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ABSTRACT 

This study examined the activity of the endemic Hawaiian hoary bat (Lasiurus cinereus 
semotus) at wind turbines operated by Auwahi Wind Energy, LLC, on southern Maui Island, 
from August to November 2018. The research was conducted to assess the potential effect of 
wind speed and turbine operation on bat presence and behavior and compared information 
obtained from both acoustic monitoring and thermal videography. 

During the four months of nightly surveillance at four wind turbines, we observed 384 visual 
(videographic) and 244 acoustic detection events involving bats. Bats were infrequently 
detected, averaging 0.08 events per hour for both visual and acoustic samples. Detections 
occurred throughout the monitoring period, but bat presence was only evident for a fraction 
(acoustic: 30%; visual: 44%) of the turbine-nights sampled. Bats were present throughout the 
night, but detections exhibited a unimodal peak centered on the first third of the night, with 
events largely absent in the latter half of the night and no apparent seasonal trend towards 
earlier or later occurrence within nights. However, a decline in the visual detection rate was 
noted over the four-month period (a similar assessment was not available from acoustic 
samples due to missing data for much of the later months). Visual bat detections were not 
significantly correlated over nights (i.e., temporally), but were positively associated among 
turbines (i.e., spatially). 

Visual detections were generally brief (median = 9.0 sec), infrequent (median time between 
events = 49.0 min), and involved single passes (57%) largely comprised of a single bat (94%). 
The amount of time during which bats were visually observed amounted to only 0.05% of total 
videographic monitoring (2.5 hours of 5,066 total hours). Although not directly comparable to 
the video results because of differences in the volume of airspace sampled and nature of 
observation, acoustic detection events were similarly brief (median = 6.0 sec), infrequent 
(median time between passes = 38.8 min), and also composed only 0.05% of the total period 
of acoustic monitoring (1.6 hours of 3,036 total hours). Most visual observations (61%) were of 
individuals flying at some point during the event to within about 15 m of the turbine nacelle 
(machinery housing atop the monopole). Erratic flight paths were the most prevalent flight type 
with bats often repeatedly approaching and circling the nacelle. Terminal-phase (“feeding 
buzz”) calls were only noted in 3% of all acoustic events. 

Bats were most frequently detected visually at relatively low wind speeds (median = 
3.4 m/sec); however, 10% of events occurred at wind speeds over 8.5 m/sec. Nightly bat 
detection rates for the four-month period of monitoring were negatively correlated with total 
daily precipitation. Generalized linear mixed model analysis confirmed that detection rates were 
negatively associated with wind speed and precipitation and indicated a positive relation with 
intermittent wind speed and its consequent effect on turbine blade rotation (i.e., frequent 
intervals of starting and stopping). 

The co-occurrence of bat detection obtained from videographic and acoustic monitoring 
methods was generally low, and in instances when individuals were visually observed, bats 
were detected acoustically during only 12% (within a 10-minute window), 22% (within a 2-hour 
window), and 56% (at some point during the entire night) of such events. Most visual 
detections (65% within a 2-hour window) lacking an acoustic detection involved bats observed 
flying within about 15 m of the turbine nacelle on which acoustic detector microphones were 
situated.  
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INTRODUCTION 

The prevalence and causes of bird collisions with wind turbines have been studied and 
documented since the 1980s (e.g., Byrne 1983, Howell and Didonato 1991). Investigation into 
the scope of bat fatalities at wind energy facilities is a more recent development (e.g., Fiedler 
2004, Johnson 2005, Kunz et al. 2007, Arnett et al. 2008). These studies have generally 
monitored bat acoustic activity at turbines to provide insight into the association of bat 
occurrence, turbine operation, and geographic and weather variables (e.g., Baerwald and 
Barclay 2009, Weller and Baldwin 2012, Foo et al. 2017). 

Bats, however, are cryptic nocturnal mammals that can be difficult to sample during flight and 
at relevant heights. Recent research has found bats in flight may often forgo echolocation or 
vocalize in a way that is not detectable with common acoustic monitoring methods (Gorresen et 
al. 2017, Corcoran and Weller 2018). Silent flight behavior has implications for studies of bat 
behavior and management aimed at minimizing or avoiding fatalities associated with wind 
energy. 

As an alternative to acoustic sampling, visual-based methods such as thermal imaging offer 
certain advantages due to its capacity to sample relatively large volumes of airspace over long 
periods and reveal aspects of bat behavior not readily obtained solely from acoustic data. To 
date, however, only a small number of studies have used thermal imaging to conduct long-term 
monitoring of bat behavior at wind turbines. These studies have shown bats engaged in 
investigative behavior of turbine blades, nacelles (machinery housing atop the monopole), and 
monopoles; repeated approaches after near strikes with moving blades; social interactions by 
multiple bats; and a concentration of flight activity on the leeward (downwind) side of turbines 
(Horn et al. 2008, Cryan et al. 2014, Gorresen et al. 2015b). Visual-based systems can produce 
higher detection probabilities than acoustic-only sampling (Gorresen et al. 2018) with the 
potential to improve assessments of bat activity and behavior at turbines (e.g., Korner-
Nievergelt et al. 2013). However, although not relevant to Hawai‘i (which harbors a single 
species of bat), video recordings are generally not informative for species identification. 

Monitoring that combines both acoustic and visual-based systems may also have additional 
benefits in linking specific behaviors generally only evident when analyzed as paired data 
sources (e.g., response to deterrents [Gorresen et al. 2015a]; flight and vocalization indicative 
of foraging [Gorresen et al. 2018]; obstacle avoidance [Corcoran and Weller 2018]). Sampling 
with combined acoustic-visual systems may also help address questions related to the 
frequency of bat vocalization at turbines, a key consideration for management aimed at 
minimizing collision risk by curtailing turbine operation following the detection of vocalization 
(e.g., Hayes et al. 2019).  

In light of the above, we initiated a study with support of Auwahi Wind Energy, LLC, that 
applied both acoustic and visual-based monitoring systems with the objective of examining bat 
behavior at wind turbines and its relation with wind speed, a principal variable in determining 
bat activity and collision risk at turbines (Korner-Nievergelt et al. 2013, Wellig et al. 2018). The 
Hawaiian hoary bat (Lasiurus cinereus semotus, Vespertilionidae) served as the focal species in 
this study because it is an endangered endemic susceptible to fatality by collision with moving 
wind turbine blades (Gorresen et al. 2015b) and the subject of management aimed at 
mitigating these effects (Mykleseth 2017, Tetra Tech 2018). The North American subspecies, L. 
c. cinereus, accounts for approximately 40% of all bat fatalities at turbines in continental North 
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America (Arnett and Baerwald 2013). Also known as the ‘Ōpe‘ape‘a, the Hawaiian hoary bat is 
the only extant native terrestrial mammal and sole bat species in Hawaii State and occurs on all 
of the major islands (Tomich 1986). Given previous observations of cryptic vocalization by 
Hawaiian hoary bats in semi-natural environments (Gorresen et al. 2017), we also examined the 
correspondence between acoustic and visual-based detection rates of bats at wind turbines. 

METHODS 

Study Area 
The study area was located on the wind energy facility operated by Auwahi Wind Energy, LLC, 
on southern Maui Island, Hawaii. Wind turbines at the facility consist of eight 3-megawatt WTGs 
(Siemens SWT-3.0-101, Hamburg, Germany), each with a hub height of 80 m, a rotor diameter 
of 101 m, a maximum height of 131 m, and a rotor-swept area of 8,012 m² 
(www.thewindpower.net/turbine_en_275_siemens_swt-3.0-101.php). Sampling for bat 
occurrence spanned a four-month period from August 1 to November 30, 2018, at four wind 
turbine generators (WTG 2, 4, 5, and 7) previously equipped with acoustic detectors managed 
by Natural Power Consultants, LLC (Saratoga Springs, New York, USA; described below). 

Landcover in the area is dominated by dryland vegetation comprised of open grassland, wiliwili 
(Erythrina sandwicensis ) groves, and kīawe (Prosopis juliflora ). The moderately sloping area 
inclusive of the monitored turbines spans a low elevation range (150–315 m above sea level 
[asl]) near the coast and is situated over 7 km from tree vegetation that might serve as day-
roost habitat (within the region, in areas generally >600 m asl). 

Local climatic conditions in the area exhibit relatively constant temperatures, little rainfall, and 
persistent strong winds throughout much of the year. Sunset to sunrise (nighttime) temperature 
ranged from 29.1 to 25.9°C on August 1 and from 26.6 to 22.9°C on November 30 (recorded at 
a weather station located at sea-level 10.5 km west of the study area; 
www.wunderground.com/dashboard/pws/KHIKIHEI5; accessed December 3, 2018). Cumulative 
daily precipitation totaled 33.0 cm over the four-month study period (recorded at a weather 
station located 7.3 km east-northeast from the Auwahi Wind Energy facility [USGS 
203721156151601 255.0 Kepuni Gulch Rain Gage; 225 m elevation] 
waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=203721156151601; accessed 
December 3, 2018; also available at https://doi.org/10.5066/F7P55KJN). Prevailing winds during 
this period were generally easterly, and nighttime wind speeds recorded at the nacelle 
(machinery housing atop the monopole) of sampled turbines averaged 7.1 m/sec (25.6 km/hr), 
with speeds above 13.0 m/sec recorded about 10% of the time (G. Akau, Auwahi Wind Energy, 
written comm., 2018). Wind speed and direction were recorded by an ultrasonic anemometer 
(FT702LT-V22, FT Technologies Ltd., Sunbury on Thames, United Kingdom) and adjusted for 
placement behind the rotors on a turbine nacelle. Wind speed data for the monitored turbines 
were provided by Auwahi Wind Energy. 

