight maneuverability (g):

VC =
(d + e)=2 + f + g

3
  (4)

High nocturnal flight activity, high proportion of time flying,

and a high proportion of time spent flying at rotor height are

expected to increase the risk of collision with wind turbines, while

flight maneuverability reflects the bird’s ability to avoid collision

with the wind turbine at a close range. Note that the equation and

notation for collision risk have been defined differently in the

literature (see Garthe and Hüppop (2004); Furness et al. (2013);

Bradbury et al. (2014); Kelsey et al. (2018)). The present Equation 4

differs from the equations given in Furness et al. (2013) and

Bradbury et al. (2014), where they give the Proportion of time

spent at rotor height a higher weight by including it as a factor.

Instead, we followed Kelsey et al. (2018) who weighted Nocturnal

flight activity and Proportion of time flying with 0.5 (i.e., giving

them half the weight compared to the Proportion of time spent in

rotor height and Flight maneuverability).

The classification of the variables in Equation 4, including

sources and the resulting indicator for collision risk (VC) are
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given in Supplementary Table 4 for each species considered.

Nocturnal flight activity (d) was classified from 1 (low nocturnal

flight activity) to 5 (high nocturnal flight activity). The proportion

of time flying (e) was classified as: 1 for species spending 0-20% of

the time flying; 2 for 21-40%; 3 for 41-60%; 4 for 61-80%; and 5 for

81-100%. Proportion of time spent in rotor height (f) was classified

into three categories: 1 for< 5% of the time spent in rotor height; 3

for 5-20%; and 5 for >20%. Flight maneuverability (g) was classified

from 1 (high degree of micro avoidance) to 5 (low degree of micro

avoidance). Highest scores with respect to collision risk were

obtained by Larus, Anser, and Cygnus species with CS scores

ranging from 3.8 to 4.7 (Supplementary Table 4).

2.3.3 Disturbance and displacement
The indicator for the impact of OWF with respect to

disturbance and displacement (VD) was defined by two variables:

(1) Avoidance (h), and (2) Habitat flexibility (k).

VD =
h + k
2

  (5)

Avoidance (h) describes the displacement of a species from an

area due to disturbances from OWF activities. Habitat flexibility (k)

describes the degree to which a species can utilize alternative

habitats (opposite of habitat specialization), reducing the potential

impact from habitat displacement.

The classification of the variables in Equation 5, including sources

and the resulting indicator for disturbance and displacement (VD)

are given in Supplementary Table 5 for each species considered.

Avoidance was classified from 1 (low degree of avoidance) to 5 (high

degree of avoidance). Habitat flexibility was classified from 1 (high

flexibility in habitat selection) to 5 (low flexibility in habitat selection).

Lowest scores of disturbance and displacement were obtained by

skuas and Larus species with VD scores ranging between 1 and 1.5

(Supplementary Table 5). The Gavia and Branta species were among

those with highest scores (VD = 4.5).

2.3.4 Combined non-spatial vulnerability
The species-specific non-spatial indicator for vulnerability (VU)

Equation 6 was defined as the product between conservation status

(CS), and either the indicator for collision risk (VC) or disturbance/

displacement (VD) dependent on whichever was larger:

VU = CS�max(VC,  VD) (6)

The VU scores together with the scores for CS, VC and VD for

the ten species with the highest VU are shown in Table 1. The VU

scores for all species considered is given in Supplementary Table 7.
2.4 Vulnerability maps

The species-specific vulnerability scores and maps of habitat

suitability were combined to yield a map product consisting of

three spatial indicators representing three different levels of detail:

(1) Species Vulnerability (SPV) Equation 7 which maps the

vulnerability of each species and season, (2) Seasonal Seabird
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Vulnerability (SSV) Equation 8 which sums the Species Vulnerability

in each season, and (3) Total Seabird Vulnerability (TSV) Equation 9

which maps the maximum Seasonal Seabird Vulnerability.

To map the vulnerability of each species and season, predictions

from the habitat suitability models were used to distribute the

vulnerability in the assessment area. Accordingly, the Species

Vulnerability (SPVi,j,s) in cell i and season j for species s, was

defined as the product of habitat suitability (ci,j,s) and the non-

spatial vulnerability indicator (VUS). Untransformed, the indicator

had a skewed distribution with many small values close to zero and

few large values. To reduce the skewness of the distribution, the

indicator was loge(x +1) -transformed:

SPVi,j,s = loge(ci,j,s � VUs + 1) (7)

Seasonal Seabird Vulnerability (SSVi,j) in cell i and season j was

defined as the sum of Species Vulnerability scores for each season

and cell:

SSVi,j =osSPVi,j,s (8)

Finally, Total Seabird Vulnerability (TSVi) in cell i was defined

as the maximum seasonal vulnerability score for each cell:

TSVi = max
j
(SSVi,j) (9)
2.4.1 Normalization
The spatial vulnerability indicators represent dimensionless

values. To give them a relative meaning, the indicators were

normalized according to the minimum and maximum indicator

values in the assessment area (i.e., (x-min)/(max-min)) and

presented as percentages. Accordingly, SPV is expressed as

percentage of the maximum SPV value in the assessment area

estimated for all species and seasons, SSV is expressed as

percentage of the maximum SSV value in the assessment area
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estimated for all seasons, and TSV is expressed as percentage of the

maximum TSV value in the assessment area.
3 Results

Maps of habitat suitability were calculated for 55 species in four

seasons (see Supplementary Table 6 for sample sizes and model

details). Note that due to seasonal migration in and out of the

assessment area, the number of observations were in some cases too

few to model habitat suitability. In these cases, habitat suitability

was set to zero for the assessment area.

Table 1 shows the non-spatial vulnerability score (VU) together

with scores of conservation status (CS), collision risk (VC) and

disturbance/displacement (VD) for the ten species with highest VU.

In Supplementary Table 7, VU is given for all species considered

together with sample statistics of the spatial vulnerability score

(SPV) for the assessment area. The table is sorted by VU from high

to low vulnerability. Note that the sample statistics of SPV depend

on seasonal migration and spatial aggregation. Accordingly,

spatially aggregated species with a high VU score had a high

maximum SPV and a low mean SPV due to many zeroes.

The importance of the spatiotemporal differences among species

is illustrated in Figure 4 which shows maps of SPV for the three

species with highest VU score (thick-billed murre, yellow-billed loon

Gavia adamsii and herring gull Larus argentatus), and in addition,

common tern Sterna hirundo which is a more southern migratory

species with a relatively high VU score (Supplementary Table 7). The

vulnerability maps reflect differences in spatial distribution and

migratory behavior: thick-billed murre and yellow-billed loon are

arctic breeding species that migrate north and mainly out of the

assessment area during summer. However, while thick-billed murre is

a pelagic seabird found over large ocean areas in the Barents Sea,

yellow-billed loon is a strictly coastal species wintering in the coastal
TABLE 1 The ten species with the highest scores with respect to vulnerability to OWF (VU) in the Norwegian EEZ.

Common name Latin CS VC VD VU

Thick-billed murre Uria lomvia 5 1 4 20

Yellow-billed loon Gavia adamsii 4 1.8 4.5 18

European herring gull Larus argentatus 4 4.2 1 16.7

Great black-backed gull Larus marinus 4 4.2 1.5 16.7

Brant goose Branta bernicla 3.7 2.3 4.5 16.5

Common tern Sterna hirundo 4 3.7 2 14.7

Glaucous gull Larus hyperboreus 3.7 3.8 1.5 14.1

Pink-footed goose Anser brachyrhynchus 3 4.7 3 14

Common murre Uria aalge 4.7 1.8 3 14

Common gull Larus canus 3.3 4.2 1.5 13.9
frontiers
VU is the combined non-spatial indicator for species vulnerability based on conservation status (CS), collision risk (VC), and vulnerability with respect to disturbance/displacement (VD). The
species are sorted by VU from highest to lowest. VU scores for all species considered is found in Supplementary Table 7.
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archipelago in Northern Norway. Herring gulls are found along the

entire coast. It has a wide distribution, especially during the non-

breeding period when it is frequently observed in offshore shelf areas.