Monitoring Bat Occurrence and Behavior 
The rotor-swept area of each turbine was monitored using a surveillance camera equipped with 
a 19-mm lens (Axis Q1942-E, Axis Communications, Lund, Sweden) that imaged in the thermal 
infrared spectrum (~9,000–14,000 micrometers) of electromagnetic radiation. The camera 
sampled at a rate of 30 frames per second with a resolution of 640 by 480 pixels and required 
no supplemental illumination. The camera was mounted approximately 4 m from the ground on 
the turbine monopole using a mounting base (RigMount X6 Magnet Camera Mounting Platform, 
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Rigwheels, Minneapolis, Minnesota, USA; Figure 1). The camera was aimed directly up the 
tower such that the video scene included the monopole, turbine blades, nacelle, and 
surrounding airspace. Cameras were placed on the leeward (downwind) side of the turbines to 
image the perspective at which bat activity has been generally shown to be highest in prior 
studies (Cryan et al. 2014, Gorresen et al. 2015b).  

 

 

Figure 1. Placement of camera on turbine monopole (circled, left panel) and camera orientation 
(right panel). 

 

Video imagery was processed using custom-written code and matrix-based statistical software 
(Mathworks, Natick, Massachusetts, USA) to automatically detect animals flying through the 
video scenes. Video was recorded at 30 frames per second, and every 10th video frame was 
analyzed resulting in the detection of events lasting as little as 0.3 sec. All objects detected by 
software algorithms were visually reviewed and identified as bat, bird, or insect. Previous field 
trials showed that bats were detectable with thermal videography at distances of over 100 m.  

Bat vocalization was acoustically monitored from atop turbines with acoustic detector systems 
(Batlogger WE X2, Elekon AG, Luzern, Switzerland) installed and managed by Natural Power 
Consultants, LLC (Saratoga Springs, New York, USA). Each turbine had one rotor-facing 
(windward) and one rear-facing (leeward) omnidirectional microphone mounted atop the 
nacelle and were each tipped down about 9 degrees from vertical. Detectors began recording 
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1 hour before local sunset until 1 hour after sunrise the next morning. Acoustic detections were 
recorded without digital compression as full-spectrum wav sound files with the following 
settings: sampling rate = 312.5 kHz; trigger frequency range of 9–60 kHz within a microphone 
sensitivity range of 10–150 kHz; decibel gain = 12; period trigger = 95; crest factor = 5; pre- 
and post-trigger duration = 500–800 ms; max gap time between calls = 200 ms; maximum call 
file duration = 3 sec; minimum FFT value for trigger = 5; minimum sound level for trigger = 
1%. Microphone sensitivity tests were automatically conducted on a daily basis, and results 
were provided by Natural Power Consultants, LLC. Prevailing wind direction at the facility is 
usually from the east (80%; G. Akau, Auwahi Wind Energy, written comm., 2018); therefore, 
acoustic and video observations were expected to jointly sample the same airspace for 
approximately the same proportion of time. 

Delays with acoustic detector installation atop turbines and the progressive decay of 
microphone sensitivity over the monitoring period limited the number of sample nights available 
for analyses. Microphone sensitivity was particularly problematic for the microphone aimed 
towards the rotor; consequently, with the exception of one analysis, only data for the rear-
oriented microphone were examined herein. The periods during which acoustic data were 
determined to be available totaled to 246 nights (turbine 2, August 1–November 3 [63 nights]; 
turbine 4, September 20–October 6 [17 nights]; turbine 5, August 8–November 30 [115 nights]; 
turbine 7, August 7–September 26 [51 nights]). Moreover, because microphone sensitivity 
decayed as a function of time since installation, examination of acoustic detections relative to 
time of year was not possible because these variables were largely confounded. For these 
reasons, most descriptive analyses and the statistical modeling of bat occurrence and behavior 
relative to weather and turbine operation variables focused on thermal video-based detections. 
The exception was use of all acoustic wav files (i.e., both rotor- and rear-oriented) in an 
assessment of the correspondence of acoustic and visual (video) detections (the rationale being 
that this would minimize underestimation of the correspondence of both types of detections). 
The correspondence between acoustic and visual detection events were examined at three 
scales: the entire night (averaging approximately 12 hours), a 2-hour period (i.e., an acoustic 
detection 1 hour before or after a visual detection), and a 10-minute period (i.e., an acoustic 
detection 5 minutes before or after a visual detection). Bat passes at any point during a visual 
detection were noted if they occurred at a distance of approximately 15 m or less from the 
turbine nacelle, a range within which the probability of acoustic detection is high, particularly 
for low-frequency echolocation calls (Adams et al. 2012, Gorresen et al. 2017), and used to 
conservatively assess the proportion of visual detections lacking a corresponding acoustic 
detection. 

Hawaiian hoary bat vocalizations were examined using Kaleidoscope Pro software (version 
5.1.9, Wildlife Acoustics, Concord, Maine, USA). All echolocation pulses, feeding buzzes, and 
files with multiple bats were verified by audio and visual inspection, and all noise files were 
visually reviewed to ensure that bat calls were not missed. Terminal-phase calls (“feeding 
buzzes” emitted just prior to an attempted insect catch) were qualitatively distinguished from 
search and approach-phase calls by a rapid increase in the call rate. Ancillary information on the 
frequency of acoustic detection of bats from ground-based detectors in the region are described 
in Pinzari et al. (2019a), and for which acoustic data are available at 
https://doi.org/10.5066/P9U0KRMY (Pinzari et al. 2019b). 

Videographic recordings were analyzed to identify individual “detection events”, defined as a 
single pass or two or more detections occurring less than a minute apart, such that if bats went 

https://doi.org/10.5066/P9U0KRMY
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out of video field-of-view they were not counted as independent events if they reappeared 
within 1 minute (consistent with previous work by Cryan et al. 2014 and Gorresen et al. 2018). 
Likewise, acoustic detections were also grouped as the same detection event when two or more 
passes occurred less than 1 minute apart. The resulting data for both video and acoustic 
sampling included total counts of detection events per night. In addition, to account for partially 
sampled nights or nights for which video was not available from one or more turbines, the 
nightly rate of bat detection (number of events per hour, adjusted for duration of night and 
sampling effort) was calculated both for individual turbines and all four turbines combined. 
Flight behavior was qualitatively designated as straight, curved, or erratic based on whether the 
flight path was linear or included one or more curves or loops during the video detection event. 
In cases where two or more bats were concurrently visible, behavior was recorded as agonistic 
when individuals flew within a few meters of each other and interacted with sharp turns and 
chases. 

Variables Associated with Bat Detection 
We examined the association of bat occurrence and behavior with several variables related to 
weather conditions and turbine operation. We hypothesized that nightly counts of detection 
events would be negatively related to wind speed and precipitation, as these conditions may 
restrict flight activity or foraging success (Erickson and West 2002). Conversely, we expected 
detections to be positively influenced by wind speed variability because high values of this 
variable reflect the recurrence of low wind periods during which bats may be more active or 
more likely to approach turbines. Moreover, the number of turbine blade rotation “start-ups” 
(i.e., from zero or low to high rates of rotation) has been found to be positively related to bat 
fatalities (Schirmacher et al. 2018), an outcome possibly linked to increased bat occurrence or 
activity at low wind speeds. The frequency of start-ups is generally associated with the 
incidence of wind speeds below that which triggers turbine shut-down and low-wind speed 
curtailment (LWSC; a management protocol for minimizing the likelihood of bat fatalities and 
incidental take). Consequently, high wind speed variability and frequent turbine start-ups are 
both variables expected to be positively related to nightly counts of detection events. 
Curtailment is accomplished by “feathering” turbine blades; that is, pitching blades parallel to 
the wind, resulting in very slow movement of the rotor and blades. During the period of study, 
turbine LWSC at Auwahi Wind Energy implemented a “cut-in speed” (i.e., wind speed at which 
the turbine begins to rotate and generate power) of 6.9 m/sec from August to October and 
5 m/sec in November. 

Wind speed (m/sec) recorded at the nacelle of each turbine at 10-minute intervals and limited 
to night-time periods were used to calculate nightly mean and standard deviation (SD) metrics; 
referred herein as “wind-mean” and “wind-sd”. Turbine blade movement, measured as rotations 
per minute (“rpm”), was obtained for each turbine over 10-minute intervals from Auwahi Wind 
Energy. Turbine rpm during individual bat detection events were derived directly from the video 
recording of each event by calculating the time needed for the rotor to complete a full rotation. 
The frequency of turbine start-ups (“rpm-starts”) was determined by tallying the number of 
times per night a turbine transitioned from ≤1 rpm to >1 rpm in two or more consecutive 10-
minute periods. For context, at 1.0 rpm, blade tips are moving at a speed of 5.3 m/sec 
(= 19.0 km/hr) for a turbine rotor diameter of 101 m and a circumference of 317 m. 

Precipitation was obtained from a weather station located 7.3 km east-northeast from the 
Auwahi Wind Energy facility (USGS site number 203721156151601, 255.0 Kepuni Gulch Rain 
Gage). Temperature was not included in analyses due to the low variability observed in 
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nighttime values over the four months of sampling (sunset to sunrise temperature differences 
averaged about 3.5°C). 