Finally, common tern is a coastal migratory species. It breeds along

the coast with highest densities in the south and migrates out of the

assessment area during winter.

Summing the species vulnerability scores for all 55 species in

each season into the seasonal seabird vulnerability (SSV) indicator,

revealed a strong and persistent spatial gradient from high

vulnerability along the coast to low vulnerability in offshore areas
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(Figure 5). To further investigate seasonal differences along the

coastal-offshore gradient and differences between ocean areas, we

extracted the SSV values for coastal areas (< 100 km from the

coastline) and offshore areas (> 100 km from the coastline) for the

North Sea, Norwegian Sea, and Barents Sea regions (see definitions

in Figure 3). Box-whiskers plots of the distribution of SSV values in

different areas and seasons underline the major difference between

coastal and offshore areas (Figure 6). Differences between seasons

and ocean areas were comparatively small. For the coastal areas

(Figure 6A), the three ocean areas had on average similar
FIGURE 4

Species vulnerability indicator (SPV) with respect to OWF. The maps show the spatial distribution in SPV scores for four species (thick-billed murre,
yellow-billed loon, herring gull and common tern) in four seasons (autumn (August-October), winter (November-January), spring (February-April),
and summer (May-July)). SPV is a normalized indicator based on species-specific vulnerability with respect to OWF and habitat suitability.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1335224
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fauchald et al. 10.3389/fmars.2024.1335224
vulnerability. However, the Barents Sea showed some degree of

seasonality with lower values in winter and higher values in

summer, suggesting that there was a net migration out of the

coastal area during winter. Similar seasonality was not found for

the North Sea or the Norwegian Sea. For the offshore areas

(Figure 6B), there was an increasing trend in vulnerability from

south (North Sea) to north (Barents Sea), suggesting a higher

abundance and/or diversity of pelagic seabirds in the north.

Seasonality was also more pronounced in the offshore areas and

with an increasing trend towards the north.

The overall seabird vulnerability indicator with respect to OWF

(TSV) is shown in Figure 7. Note that this indicator is defined by the

normalized maximum seasonal value in each cell. To investigate the
Frontiers in Marine Science 10
dominant inshore-offshore gradient in vulnerability, we plotted the

TSV scores as a function of distance from coast (Figure 8). Note the

sharp decline in TSV from 0 km (TSV between 68 and 100) to 25 km

(TSV between 18 and 39) and a more gradual decline to 50 km (TSV

between 14 and 30), 100 km (TSV between 12 and 27), and >

300 km (TSV between 5 and 15).

To illustrate the use of the map product, we extracted the

vulnerability scores (total, seasonal and species) for three of the

areas proposed for OWED in the Norwegian EEZ (Figure 9). For each

area, we calculated the quantiles of total vulnerability (TSV), seasonal

vulnerability (SSV), and species vulnerability (SPV). For SPVwe show

the four species-season combinations with highest average SPV. Note

that the most vulnerable species shifted among areas.
FIGURE 5

Seasonal Seabird Vulnerability (SSV) with respect to OWF in the Norwegian EEZ. The maps show the spatial distribution of SSV in four seasons
(autumn (August-October), winter (November-January), spring (February-April), and summer (May-July)). SSV is the normalized sum of species
vulnerability (SPV) from 55 species of seabirds.
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4 Discussion

By combining species-specific data on vulnerability with habitat

suitability maps generated by species distribution models (SDMs),

we developed vulnerability maps with respect to offshore wind

farms (OWF) for 55 species of marine birds in the Norwegian

exclusive economic zone (EEZ). The species included in the
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analyses represent the most abundant seabirds, marine ducks and

geese that occur regularly in Norwegian waters. The maps were

summed to yield seasonal maps of seabird vulnerability and a map

of the overall vulnerability in the assessment area. The resulting

data product targets strategic environmental impact assessments

with respect to offshore wind energy development (OWED) in the

Norwegian EEZ and represents the currently best available

knowledge of the spatial vulnerability of marine birds to OWFs in

the assessment area.