Descriptive Analyses and Statistical Modeling 
Bat occurrence and behavior were explored and graphically described with a variety of methods 
(e.g., analysis of variance, simple linear regression, correlation analysis) in the statistical 
computing environment R (version 3.5.1; R Core Team 2018). The relation of nightly counts of 
bat detection events to multiple predictor variables were also examined with generalized linear 
mixed models (GLMMs) using the glmmTMB package (Brooks et al. 2019) to account for 
temporally and spatially correlated observations requiring the incorporation of random effects. 
In the GLMMs the variables “night” and “turbine” were added as random effect terms to deal 
with repeated measures at the four turbines. In addition, the models were fit to counts for the 
following fixed effects: “rpm”, “rpm-starts”, “precip”, “wind-mean”, and “wind-sd”. The fixed 
effect terms were scaled and centered on zero (creating z-scores) using the base scale function 
in R to improve model convergence and allow for direct comparison of the magnitude of fixed 
effect coefficients. Mean wind speed and turbine rpm were highly correlated (r = 0.70 from 
measures for all four turbines, and r = 0.92 when excluding turbine 2, which was not 
operational for most of the monitoring period). In addition, rpm start-ups and the standard 
deviation of wind during the night were also moderately correlated (r = 0.37). All other 
variables were correlated pairwise at an r ≤ 0.35. Therefore, to minimize multicollinearity in 
regression analyses and limit the number of models tested, models were developed that did not 
jointly include both of the correlated variables. To account for differences in nightly sampling 
duration among turbines, we included the log of the total duration of recording per night and 
turbine as an offset in models, thereby converting counts of detection events to a detection 
rate. 

Preliminary regression analyses demonstrated underdispersion of the residuals in both negative 
binomial and Poisson models. The consequence of underdispersion is that standard errors (SEs) 
are generally too conservative (i.e., confidence intervals tend to be too broad and p-values too 
large) potentially resulting in false-negative conclusions about parameter effects (Brooks et al. 
2019). To address this, we fit GLMMs with several additional distribution specifications that 
allow for underdispersion; specifically, generalized Poisson and Conway-Maxwell-Poisson 
(Brooks et al. 2019). The four distribution groups are referred herein as NB, P, GP, and CMP for 
the negative binomial, Poisson, generalized Poisson, and Conway-Maxwell-Poisson models. 

The candidate set of predictor variables totaled to 18 models, including a null model with only 
the random effect terms “night” and “turbine”, the offset, and no fixed effects. We used small-
sample-size corrected Akaike information criterion (AICc) via the AICctab function from the 
bbmle package (Burnham and Anderson 2002, Bolker and R Core Team 2017) to compare all 
models. Model ranking was performed in two steps: the first identified the top-ranked model 
from among the 18 candidate models within each of the four distribution groups (NB, P, GP, 
and CMP), and the second step ranked this subset. Final top-ranked models (i.e., those with a 
ΔAICc < 7; Burnham et al. 2011) were examined with post-fitting diagnostics performed with 
the DHARMa package (Hartig 2017). A statistical significance criterion of P < 0.05 was used in 
all tests. 
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RESULTS 

Visual (Thermal Video) Bat Detections—Descriptive Analyses 
Thermal video was recorded at four turbines over the four-month period between August 1 and 
November 30, 2018. Technical difficulties resulted in the loss of recording for 65 turbine-nights. 
The number of nightly recordings over the 122-night period was 111, 119, 107, and 75 for 
turbines 2, 4, 5, and 7, respectively, for a total of 412 turbine-nights with a full or partial night 
of recording (median duration = 12.6 hours, including a 15-minute period before sunset and 
after sunrise). This yielded 5,066 hours of video that resulted in a total of 384 detection events 
of bats (72%) and bat-like observations (27%; n = 140) with an additional 288 bird 
observations. Only definitive bat detections were used in analyses of occurrence and behavior 
(i.e., bat-like detections were not included as these were generally brief and/or of distant 
targets). Visual bat detection data are available at https://doi.org/10.5066/P937H9LQ (Gorresen 
2020) and are summarized in Appendix I and II. 

Bats were detected visually in 44% (n = 180) of the turbine-nights sampled. Detections at 
turbines occurred throughout the night, with the earliest occurring 8 minutes after sunset and 
the latest 16 minutes before sunrise. Detections exhibited a unimodal distribution and a median 
of 0.27 for the fraction of night at which the observation occurred, corresponding to a peak of 
3.4 hours after sunset (Q1 = 0.18, Q3 = 0.45, mean = 0.33 ± 0.20 SD; standardized as a 
fraction of night and scaled from 0 at sunset to 1 at sunrise; Figure 2). Detections generally did 
not begin until about an hour after sunset. 

 

 

Figure 2. Distribution of visual detections of bats by time of night. To account for seasonal 
changes in night duration, the time of detection was standardized as a fraction of night and 
scaled from 0 (sunset) to 1 (sunrise). 

https://doi.org/10.5066/P937H9LQ
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Bats were detected throughout the four-month monitoring period (Figure 3), and linear 
regression demonstrated no evidence of a seasonal shift toward earlier or later activity during 
the night (slope = -1.17e-09, SE = 3.42e-09, P = 0.733). However, the rate of nightly bat 
detection (number of events per hour; adjusted for duration of night and sampling effort, 
including partially sampled nights) was highly variable among nights but evinced a seasonal 
pattern, with the rate decreasing (slope = -0.0005, SE = 0.0002, P = 0.029) from a mean of 
0.11 events/hour (SE = 0.02) on survey night 1 (August 1) to 0.05 events/hour (SE = 0.02) on 
survey night 122 (November 30; Figure 4). 

Figure 3. Detections (points) of bats by time of night over the four-month videographic 
monitoring period. To account for seasonal changes in night duration, the time of detection was 
standardized as a fraction of night and scaled from 0 (sunset) to 1 (sunrise). Situated below 
0.5, the trendline of the mean values (red line) indicates a greater proportion of detections 
occurred in the first half of the night throughout the monitoring period. 

The overall mean nightly detection rate for the entire videographic monitoring period was 0.08 
events/hour (SD = 0.10, Q1 = 0.00, median = 0.04, Q3 = 0.13). Bat detection rates for each 
turbine were similar to the overall mean (Table 1, Figure 5) and not found to be significantly 
different from one another (F[3, 402] = 0.885, P = 0.449). Nightly detection rates 
demonstrated a weak but significant spatial correlation among turbines (all p-values <0.001), 
with pairwise Kendall’s tau values ranging from 0.23 to 0.31 (Figure 6). The detection rate for 
all turbines combined demonstrated a weak positive relation with the rate on a previous night 
(r = 0.18), but the temporal pattern was not statistically significant to a lag of up to 12 nights 
(all p-values ≥ 0.05; Figure 7). 
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Figure 4. Detection rate of bats (number of events per hour per night) for all four turbines 
combined over the four-month videographic monitoring period. Detection rate is adjusted by 
survey effort (i.e., sample duration night interval and number of turbines monitored per night). 
The red line is a linear model of trend in detection rate over the monitoring period. 

 

Table 1. Overall mean detection rate of bats by turbine (mean and SD). Detection rate was 
calculated as the nightly total of detection events at a turbine divided by the sample duration 
per night at the turbine. The combined mean is the overall average of the nightly detection 
rates for the four turbines over the four-month videographic monitoring period. 

Turbine 
Nightly mean 
(events/hour) SD 

2 0.07 0.10 
4 0.07 0.13 
5 0.09 0.14 
7 0.07 0.11 

combined mean 0.08 0.12 
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Figure 5. Detection rate of bats (number of events per hour per night) for each of four turbines 
(2, 4, 5, and 7) over the four-month videographic monitoring period. Detection rates are 
adjusted by survey effort (i.e., sample duration within night interval). Nights with no samples 
are indicated with a black point. 

 

 

Figure 6. Spatial pairwise correlation of nightly detection rates between turbines. The p-values 
for all Kendall’s rank correlation tau values are <0.001. 
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Figure 7. Temporal autocorrelation in the detection rate of bats (number of events per hour per 
night) for a series of lag increments up to 12 nights for all turbines combined over the four-
month videographic monitoring period. Dashed lines indicate the threshold for statistical 
significance given sample size. 

 

Almost all (n = 362; 94%) bat detections involved single bats within the 1-minute period used 
to quantify each event. Multiple bats seen concurrently were observed infrequently, with two 
bats (n = 22) observed during 6% of detection events, and no greater number noted at any 
time with any certainty. Most (n = 14) observations of two bats involved individuals not directly 
interacting, and bats were only rarely seen chasing (n = 5) or closely following each other 
(n = 3). All observations of bats engaged in chasing occurred when the individuals were in 
proximity (approx. <15 m) to the turbine nacelle. 

The duration of individual bat detection events (in part determined by the limited field-of-view) 
averaged 23.5 sec per event. However, 11% (n = 41) of the events lasted 60 sec or more, with 
4% (n = 14) of events lasting ≥120 sec, and one event was sustained for at least 211 sec (min 
= 0.5, Q1 = 3.8, median = 9.0, Q3 = 28.3, max = 211.2). On a per-turbine basis, the 
cumulative duration of nightly detection events averaged 50.1 sec (min = 0.6, Q1 = 7.1, 
median = 20.9, Q3 = 56.9, max = 804.2; Figure 8), with the maximum duration (totaling 13.4 
minutes) comprised of a series of 12 distinct events (occurring on November 15 at turbine 4). 
The duration of detection events appears to moderately decline over time; however, linear 
regression demonstrated no evidence of a seasonal shift toward shorter or longer duration 
episodes of bat activity (slope = -0.016, SE = 0.012, P = 0.187) during the four-month period 
of monitoring (Figure 9). Although the individual and cumulative duration of detection events on 
some nights sometimes lasted several minutes, bats generally did not appear to be spending 
much time in the rotor-swept zone imaged by video. The duration of all detection events totaled 
to 150 minutes (9,015 sec) and made up only 0.05% of the total period of videographic  
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Figure 8. Distribution of the cumulative duration (seconds) of detection events on a nightly and 
per-turbine basis over the four-month monitoring period. 

 

 

Figure 9. Cumulative duration (seconds) of detection events of bats on a nightly and per-turbine 
basis over the four-month monitoring period. The red line is a linear model of trend in event 
duration over the monitoring period.  
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monitoring (2.5 hours of 5,066 total hours). The time difference between consecutive detection 
events within a night averaged 80.4 minutes (min = 1.1, Q1 = 12.8, median = 49.0, Q3 = 
101.2, max = 481.5; Figure 10). Most detection events consisted of a bat making a single pass 
through the field of view (57%; n = 220). Repeated passes (which together compose individual 
detection events when occurring <1 minute apart) were seen less frequently (2–4 passes 
[34%; n = 122], 5–10 passes [10%; n = 38], and 11–15 passes [1%; n = 4]). 