Due to differences in seasonal movements of birds within and

out of the assessment area, differences in habitat preferences and

spatial aggregation, the analyses revealed large variation in spatial

vulnerability among species and seasons. However, when summing

the spatial vulnerability across species, the combined vulnerability

indicator revealed a strong and persistent inshore-offshore gradient

from high vulnerability in inshore waters to low vulnerability in

offshore waters (Figures 7, 8). Similar inshore-offshore gradients in

vulnerability have been found studies carried out in English

territorial waters (Bradbury et al., 2014), the US Pacific Outer

Continental Shelf (Kelsey et al., 2018), and along the US east

coast (Goodale et al., 2019). The inshore-offshore gradient is

probably partly related to the restricted activity range away from

the breeding locations, and partly a result of a diverse group of

coastal species with habitats confined to a narrow strip along the

coast. In contrast to the diverse group of coastal species aggregated

along the coast, a less diverse pelagic group of seabirds is widely

distributed over large ocean areas (Amélineau et al., 2021; Fauchald

et al., 2021).

The spatial pattern of the combined vulnerability indicator is

probably related to the presence of ecological niches (e.g., Fauchald

et al., 2011; Ollus et al., 2023). Different seabird species fill different

spatial niches and have different migratory behavior, and if niches

are evenly distributed in the habitat, spatial and seasonal variance in

vulnerability will decrease as more species are included in the

cumulative indicator. However, the interface between terrestrial

and marine habitats hosts a myriad of ecological niches for seabirds
FIGURE 7

Total Seabird Vulnerability (TSV) with respect to OWF in the
Norwegian EEZ. TSV is defined as the normalized maximum
seasonal vulnerability and is based on maps of habitat suitability and
species-specific vulnerability with respect to OWF for 55
seabird species.
A B

FIGURE 6

Seasonal seabird vulnerability indicator (SSV). Box-whiskers plot of SSV scores from (A) coastal areas (< 100 km from coastline), and (B) offshore
areas (> 100 km from the coastline) in the North Sea, Norwegian Sea and Barents Sea. SSV is the normalized sum of species vulnerability (SPV) from
55 species of seabirds.
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compared to offshore habitats. Consequently, coastal areas are

expected to hold a higher diversity of seabirds and consequently

show a higher combined vulnerability across species.

Compared to the inshore-offshore gradient, the differences

between ocean areas and seasons were negligible. Interestingly, we

found no differences in vulnerability between the coastal areas of the

North Sea, Norwegian Sea, and Barents Sea. Accordingly, the

indicator does not reflect the geographic distribution of the large

seabird colonies which are mainly found in the north (Brun, 1979;

Fauchald et al., 2015, Fauchald et al., 2021). However, these colonies

are dominated by a few pelagic seabird species (e.g., black-legged

kittiwake, common murre and Atlantic puffin), and by summing up

the vulnerability of all marine bird species, the spatial difference was

cancelled out. The feeding areas around the large seabird cliffs are

however highly sensitive areas with respect to OWED as large

number of birds commute to and from the colony during summer

(Peschko et al., 2020, Peschko et al., 2021). These areas should

accordingly be included in the assessment either by incorporating

them in the indicator presented here or by a separate assessment.

The data product presented here is particularly relevant in a pre-

construction phase where the vulnerability indicators can give input in

the siting process of OWFs to avoid or reduce harm to marine birds

(Croll et al., 2022). The dominant inshore-offshore gradient found in

the present studymight suggest that a simple rule of thumb in the siting

process is to avoid development in the coastal areas as the harm to

seabirds, as quantified by the vulnerability indicator, is expected to be

reduced by 70-80% bymoving the OWED from the coast to 50-100 km

offshore, while little will be gained by moving the project along the

coast (Figures 7 and Figure 8). While possibly true, this simplification
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hides important variation in spatial vulnerability among species (e.g.,

Figure 9). Indeed, the large variance in habitat use and migration

pattern between species revealed in the present study, underlines the

importance of incorporating all relevant species in the assessment. The

indicator approach, where all available data and knowledge is

combined is particularly useful to avoid assessment biases in such

large-scale strategic assessments. Moreover, the dataset can be used to

identify species and populations of particular concern and thereby

guide directed environmental impact assessments as well as mitigation

actions and post-constructing monitoring priorities (see Figure 9).