 

 

Figure 10. Distribution of the time interval (minutes) between consecutive detections of bats 
within a night combined for all turbines over the four-month monitoring period. 

 

The largest proportion of bat detections involved erratic flight (80%; n = 306) suggestive of 
active foraging behavior in the immediate area of the turbine (i.e., within the video field-of-
view; Table 2; Figure 11). Curved flight trajectories that may have involved either an approach 
towards or avoidance of the turbine were seen in 14% (n = 55) of events. Observations of 
straight flight paths indicative of a “fly-by” and little time spent near a turbine were observed in 
6% (n = 23) of detections. Some of the observed curved and straight trajectories may simply 
consist of the less erratic parts of flight by bats otherwise engaged in foraging. 

 

Table 2. Number and proportion of detection events by flight path type relative to bat proximity 
to nacelle (near = <15 m, far = ≥15 m). 

Flight type Near Far 
straight 13 (3%) 10 (3%) 
curved 30 (8%) 25 (7%) 
erratic 190 (49%) 116 (30%) 
Total 233 (61%) 151 (39%) 
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Figure 11. Thermal video frame of a Hawaiian hoary bat at nacelle height (80 m) and within 
approximately 15 m of the nacelle (green dashed line), a distance within which vocalizing bats 
are likely to be recorded by acoustic detectors. 

 

Most bat detection events (61%; n = 233) involved individuals that flew to within an estimated 
15 m of the turbine nacelle. Comparatively, this 15-m radius area around the nacelle composed 
about a third of the video camera field-of-view; therefore, bats detected on video seemed to 
have closely approached the nacelle and upper monopole more often than not. Erratic flight 
paths were the most prevalent flight type observed, with bats repeatedly approaching and 
circling the nacelle in most cases. However, a Fisher’s exact test did not demonstrate a 
significant relation (P = 0.513) between the number of events by flight path type as a function 
of bat proximity to turbine nacelle. Observations of displacement of bats or near-strikes by 
spinning turbine blades were seen in only two instances (0.5%). Direct strikes of bats by 
turbine blades were not observed. 

Bats were most frequently detected at relatively low wind speeds (as measured at the turbine 
nacelle at 10-minute intervals; Figure 12). Wind speeds up to 3.4, 5.4, and 8.5 m/sec 
corresponded to 50%, 70%, and 90% of cumulative bat detection events, respectively, and  
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Figure 12. Distribution of bat detection events relative to wind speed (m/sec) measured at the 
turbine nacelle at 10-minute intervals over the four-month monitoring period. 

 

10% of total detection events occurred at wind speeds between 8.5 m/sec and the maximum 
observed value of 18.9 m/sec (Table 3). A two-sample Kolmogorov–Smirnov (KS) test 
comparing wind speed during bat detection events to “ambient” nighttime conditions (both 
recorded at turbine nacelles) confirmed that the cumulative distributions were significantly 
different (KS test statistic D = 0.352, P < 0.0001; Figure 13). The KS test statistic D, defined as 
the maximum value of the absolute difference between the two cumulative distribution 
functions, was located at a wind speed value of 6.6 m/sec, corresponding to approximately 
81% of cumulative bat detection events. 

 

Table 3. Distribution of wind speed (m/sec) during bat detection events relative to randomly 
selected “ambient” nighttime conditions. 

Samples Mean Median 70% 75% 80% 85% 90% 95% 100% 
bat detection events 4.1 3.4 5.4 6.0 6.4 7.4 8.5 9.4 18.9 
ambient nighttime 7.1 7.0 9.8 10.5 11.1 12.2 13.0 14.8 22.0 
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Figure 13. Cumulative distribution of wind speed (m/sec) during bat detection events relative to 
randomly selected “ambient” nighttime conditions recorded throughout the four-month 
monitoring period. A two-sample Kolmogorov–Smirnov (KS) test confirmed that the cumulative 
distributions were significantly different (KS test statistic D = 0.352, P < 0.0001). The KS test 
statistic D, defined as the maximum value of the absolute difference between the two 
cumulative distributions (“distance”), was located at a wind speed value of 6.6 m/sec, 
corresponding to approximately 81% of cumulative bat detection events (vertical dashed black 
line). Wind speeds for a range of cumulative distribution intervals (50%, 70%, and 90%) are 
shown with vertical dashed green lines. 

 

There were relatively few bat detection events during periods when the turbine blades were in 
motion (Table 4, Figure 14). Bat observations during which there was no turbine rotation 
composed 81.5% (n = 313) of total events. A further 10.2% (n = 39) of events were observed 
at turbine rotor speeds of 0.1 to 0.5 rpm, with the remaining 8.3% (n = 32) at rpm values 
>0.5. However, of the 32 events that occurred when the turbine was moving >0.5 rpm, 
8 events ensued when wind speeds were below the curtailment “cut-in” threshold (i.e., the 
wind speed at which the turbine begins to rotate and generate power; ≤6.9 m/sec for the 
period of August to October and ≤5.0 m/sec in November). 

 

Table 4. Turbine rotations per minute (rpm) during bat detection events (number per rpm 
category) and proportion (percent). 

Rpm Number of events Proportion 
0 313 81.5% 

>0–0.5 39 10.2% 
>0.5–1.0 2 0.5% 
>1.0–5.0 1 0.3% 
>5.0–10.0 10 2.6% 

>10.0–16.3 (max.) 19 4.9% 
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Figure 14. Turbine rotor rotations per minute (rpm) relative to wind speed (m/sec) during bat 
detection events over the four-month monitoring period. Locally estimated scatterplot 
smoothing (loess) curves are fit separately for turbines. Wind speed values are specific to the 
nearest 10-minute interval record. Turbine 2 was not operational, and rpm remained at or near 
zero until November 20 (10 nights before the end of monitoring). 

 

Nightly bat detection rates for the four-month period of monitoring were negatively correlated 
with total daily precipitation (Kendall’s rank correlation tau = -0.24, P = 0.0009). In addition, 
there were six periods lasting one or more nights with relatively high total daily precipitation 
(>1 cm) that corresponded with no bat detections or low detection rates (less than the nightly 
mean of 0.08 events per hour; Appendix I). These periods were associated with the passage of 
Hurricane Hector (August 9), Hurricane Lane (August 23–26), Tropical Storm Olivia (September 
12–13), and strong low pressure systems (September 24–27, October 6–7, October 12) 
(National Weather Service Monthly Precipitation Summary, 
www.weather.gov/hfo/hydro_summary, accessed June 6, 2019). 

Visual (Thermal Video) Bat Detections—Generalized Linear Mixed Model Analysis 
The top-ranked GLMMs consistently included distribution types GP and CMP, indicating that 
underdispersion was effectively addressed in the final model selection. The weights of the top 
four models summed to 0.91, with only an additional weight of 0.06 gained from the fifth- and 
sixth-ranked models combined (Table 5). These models largely demonstrated similar 
combinations of variables (Table 6; summarized in Appendix II). All top models included either 
“wind-mean” or “rpm”, and each of the models also included either “rpm-starts” or “wind-sd” 
(neither pairs were included jointly because of their high correlation). Diagnostics demonstrated 
that the final regression models met assumptions of uniformity and did not exhibit zero inflation 
(Appendix III), with underdispersion addressed in GP and CMP models. Data used in models are 
available at https://doi.org/10.5066/P937H9LQ (Gorresen 2020). 

https://doi.org/10.5066/P937H9LQ
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Table 5. Generalized linear mixed models ranked by model fit. “Type” refers to model 
distribution type: generalized Poisson (GP) or Conway-Maxwell-Poisson (CMP). “log L” refers to 
the estimate of the log-likelihood and “DF” refers to model degrees of freedom. 

Model Type Predictor variables log L AICc Δlog L ΔAICc DF Weight 
1 CMP rpm wind-sd precip -470.5 955.4 38.8 0.0 7 0.43 
2 CMP rpm wind-sd  -472.2 956.6 37.2 1.2 6 0.23 
3 GP wind-mean rpm-starts  -472.7 957.7 36.6 2.3 6 0.14 
4 GP wind-mean rpm-starts precip -471.9 958.1 37.5 2.7 7 0.11 
5 GP wind-mean wind-sd  -473.8 959.9 35.5 4.5 6 0.04 
6 GP wind-mean wind-sd precip -473.5 961.3 35.8 6.0 7 0.02 
7 GP rpm precip  -475.2 962.6 34.2 7.2 6 0.01 
8 GP rpm rpm-starts precip -475.2 964.6 34.2 9.2 7 <0.01 
9 GP rpm   -477.9 965.9 31.5 10.6 5 <0.01 
10 GP rpm rpm-starts  -477.8 967.7 31.6 12.3 6 <0.01 
11 GP wind-mean precip  -480.0 972.2 29.4 16.8 6 <0.01 
12 GP wind-mean   -481.3 972.7 28.1 17.4 5 <0.01 
13 GP precip   -502.8 1015.7 6.6 60.4 5 <0.01 
14 GP rpm-starts precip  -502.0 1016.3 7.3 60.9 6 <0.01 
15 GP wind-sd precip  -502.7 1017.6 6.7 62.2 6 <0.01 
16 GP null   -509.4 1026.8 0.0 71.5 4 <0.01 
17 GP rpm-starts   -508.6 1027.4 0.8 72.0 5 <0.01 
18 GP wind-sd   -509.4 1028.9 0.0 73.5 5 <0.01 
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Table 6. Standardized model estimates and associated measures from the six top-ranked 
GLMMs (combined weight = 0.97) predicting the effect of weather and turbine operation 
variables on the number of nightly bat detections events. Number of observations for all models 
= 412. 
Model Parameter Estimate 

 
SE z value p-value Variance 

1 Random effect 
     

 night (Intercept) 
     

0.38 
 turbine 

 

     
0.21 

 Conditional model 
      

 (Intercept) -3.22 ± 0.26 -12.47 <0.0001 
 

 rpm -1.13 ± 0.14 -8.26 <0.0001  
 wind-sd 0.31 ± 0.09 3.29 0.0010 

 

 precip -0.27 ± 0.17 -1.62 0.1055 
 

2 Random effect 
      

 night (Intercept) 
     

0.38 
 turbine 

 

     
0.23 

 Conditional model 
      

 (Intercept) -3.19 ± 0.27 -11.91 <0.0001 
 

 rpm -1.18 ± 0.13 -8.80 <0.0001 
 

 wind-sd 0.33 ± 0.09 3.60 0.0003 
 

3 Random effect 
      

 night (Intercept) 
     

0.42 
 turbine 

 

     
0.02 

 Conditional model 
      

 (Intercept) -3.17 ± 0.14 -22.15 <0.0001 
 

 wind-mean -1.08 ± 0.13 -8.05 <0.0001 
 

 rpm-starts 0.40 ± 0.09 4.23 <0.0001 
 

4 Random effect 
      

 night (Intercept) 
     

0.41 
 turbine 

 

     
0.02 

 Conditional model 
      

 (Intercept) -3.19 ± 0.14 -22.04 <0.0001 
 

 wind-mean -1.04 ± 0.14 -7.49 <0.0001  
 rpm-starts 0.39 ± 0.09 4.12 <0.0001 

 

 precip -0.21 ± 0.18 -1.16 0.2450 
 

5 Random effect 
      

 night (Intercept) 
     

0.42 
 turbine 

 

     
0.00 

 Conditional model 
      

 (Intercept) -3.15 ± 0.13 -24.20 <0.0001 
 

 wind-mean -1.09 ± 0.14 -7.94 <0.0001 
 

 wind-sd 0.39 ± 0.10 3.95 <0.0001 
 

6 Random effect 
      

 night (Intercept) 
     

0.42 
 turbine 

 

     
0.00 

 Conditional model 
      

 (Intercept) -3.16 ± 0.13 -23.97 <0.0001  
 wind-mean -1.06 ± 0.14 -7.335 <0.0001  
 wind-sd 0.37 ± 0.10 3.675 0.0002 

 

 precip -0.14 ± 0.18 
 
 

-0.743 0.4575 
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Acoustic Bat Detections—Descriptive Analyses 
Acoustic monitoring at the four turbines yielded 247 turbine-nights of viable recording, 
comprising 3,036 hours of sampling (including a 15-minute period before sunset and after 
sunrise; turbine 2 [767.0 hrs], turbine 4 [212.2 hrs], turbine 5 [1,446.7 hrs], turbine 7 [610 
hrs]). During this period a total of 1,873 wav sound files with confirmed bat detections were 
acquired from the rear-facing (leeward) microphone. Detections pooled into groups that 
occurred within 1 minute of each other totaled to 244 discrete events. Bats were detected 
acoustically in 31% (n = 75) of the turbine-nights sampled. Acoustic bat detection data are 
available at https://doi.org/10.5066/P937H9LQ (Gorresen 2020) and are summarized in 
Appendix I and II. 

Acoustic detections of bats at turbines occurred throughout the night, with the earliest detection 
occurring 25 minutes after sunset and the latest 18 minutes before sunrise. Detections 
exhibited a unimodal distribution and a median fraction of night time of detection equal to 0.28, 
corresponding to a peak about 3.3 hours after sunset (Q1 = 0.19, Q3 = 0.40, mean = 0.32 ± 
0.18 SD; standardized as a fraction of night and scaled from 0 at sunset to 1 at sunrise; Figure 
15). A Welch two-sample t-test (Delacre et al. 2017) of the bat observations produced by video 
and acoustic monitoring found no significant difference in the mean time of detection events 
between the two sampling methods (t = 1.0592, df = 558.37, P = 0.290). 

 

 

Figure 15. Distribution of acoustic detections of bats by time of night over the four-month 
monitoring period. To account for seasonal changes in night duration, the time of detection was 
standardized as a fraction of night and scaled from 0 (sunset) to 1 (sunrise). 

 

 

https://doi.org/10.5066/P937H9LQ
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The overall mean acoustic detection rate for which data were available was 0.08 events/hour 
(SD = 0.18; Q1 = 0.00, median = 0.00, Q3 = 0.08). Because the acoustic samples were largely 
concentrated on the earlier part of the four-month monitoring period (Figure 16), a direct 
comparison for all turbines combined with the rate obtained from videographic sampling was 
not possible. However, acoustic samples for turbine 5 were comparable in the span of the 
monitoring period that matched video samples, and a Welch two-sample t-test found no 
significant difference in the mean detection rate between the two sampling methods (t = 
1.7011, df = 167.11, P = 0.0978). Extensive periods with missing acoustic data and uncertainty 
in the decay rate of microphone sensitivity did not permit a quantitative comparison of 
detection rates among turbines relative to time of year. 

 

 

Figure 16. Detection rate of bats (number of events per hour per night) for each of four 
turbines (2, 4, 5, and 7) over the four-month acoustic monitoring period. Detection rates are 
adjusted by survey effort (i.e., sample duration within night interval). Nights with no samples 
are indicated with a black point.  

 

The duration of individual acoustic bat detection events (in part determined by the range 
acoustic detectors are capable of sampling) averaged 23.2 sec per event. However, 7% (n = 
17) of the events lasted 60 sec or more, of which 2% (n = 5) of events lasted ≥120 sec, and 
one event was sustained for 13.4 minutes (min = 3.0, Q1 = 3.0, median = 6.0, Q3 = 21.0, max 
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= 803.0 sec). On a per-turbine basis, the nightly cumulative duration of events averaged 76.0 
sec (min = 3.0, Q1 = 6.0, median = 36.0, Q3 = 71.0, max = 1,232.0; Figure 17), with the 
maximum duration (totaling to 20.5 minutes) comprised of 14 individual events (occurring on 
September 25 at turbine 5). Although the cumulative duration of events appears to more than 
halve during the four-month period of monitoring, high variance precluded the detection by 
linear regression of a seasonal change in the duration of bat activity (slope = -0.0446, SE = 
0.0329, P = 0.1805; Figure 18). As with the results inferred from visual (thermal video) 
monitoring, acoustic sampling indicated that bats generally do not appear to be spending much 
time in the rotor-swept zone. The duration of all detection events totaled to 94 minutes (5,650 
sec) over the survey and made up only 0.05% of the total period of acoustic monitoring (1.6 
hours of 3,036 total hours). Acoustic detections were infrequent and the time difference 
between consecutive events within a night averaged 65.4 minutes (min = 1.4, Q1 = 14.4, 
median = 38.8, Q3 = 74.7, max = 530.6; Figure 19). Most nightly detection events (57%; n = 
44) at a turbine were comprised of 10 or fewer “bat passes” (i.e., distinct wav files). More 
numerous passes were recorded less frequently: >10 to 100 passes (40%; n = 31); >100 
passes (3%; n = 2; Figure 20). Terminal-phase (feeding buzz) type calls were only noted in 3%
(n = 7) of all events.

Figure 17. Distribution of the cumulative duration (seconds) of acoustic detection events on a 
nightly and per-turbine basis over the four-month monitoring period. 
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Figure 18. Cumulative duration (seconds) of acoustic detection events (adjusted for total nightly 
sampling duration for all turbines) over the four-month monitoring period. The red line is a 
linear model of trend in event duration. 

 

 

Figure 19. Distribution of the time interval (minutes) between consecutive acoustic detections of 
bats within a night over the four-month monitoring period. 
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Figure 20. Distribution of the number of discrete detections (wav sound files measuring “bat 
passes”) that comprised events over the four-month monitoring period. 

 

The correspondence between acoustic and visual detection events at a turbine were examined 
at three scales: the entire night (averaging approximately 12 hours); a 2-hour period (i.e., an 
acoustic detection 1 hour before or after a visual detection); and a 10-minute period (i.e., an 
acoustic detection 5 minutes before or after a visual detection). A total of 187 turbine-nights 
was concurrently sampled both acoustically and visually. Of this subset, acoustic detections 
(regardless of whether it was also detected visually) composed 33% (n = 62) of the 
concurrently sampled turbine-nights (Table 7). Acoustic samples confirmed bat presence on 
56% (= 45/81) of the turbine-nights for which bats were also detected visually with thermal 
cameras at some point during the night. Bats were not detected by either method during 48% 
(n = 89) of the concurrent sample. 

 

Table 7. Proportion of concurrently sampled turbine-nights (n = 187) with bat detections. 
Sample method Nights bats detected 

 Both visual & acoustic 45 (24%) 
Visual only 36 (19%) 
Acoustic only 17 (9%) 
Neither method 89 (48%) 
Visual only plus both visual & acoustic 81 (43%) 
Acoustic only plus both visual & acoustic 62 (33%) 
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At a finer temporal scale, there were a total of 294 visual detection events during the 
concurrently sampled period, of which 22% (n = 65) of acoustic detections occurred within a 2-
hour window of a visual detection, and of these, a subset of 12% (n = 36) occurred within a 
10-minute window. Conversely, a total of 229 visual detection events did not have an acoustic 
match within a 2-hour window, even though 65% (n = 149) of these involved a bat making a 
close approach to the nacelle (i.e., within approximately 15 m). 