Although the present map product represents the best currently

available knowledge, the indicators are associated with complex

uncertainties and known, and unknown biases related to the data

sampling and the analytical approach (see section 2.2 and 2.3).

Importantly, low sampling intensity in remote offshore areas could

affect the uncertainty of the SDMs and consequently uncertainty in

the predicted habitat suitability. Moreover, the target group approach

(Phillips et al., 2009) will generate a higher number of background

points in areas with high species diversity and thereby bias the habitat

predictions to lower values (Ranc et al., 2017; Vollering et al., 2019).

Because coastal waters hold higher seabird diversity, the present

predicted inshore-offshore gradient is therefore probably under-

estimated. This bias is exacerbated by the log-transformation of the

vulnerability scores (eq. 7) which downplay the highly aggregated

spatial distribution of coastal species.

The rapid development of offshore wind energy has enabled

several recent studies that document the impact of OWF on

seabirds through risk of collision (Thaxter et al., 2019; Johnston

et al., 2022) and displacement (Mendel et al., 2019; Peschko et al.,
FIGURE 8

Relationship between Total Seabird Vulnerability (TSV) and distance from coastline. TSV is a normalized indicator based on maps of habitat suitability
and species-specific vulnerability with respect to OWF for 55 seabird species.
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2020, Peschko et al., 2021; Garthe et al., 2023). Indeed, the rapid

increase in knowledge in this area of research will probably improve

the classification and weighing of the vulnerability indicators. OWF

is one of many stressors that impact seabirds in the marine

environment (Croxall et al., 2012; Dias et al., 2019) and

incorporating other human stressors in the indicators could be an

important addition to the present approach. Finally, climate change
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and other anthropogenic impacts are currently changing marine

ecosystems and consequently the distribution and abundance of

seabirds (Cooley et al. 2022). In sum, improved data, knowledge

and statistical methods combined with a changing marine

environment suggest that the relevance of the data product

presented here has a limited time horizon and should be

updated regularly.
FIGURE 9

Vulnerability analyses of 3 potential areas for OWED in the Norwegian EEZ. The three map products are illustrated as box-whiskers plots for three
identified areas (Nordavind A, Nordvest A and Vestavind F). The left boxplots show the quantiles of total vulnerability scores (TSV) in the proposed
areas, the middle boxplots show the quantiles of seasonal vulnerability scores (SSV), and the right boxplots show the quantiles of species vulnerability
scores (SPV) for the four most vulnerable species-season combinations. The map shows total seabird vulnerability (TSV) as a color gradient and all
the proposed areas for OWED as black polygons.
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Phillips, S. J., Dudıḱ, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., et al.
(2009). Sample selection bias and presence-only distribution models: Implications for
background and pseudo-absence data. Ecol. Appl. 19, 181–197. doi: 10.1890/07-2153.1

Ranc, N., Santini, L., Rondinini, C., Boitani, L., Poitevin, F., Angerbjörn, A., et al.
(2017). Performance tradeoffs in target-group bias correction for species distribution
models. Ecography (Cop.). 40, 1076–1087. doi: 10.1111/ecog.02414

R Core Team. (2023). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing: Vienna, Austria. Available at: https://www.R-
project.org/.

Robinson Willmott, J. C., Forcey, G., and Kent, A. (2013). The relative vulnerability
of migratory bird species to offshore wind energy projects on the atlantic outer
continental shelf: An assessment method and database. Final report to the U.S.
Department of the interior, bureau of ocean energy management. OCS Study BOEM
2013–207, 1:275.

SEAPOP (2023) SEAPOP. Available online at: https://seapop.no/en/.

SEATRACK (2023) SEATRACK. Available online at: https://seapop.no/en/seatrack/.