 

DISCUSSION 

Our findings reveal new information about the potential effects of wind speed and turbine 
operation on the presence and behavior of Hawaiian hoary bats occurring on the coast of 
southwest Maui. We used complementary observation technologies (sound recordings and video 
imaging) over four months to document distinct seasonal and nightly patterns in the occurrence 
and activity rates of hoary bats at the Auwahi Wind Energy facility. Overall, the picture 
emerging from these results is that individual hoary bats from other parts of the island 
sporadically visit the wind facility, usually before midnight, dwell in the airspace near each 
turbine for a few seconds (probably searching for insect prey), and then move out of the area 
without returning for several nights. Bat activity patterns across the local landscape were likely 
affected by the presence of wind turbines, weather conditions, and possibly operational 
changes implemented as mitigation efforts. These findings offer unique perspective toward 
broadening our understanding of the behavioral reasons why bats might regularly approach 
wind turbines, gauging the efficacy of different monitoring and research technologies, and point 
to new possibilities for fatality reduction.  

We observed bat activity at the Auwahi wind turbines from early August through late November 
of 2019. Although this timespan represents an intensive field and analysis effort, it only covered 
one-third of an annual cycle during a single year, so our conclusions are based on conditions 
that happened to occur at the study site during this period. Lacking additional longer-term, site-
specific information, the following discussion assumes that the patterns we report are 
representative of typical bat visitation, weather conditions, and turbine operation at the site. 

Although we detected a slight downward trend in bat visitation to the wind turbines from 
August through November of 2019, bat activity was consistently low and sporadic. This 
downward seasonal trend differs from more distinct patterns of hoary bat activity observed at 
wind facilities studied using comparable methods on nearby islands (Gorresen et al. 2015b) and 
on the U.S. mainland (Cryan et al. 2014). At a wind facility on the island of O‘ahu, bat visitation 
to turbines increased during a six-month study period spanning from mid-May through mid-
November of 2013, peaking in November (Gorresen et al. 2015b). We are not aware of other 
comparable data sets relevant to Hawaiian hoary bats. On the U.S. mainland and Canada, hoary 
bat fatality and video activity at wind turbines generally begins increasing in mid-June, tends to 
peak in September, then decreases by October and November (Arnett and Baerwald 2013, 
Cryan et al. 2014).  

The question of whether bat activity and presumably collision risk in Hawai‘i is seasonally 
consistent or peaks during certain times of year remains unanswered. The hypothesis that 
seasonal peaks in hoary bat fatalities at turbines on the mainland have more to do with 
migration than other factors (Cryan and Barclay 2009), and thus the non-migratory Hawaiian 
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hoary bat would be less susceptible, is yet untested. The possibility remains that factors other 
than migration, such as feeding or mating strategies that trigger bat investigation of tall 
landscape structures, primarily drive the seasonal peaks of bat fatalities observed elsewhere 
(Cryan and Barclay 2009, Cryan et al. 2014). Considering our results and available information, 
seasonal peaks in bat activity and fatality rates at wind turbines may occur in Hawai‘i too, yet to 
our knowledge relevant year-long observations of occurrence combined with fatality monitoring 
have not been made at a sufficient number of wind energy facilities within the range of the 
Hawaiian hoary bat to discern whether or not a distinct and consistent seasonal peak occurs. 
Clearly establishing the existence and temporal consistency of seasonal peaks in bat activity at 
wind turbines has clear implications toward design and implementation of operational fatality 
reduction strategies.  

We observed both similarities and differences in the nightly activity patterns of bats at the 
Auwahi Wind Energy facility compared to those uncovered using similar methods at turbines on 
O‘ahu and the U.S. mainland. The bat detection rate at the Auwahi Wind Energy facility, 
measuring in the hundredths of bat detections per hour over the approximately 5,000 hours of 
video observation, was much lower than that observed during a comparable video-based study 
on O‘ahu. The detection rate at the Auwahi Wind Energy facility was about an order of 
magnitude lower than was observed at turbines in an upland forest site on O‘ahu, where bat 
detections numbered in the tenths (0.88) per hour over almost 4,000 hours of video, and which 
also included additional months with low bat activity (mid-May through July; Gorresen et al. 
2015b). Similar to patterns observed on the U.S. mainland, hoary bat activity around the 
turbines at the Auwahi Wind Energy facility mostly occurred during the first half of the night, 
although bats were sometimes active in the hours before dawn (Cryan et al. 2014). This nightly 
activity pattern of a single activity peak more than an hour after sunset yet before midnight 
differs from that documented over six months at the upland forest turbines on O‘ahu in 2013, 
where detections showed not only an earlier primary peak immediately after sunset, but also a 
smaller secondary peak in the hours just before dawn (Gorresen et al. 2015b).  

Possible explanations for the single, lower, and slightly later nightly activity peak of Hawaiian 
hoary bats at the Auwahi Wind Energy facility include individuals having to commute to the site 
after emerging from roosts at sunset in nearby habitats (likely forests), and environmental 
conditions that potentially draw bats to turbines from the broader landscape being more likely 
to occur at that time. On O‘ahu, the peaks of highest bat detections coincided with sunset and 
sunrise, indicating that bats were likely to visit turbines immediately after emerging from or 
returning to roosts in the surrounding forest. The lack of such crepuscular activity peaks at the 
Auwahi Wind Energy facility lead us to believe that bats visiting the turbines there do not roost 
during the daytime at or near the site, but instead reach the turbines by flying from more 
distant locations—probably tree roosts in denser forest stands, the closest of which are about 
7 km away. The pattern also indicates bats do not regularly visit the Auwahi Wind Energy 
facility turbines in the hours before sunrise. The possibility of early nighttime environmental 
conditions that might draw bats to turbines are discussed below. 

In addition to generally observing fewer visits by bats, a delayed post-sunset activity peak, and 
the lack of a pre-dawn activity peak, another notable pattern in the nightly activity of bats at 
the Auwahi Wind Energy facility was their sporadic occurrence at the wind facility from night to 
night. Our results indicate that when bats visit the wind facility, they tend to dwell around the 
turbines for slightly longer on a per-visit basis than was observed in upland forest at the wind 
facility on O‘ahu. The duration of individual bat detection events at the Auwahi Wind Energy 
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facility averaged 23.5 sec and were about six times longer than the duration of detections 
recorded at the O‘ahu forest site, which averaged 4.0 sec per event (Gorresen et al. 2015b). 
However, the cumulative amount of time bats spent around a turbine on a nightly basis was 
remarkably similar between the two studies, with cumulative times totaling about 40 and 50 sec 
per turbine per night at the site on O‘ahu and at the Auwahi Wind Energy facility, respectively 
(Gorresen et al. 2015b). These findings show that although Hawaiian hoary bats visit the 
Auwahi Wind Energy facility less frequently, their longer nightly visits could result in individuals 
spending an equivalent amount of time per night around turbines as at the forested site on 
O‘ahu. However, patterns in the spacing of bat detections at the Auwahi Wind Energy facility 
within and among nights indicates potential differences in the way bats perceive and interact 
with wind turbines there compared to other sites. 

Two notable patterns we observed at the Auwahi Wind Energy facility were the correlation of 
bat detections among turbines and the relatively long and unpredictable time periods between 
consecutive detection events, both within and among nights. Within a given night, visiting bats 
tended to dwell at the site and were likely to visit many of the turbines before leaving. When 
they did leave the site, an average of 1 hour 20 minutes elapsed before another bat was 
detected. On a night-to-night basis, bat occurrence was sporadic and unpredictable. That is, a 
Hawaiian hoary bat using the wind facility on a given night may not be strongly predictive of a 
bat occurring there again on subsequent nights or be strongly influenced by cyclic or other 
night-to-night patterns caused by short-term factors or predictable environmental conditions (at 
least within the 12-night analysis window we examined). The relatively infrequent, 
unpredictable, and lingering observations of Hawaiian hoary bats detected at the Auwahi Wind 
Energy facility could be attributable to certain wide-ranging individuals sporadically but 
repeatedly commuting to the site from distant roosting areas, multiple wide-ranging individuals 
haphazardly encountering the turbines during more randomly directed landscape movements, 
or some combination of these scenarios. Activity patterns of Hawaiian hoary bats observed in 
forested habitats on O‘ahu led to speculation that those individual bats were familiar with 
turbines interspersed among their roosting and foraging grounds, and the resources (e.g., prey, 
mates, etc.) available at those structures (Gorresen et al. 2015b). It remains to be determined 
whether bats visiting turbines at the Auwahi Wind Energy facility are naïve to the resources 
sought at the turbines or if they become familiar and less risk-prone as experienced individuals. 

The relatively longer periods of observation per bat visit at the Auwahi Wind Energy facility 
gave us better opportunities than in previous studies to determine why those hoary bats might 
have been flying in the airspace near the turbines. The duration of all detection events in this 
study totaled only 2.5 hours and made up only 0.05% of the entire period of video monitoring. 
This cumulative total was less than in the study at turbines in upland forest on O‘ahu, where 
bat video observations totaled about 3.8 hours and represented 0.1% of video analyzed 
(Gorresen et al. 2015b). As discussed above, despite less frequent detections at the Auwahi 
Wind Energy facility, the longer duration of events there resulted in the cumulative period of bat 
detections per turbine per night being similar between the two studies. However, bats at the 
Auwahi Wind Energy facility were observed for proportionally longer periods per detection 
event, giving us more opportunities to accurately discern behaviors during these typically brief 
encounters.  

Eight out of ten of the observations of Hawaiian hoary bats around wind turbines at the Auwahi 
Wind Energy facility involved erratic flight indicative of bats engaged in foraging behavior. Only 
a small proportion of events involved straight, directed flight past the turbines, suggestive of 



 

 
 

29 

bats quickly transiting the rotor-swept airspace. The proportion of events involving foraging-like 
flight at the Auwahi Wind Energy facility was approximately double that documented during the 
study on O‘ahu, where turbines were situated in upland forest, and bat activity correlated to 
insect activity (Gorresen et al. 2015b). A 2017 videographic survey of upland habitats on O‘ahu 
(including the wind facility mentioned previously) also showed that most bat detection events 
involved single passes involving straight and directed flight, suggestive of samples obtained 
from bats moving within frequently traversed home ranges (Gorresen et al. 2018). The bats at 
the Auwahi Wind Energy facility may have been concentrating their flight and associated search 
for food disproportionately more on the wind turbines than on surrounding habitats, whereas 
those observed on O‘ahu may have been primarily moving through the habitats with ample 
feeding opportunities surrounding the turbines and thus spending proportionally less time 
focusing on the turbines. Overall, our observations indicate bats travel from distant roost sites 
to the remote but potentially focal foraging area around the Auwahi Wind Energy facility 
turbines, search promising habitat features (including the turbines themselves) for insect prey, 
then leave and only infrequently return during the same or subsequent nights. In contrast, the 
proportionally lower incidence of foraging-like behavior observed around turbines in forested 
uplands of O‘ahu might have been attributable to those turbines being situated amidst more 
favorable alternative foraging prospects.  

Regardless of why bats entered the airspace around wind turbines at the Auwahi Wind Energy 
facility, more than half of the detection events involved individuals flying within an estimated 
15 m of the turbine nacelle. This regular and consistently observed close-approach behavior, 
combined with relatively few observations of bats being displaced by moving blades and no 
observation of strikes, indicates that the presence of Hawaiian hoary bats in the rotor-swept 
zone of a turbine may not be directly proportional to their risk of being injured, particularly 
when presence is considered independent of wind speed. Systematic ground-based carcass 
searches resulted in no documented bat fatalities at the four turbines during the four-month 
monitoring period (Tetra Tech 2019). 

The activity of bats is generally believed to decrease with increasing wind speed (Weller and 
Baldwin 2012, Korner-Nievergelt et al. 2013), as strong winds can influence the abundance and 
activity of insects (Erkert 1982). The results from the Auwahi Wind Energy facility are mostly 
consistent with these trends, although nearly one-fifth of our bat observations were made when 
wind speeds were greater than the mitigation cut-in speed of 6.9 m/sec. When we modeled the 
influence of environmental conditions on the probability of hoary bats occurring at the Auwahi 
Wind Energy facility, results revealed that bat occurrence was negatively related to wind speed, 
averaged over 10-minute intervals, and possibly declined after or during rain events (although 
available precipitation data made it difficult to clearly test for the influence of rain at the nightly 
temporal scale we used for the analysis). Despite the apparent relation of bat detection rates 
with wind speed and precipitation (both negative), the relation was not predictable—
considerable variation was present in the modeled response of bats to weather. We found that 
low detection rates could occur when conditions appeared favorable, such as when there was 
no wind and wind speeds were low. Conversely, high detection rates may occur during 
relatively unfavorable conditions. For example, the largest observed detection rate we 
documented (nearly a bat per hour) occurred on the night of 15 November when turbine blade 
rotation averaged 7.1 rpm, wind speed averaged 5.7 m/sec, and wind speed variability, blade 
rotation intermittency, and light precipitation were also similar to the average conditions 
observed during the entire four-month study period. Such an event does not seem predictable 
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given available information, but this does not mean that predictable associations among bat 
occurrence, environmental conditions, and turbine operation do not exist.  

Our study objective was to learn more about how bat behaviors at wind turbines relate to wind 
speed and turbine operation—key elements of effective mitigation strategies for minimizing 
fatalities of Hawaiian hoary bats. In assessing possible reasons for bat occurrence near the 
turbines at the Auwahi Wind Energy facility during high wind conditions, we evaluated our data 
in the context of behaviors we observed on video and the unique turbine operational conditions 
observable due to the relatively high curtailment cut-in wind speed of 6.9 m/sec. One of the 
patterns that clearly emerged from the data was that bats were more likely to be detected at 
turbines when the blades were not moving or were moving slowly, although perhaps not 
proportional to what would be expected due to wind speed alone in part because of 
curtailment. However, it is noteworthy that the bat detection rate at the non-operational turbine 
(WTG2) was similar to the overall mean and not found to be significantly different from the 
other three operational turbines. This may indicate that fast turbine blade movement is not a 
causal factor related to the attraction of bats and their presence at turbines. Nevertheless, 
variability in wind speed and turbine blade rotation intermittency were both positively related to 
bat detection probability in our analysis. Nearly one-fifth of the observations of bats at the 
Auwahi Wind Energy facility turbines occurred during conditions when wind speeds exceeded 
the 6.9 m/sec threshold, indicating that responding to wind-speed alone may not maximize 
opportunities to produce energy and avoid bat fatalities. When discussing similar results from a 
video study of bat activity at wind turbines on the U.S. mainland, Cryan et al. (2014) speculated 
“…observations that tree bats show a tendency to closely investigate inert turbines and 
sometimes linger for minutes to perhaps hours (in the cases of clustered observations) highlight 
the plausibility of a scenario in which bats are drawn toward turbines in low winds, but 
sometimes remain long enough to be put at risk when wind picks up and blades reach higher 
speeds. Therefore, the frequency of intermittent, blade-spinning wind gusts within such low-
wind periods might be an important predictor of fatality risk; fatalities may occur more often 
when turbine blades are transitioning from potentially attractive (stationary or slow) to lethal 
(fast) speeds.”  

Such a scenario may be compatible with our observations and analysis from the Auwahi Wind 
Energy facility. For example, of the proportionally small sample of 34 bat events we observed 
when turbine blades were moving more than one-half a rotation per minute, eight ensued when 
wind speeds were below the curtailment threshold. These events may have occurred because of 
computational lags over the 10-minute period within which the rolling average wind-speed 
calculated included occasional interludes during which winds dropped below the cut-in threshold 
but did not yet trigger curtailment. Combining these observations with earlier discussion that 
bats visiting the Auwahi Wind Energy facility might periodically and intensely search the 
turbines for feeding opportunities, a plausible hypothesis emerges: Hawaiian hoary bats might 
occur at the Auwahi Wind Energy facility during variable wind periods because windy periods 
concentrate insects on the lee of emergent features (e.g., trees), and when winds slacken bats 
might take the opportunity to focus foraging on the ephemeral concentrations of prey. In other 
words, relative to calm wind conditions, bats may opportunistically exploit certain landscape 
features during lulls on otherwise windy nights. A prerequisite for opportunistic use of tall 
structures such as wind turbines is that they be visually conspicuous and attract bats. This is 
largely supported by research demonstrating that, relative to surrounding landscapes, the 
activity of tree bats at tall structures increases as individuals encounter these features during 
migration in late summer and autumn (Jameson and Willis 2014). 
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Our study was not able to make optimal use of combined sampling methods because of the 
poor quality of acoustic data. Fortunately, video cameras functioned more consistently and 
produced more useful data for drawing inferences about bat presence and behaviors at the 
turbines than acoustic detectors. Known limitations of the acoustic detection process and 
potentially cryptic vocalization behavior of hoary bats were concerns going into this study, as 
well as likely only a modest overlap of the airspace sampled by the two methods (bats could be 
out of the video field of view, and video can also image farther than an acoustic detector can 
sample). In general, we confirmed that the range of acoustic detectors was different, less 
consistent across conditions, and generally lower than thermal surveillance cameras in this 
study. Although it is clear that Hawaiian hoary bats are acoustically active when present at 
Auwahi Wind Energy facility, it also appears that the species exhibits, to some extent, the 
cryptic vocalization noted in other settings (Gorresen et al. 2017, Corcoran and Weller 2018). 
Although both video and acoustic sampling had similar detection rates for the entire four-month 
monitoring period (albeit not directly comparable because acoustic sampling was weighted 
towards the earlier months during which nightly bat detections were more prevalent), there was 
a clear mismatch in the incidence and proportion of samples with bat detections. For the subset 
of concurrently sampled turbine-nights, acoustic detectors confirmed bat presence in about 
three-quarters of the turbine-nights for which bats were also detected by thermal cameras. 
Acoustic bat detectability further declined at finer-resolution time periods of sampling, such as 
hourly and 10-minute intervals at which video monitoring determined bat occurrence. The 
frequent lack of detections within a reasonable window for informing acoustically triggered 
turbine curtailment may have implications for the effectiveness of this method in reducing 
fatalities, at least in the setting examined in this study. The nature and variability of vocalization 
by bats at tall structures such as turbines, as well as the operational limits of the detection 
system, warrants further investigation using both acoustic and videographic methods. 
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APPENDIX I 

Table 1. Total nightly bat visual (video) and acoustic detection events and respective detection rates (combined and adjusted for 
sampling effort for all four turbines). Additional supporting information (including detection events by turbine) are available as a U.S. 
Geological Survey data release at https://doi.org/10.5066/P937H9LQ. Total daily precipitation (cm) obtained from weather station 
USGS 203721156151601 (Kepuni Gulch Rain Gage, Maui, Hawaii, located 7.3 km ENE from Auwahi Wind Energy, LLC,  at 226 m 
above local mean sea level) is available at: 
https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=203721156151601; also available at 
https://doi.org/10.5066/F7P55KJN. 