Tasker, M. L., Hope Jones, O., Dixon, T. I. M., Blake, B. F., and Jones, P. H. (1984).
Counting seabirds from ships: a review of methods employed and a suggestion for a
standardized approach. Auk 101, 567–577. doi: 10.1093/auk/101.3.567

Thaxter, C. B., Ross-Smith, V. H., Bouten, W., Clark, N. A., Conway, G. J., Masden, E.
A., et al. (2019). Avian vulnerability to wind farm collision through the year: Insights
from lesser black-backed gulls (Larus fuscus) tracked from multiple breeding colonies.
J. Appl. Ecol. 56, 2410–2422. doi: 10.1111/1365-2664.13488

Vanermen, N., Onkelinx, T., Courtens, W., Van de walle, M., Verstraete, H., and
Stienen, E.W. M. (2015). Seabird avoidance and attraction at an offshore wind farm in the
Belgian part of the North Sea.Hydrobiologia 756, 51–61. doi: 10.1007/s10750-014-2088-x

Vollering, J., Halvorsen, R., Auestad, I., and Rydgren, K. (2019). Bunching up the
background betters bias in species distribution models. Ecography (Cop.). 42, 1717–
1727. doi: 10.1111/ecog.04503

Wood, S. N. (2017). ). Generalized additive models: An introduction with R, second
edition. Chapman and Hall/CRC: Boca Raton, US. doi: 10.1201/9781315370279
frontiersin.org

https://doi.org/10.3354/meps13854
https://doi.org/10.1016/j.jenvman.2013.01.025
https://doi.org/10.1111/j.0021-8901.2004.00918.x
https://doi.org/10.1038/s41598-023-31601-z
https://doi.org/10.1088/1748-9326/ab205b
https://doi.org/10.1088/1748-9326/ab205b
https://doi.org/10.1890/ES13-00181.1
https://doi.org/10.1038/nature11397
https://doi.org/10.1126/science.1149345
https://cran.r-project.org/package=terra
https://doi.org/10.1175/JCLI-D-20-0166.1
http://www.ices.dk/data/dataset-collections
https://doi.org/10.12681/mms.312
https://doi.org/10.3354/meps13964
https://doi.org/10.1016/j.jenvman.2018.08.051
https://doi.org/10.1016/j.eiar.2021.106635
https://doi.org/10.1016/j.indic.2020.100080
https://doi.org/10.1016/j.jenvman.2018.10.053
https://doi.org/10.1002/ecm.1370
https://veiledere.nve.no/havvind/identifisering-av-utredningsomrader-for-havvind/
https://doi.org/10.3389/fmars.2023.1233820
https://doi.org/10.1016/j.jenvman.2020.111509
https://doi.org/10.1016/j.jenvman.2020.111509
https://doi.org/10.1016/j.marenvres.2020.105157
https://doi.org/10.1016/j.marenvres.2020.105157
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1111/ecog.02414
https://www.R-project.org/
https://www.R-project.org/
https://seapop.no/en/
https://seapop.no/en/seatrack/
https://doi.org/10.1093/auk/101.3.567
https://doi.org/10.1111/1365-2664.13488
https://doi.org/10.1007/s10750-014-2088-x
https://doi.org/10.1111/ecog.04503
https://doi.org/10.1201/9781315370279
https://doi.org/10.3389/fmars.2024.1335224
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Mapping seabird vulnerability to offshore wind farms in Norwegian waters
	1 Introduction
	2 Materials and methods
	2.1 Study area and species
	2.2 Habitat suitability maps
	2.2.1 NEAS dataset
	2.2.2 Seabirds at-sea data
	2.2.3 Coastal survey data
	2.2.4 Citizen science data
	2.2.5 Environmental data
	2.2.6 Sampling bias and the target group approach
	2.2.7 Species distribution models (SDMs)
	2.2.8 Calculation of habitat suitability

	2.3 Species-specific vulnerability
	2.3.1 Conservation status
	2.3.2 Collision risk
	2.3.3 Disturbance and displacement
	2.3.4 Combined non-spatial vulnerability

	2.4 Vulnerability maps
	2.4.1 Normalization


	3 Results
	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