Date Total visual 
detection events 

Visual detection 
rate 

Total acoustic 
detection events 

Acoustic detection 
rate 

Daily precipitation 
(cm) 

8/1/2018 1 0.029 0 0.000 0.00 
8/2/2018 13 0.378 0 0.000 0.00 
8/3/2018 5 0.146 0 0.000 0.00 
8/4/2018 2 0.058 0 0.000 0.00 
8/5/2018 1 0.029 0 0.000 0.00 
8/6/2018 10 0.224 0 0.000 0.00 
8/7/2018 8 0.173 2 0.087 0.00 
8/8/2018 1 0.029 0 0.000 0.00 
8/9/2018 0 0.000 0 0.000 1.73 

8/10/2018 2 0.111 2 0.058 0.00 
8/11/2018 0 0.000 2 0.058 0.46 
8/12/2018 0 0.000 0 0.000 0.00 
8/13/2018 3 0.129 4 0.115 0.00 
8/14/2018 15 0.644 16 0.458 0.00 
8/15/2018 2 0.086 9 0.257 0.00 
8/16/2018 11 0.290 14 0.400 0.00 
8/17/2018 6 0.172 4 0.114 0.20 
8/18/2018 0 0.000 0 0.000 0.00 
8/19/2018 5 0.128 3 0.085 0.00 
8/20/2018 10 0.283 10 0.284 0.00 
8/21/2018 0 0.000 1 0.028 0.00 
8/22/2018 0 0.000 0 0.000 0.81 
8/23/2018 1 0.021 0 0.000 1.30 

https://doi.org/10.5066/P937H9LQ
https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=203721156151601
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Date Total visual 
detection events 

Visual detection 
rate 

Total acoustic 
detection events 

Acoustic detection 
rate 

Daily precipitation 
(cm) 

8/24/2018 0 0.000 0 0.000 4.17 
8/25/2018 0 0.000 0 0.000 2.29 
8/26/2018 0 0.000 0 0.000 2.21 
8/27/2018 0 0.000 0 0.000 0.13 
8/28/2018 0 0.000 0 0.000 0.03 
8/29/2018 4 0.112 5 0.140 0.00 
8/30/2018 1 0.028 7 0.196 0.00 
8/31/2018 3 0.085 3 0.084 0.00 
9/1/2018 1 0.028 2 0.056 0.00 
9/2/2018 5 0.208 6 0.167 0.00 
9/3/2018 2 0.083 0 0.000 0.00 
9/4/2018 5 0.208 2 0.055 0.00 
9/5/2018 3 0.124 5 0.138 0.00 
9/6/2018 1 0.031 4 0.111 0.00 
9/7/2018 4 0.084 6 0.166 0.00 
9/8/2018 4 0.110 9 0.248 0.00 
9/9/2018 8 0.165 5 0.138 0.00 

9/10/2018 8 0.165 5 0.137 0.00 
9/11/2018 2 0.041 3 0.082 0.00 
9/12/2018 0 0.000 0 0.000 4.47 
9/13/2018 0 0.000 0 0.000 0.79 
9/14/2018 1 0.028 0 0.000 0.00 
9/15/2018 0 0.000 0 0.000 0.00 
9/16/2018 4 0.109 0 0.000 0.00 
9/17/2018 1 0.027 1 0.027 0.00 
9/18/2018 5 0.135 3 0.081 0.00 
9/19/2018 0 0.000 0 0.000 0.00 
9/20/2018 0 0.000 0 0.000 0.00 
9/21/2018 0 0.000 0 0.000 0.00 
9/22/2018 0 0.000 0 0.000 0.00 
9/23/2018 0 0.000 0 0.000 0.30 
9/24/2018 2 0.054 1 0.020 0.97 
9/25/2018 5 0.134 18 0.362 0.05 



 

 
 

37 

Date Total visual 
detection events 

Visual detection 
rate 

Total acoustic 
detection events 

Acoustic detection 
rate 

Daily precipitation 
(cm) 

9/26/2018 2 0.054 5 0.100 0.00 
9/27/2018 2 0.080 6 0.160 0.46 
9/28/2018 0 0.000 0 0.000 0.03 
9/29/2018 6 0.160 6 0.160 0.05 
9/30/2018 0 0.000 2 0.053 0.00 
10/1/2018 1 0.027 0 0.000 0.00 
10/2/2018 2 0.053 0 0.000 0.00 
10/3/2018 5 0.132 0 0.000 0.00 
10/4/2018 8 0.211 2 0.079 0.00 
10/5/2018 1 0.023 0 0.000 0.89 
10/6/2018 5 0.099 0 0.000 1.88 
10/7/2018 0 0.000 0 0.000 5.79 
10/8/2018 2 0.039 1 0.079 0.20 
10/9/2018 12 0.236 3 0.236 0.00 

10/10/2018 8 0.157 0 0.000 0.00 
10/11/2018 1 0.020 1 0.079 0.00 
10/12/2018 4 0.157 0 0.000 1.83 
10/13/2018 1 0.026 0 0.000 0.08 
10/14/2018 14 0.273 2 0.156 0.00 
10/15/2018 13 0.253 9 0.703 0.00 
10/16/2018 8 0.156 8 0.624 0.00 
10/17/2018 6 0.117 2 0.156 0.00 
10/18/2018 6 0.161 8 0.622 0.00 
10/19/2018 5 0.098 2 0.155 0.00 
10/20/2018 3 0.058 8 0.620 0.00 
10/21/2018 11 0.213 7 0.542 0.00 
10/22/2018 7 0.154 4 0.309 0.00 
10/23/2018 0 0.000 0 0.000 0.00 
10/24/2018 2 0.038 0 0.000 0.00 
10/25/2018 1 0.019 0 0.000 0.00 
10/26/2018 2 0.044 0 0.000 0.00 
10/27/2018 2 0.038 0 0.000 0.03 
10/28/2018 0 0.000 0 0.000 0.00 
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Date Total visual 
detection events 

Visual detection 
rate 

Total acoustic 
detection events 

Acoustic detection 
rate 

Daily precipitation 
(cm) 

10/29/2018 0 0.000 0 0.000 0.13 
10/30/2018 3 0.076 1 0.076 0.10 
10/31/2018 1 0.019 1 0.076 0.03 
11/1/2018 4 0.076 1 0.076 0.00 
11/2/2018 5 0.096 1 0.076 0.00 
11/3/2018 0 0.000 0 0.000 0.20 
11/4/2018 1 0.019 0 0.000 0.20 
11/5/2018 8 0.152 1 0.076 0.00 
11/6/2018 0 0.000 0 0.000 0.00 
11/7/2018 0 0.000 0 0.000 0.00 
11/8/2018 2 0.038 0 0.000 0.00 
11/9/2018 3 0.077 1 0.075 0.00 

11/10/2018 4 0.100 1 0.075 0.00 
11/11/2018 6 0.113 0 0.000 0.00 
11/12/2018 2 0.075 1 0.075 0.00 
11/13/2018 1 0.025 0 0.000 0.00 
11/14/2018 2 0.067 0 0.000 0.03 
11/15/2018 18 0.369 1 0.075 0.23 
11/16/2018 6 0.114 3 0.225 0.00 
11/17/2018 0 0.000 0 0.000 0.00 
11/18/2018 1 0.019 1 0.075 0.00 
11/19/2018 6 0.149 1 0.075 0.00 
11/20/2018 0 0.000 0 0.000 0.00 
11/21/2018 0 0.000 0 0.000 0.00 
11/22/2018 0 0.000 0 0.000 0.76 
11/23/2018 0 0.000 0 0.000 0.00 
11/24/2018 1 0.019 1 0.074 0.00 
11/25/2018 4 0.085 0 0.000 0.00 
11/26/2018 0 0.000 0 0.000 0.00 
11/27/2018 1 0.025 0 0.000 0.00 
11/28/2018 0 0.000 0 0.000 0.00 
11/29/2018 0 0.000 1 0.074 0.18 
11/30/2018 0 0.000 0 0.000 0.00 
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APPENDIX II 

Table 1. Summary of the number of nightly visual (video) and acoustic bat detection events per turbine, detection rate (number of 
detection events per hour, calculated as the nightly total of events divided by sample duration at a turbine), and the nightly metrics 
of weather and turbine operation variables, including precipitation (“precip”; total in cm for a 24-hour midnight-to-midnight period 
centered on the day of the record), mean wind speed (“wind-mean”; calculated as the mean of 10-minute interval recordings), 
variability in wind speed (“wind-sd”; calculated as the standard deviation of 10-minute interval recordings), turbine blade movement 
(“rpm”; rotations per minute), and turbine starts (“rpm-starts”; calculated as the total of such events following one or more 10-
minute intervals at which the blade was motionless). Values include minimum, 1st quartile, median, mean, 3rd quartile, and 
maximum. All weather and turbine operation variables used in regression analysis were standardized and centered on the variable 
mean (i.e., subtracting variable values by its grand mean and dividing by its standard deviation). See methods for description of 
data sources. Additional supporting information are available as a U.S. Geological Survey data release at 
https://doi.org/10.5066/P937H9LQ. 
Values Visual 

detection 
events 

Visual 
detection 

rate 

Acoustic 
detection 

events 

Acoustic 
detection 

rate 

Precip Wind- 
mean 

Wind-sd Rpm Rpm-
starts 

Min: 0.000 0.000 0.000 0.000 0.000 0.985 0.745 0.000 0.000 
1Q: 0.000 0.000 0.000 0.000 0.000 3.865 1.570 0.160 1.000 
Median: 0.000 0.000 0.000 0.000 0.000 7.098 2.125 4.293 2.000 
Mean: 0.934 0.077 0.988 0.081 0.271 7.336 2.178 6.394 3.879 
3Q: 1.000 0.087 1.000 0.077 0.030 10.252 2.676 13.020 5.000 
Max: 12.000 0.899 14.000 1.125 5.790 21.021 4.886 16.210 21.000 

 

https://doi.org/10.5066/P937H9LQ
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APPENDIX III 

Figures 1–6. Post-model-fitting diagnostics performed with the DHARMa package (Hartig 2017). 
Diagnostics demonstrated that the six top-ranked regression models (listed in Tables 5 and 6) 
met assumptions of uniformity (left panels) and did not exhibit zero inflation (right panels). 

 

 

Figure 1. Model 1 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 

 

 

Figure 2. Model 2 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 
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Figure 3. Model 3 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 

 

 

Figure 4. Model 4 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 
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Figure 5. Model 5 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 

 

 

Figure 6. Model 6 of six top-ranked regression models. Left panel shows model met 
assumptions of uniformity, and right panel displays model did not exhibit zero inflation. 
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