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Mitigationmeasures to dispersemarinemammals prior to pile-driving include
acoustic deterrent devices and piling soft starts, but their efficacy remains
uncertain. We developed a self-contained portable hydrophone cluster
to detect small cetaceanmovements from the distributions of bearings to detec-
tions. Using an array of clusters within 10 km of foundation pile installations,
we tested the hypothesis that harbour porpoises (Phocoena phocoena) respond
to mitigation measures at offshore windfarm sites by moving away. During
baseline periods, porpoise movements were evenly distributed in all direc-
tions. By contrast, animals showed significant directional movement away
from sound sources during acoustic deterrent device use and piling soft
starts. We demonstrate that porpoises respond to measures aimed to mitigate
the most severe impacts of construction at offshore windfarms by swimming
directly away from these sound sources. Portable directional hydrophone clus-
ters now provide opportunities to characterize responses to disturbance
sources across a broad suite of habitats and contexts.
1. Introduction
Information on animal movements underpins a wide range of behavioural and
ecological questions, including assessing the responses of wildlife to anthropo-
genic activities [1,2]. Recent advances in tagging have catalysed movement
research [3] but methodological and ethical constraints mean that tags cannot
be used for many situations or species. Even where feasible, tagging studies are
often limited to a few individuals, locations or short periods of time, constraining
the predictive power of results or precluding particular perturbations or locations
from study.

Passive acoustic monitoring (PAM) is non-invasive and widely used to assess
species diversity, distribution and abundance in terrestrial [4] and marine environ-
ments [5]. PAM is also increasingly used to examine wildlife responses to
anthropogenic activity (e.g. [6,7]). Importantly, these approacheshave resulted in sig-
nificant advances in understanding of marinemammal reactions to impulsive noise
such as pile-driving [8,9]. However, broad-scale movement responses and displace-
ment are typically inferred indirectly from the presence or absence of acoustic
detections. Critically, these studies may be confounded if responses also involve
changes in acoustic behaviour (e.g. [10]). Direct empirical data on movements of
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individual animals are therefore also required. Recent technologi-
cal advances in passive acoustic monitoring have produced
systems to localize animals in two-dimensional or three-
dimensional space, allowing fine-scale movement behaviour to
be studied (e.g. [11–13]). However, opportunities to address
other ecological, conservation or management questions with
thesesystemsareoftenconstrainedgiven their relianceonexisting
marine infrastructures for power, equipment or attachment (e.g.
U.S. Navy Ranges [12] and renewable energy structures [6,11]).

With the rapid expansion of offshore renewable energy
developments, the potential for impacts on birds, bats and
marine mammals is increasing. Marine mammals are poten-
tially vulnerable to construction and operational noise or
collision risk from tidal turbines [14]. Mitigation measures
to reduce the risk of death or injury from impulsive construc-
tion noise include using acoustic deterrent devices (ADD) to
disperse marine mammals prior to pile-driving, and a piling
soft start [15]. However, few studies have assessed the
efficacy of these mitigation measures, in part due to the diffi-
culty of obtaining movement data at appropriate temporal
and spatial scales, but see [16].

We developed a self-contained and portable hydrophone
cluster to measure the direction of arrival of detected sounds.
Using an array of these clusters, we recorded movement
responses of harbour porpoises (Phocoena phocoena) during
mitigation activity before and after the onset of piling at an
offshore windfarm. We measured how porpoises respond to
ADD mitigation and the piling soft start by analysing the
distributions of bearings to porpoise clicks, and tested
the hypothesis that porpoises respond to these mitigation
measures by moving away from sound sources.
2. Methods
(a) Directional hydrophone clusters
Each directional hydrophone cluster (hereafter cluster) comprised:
a stainless-steel platform housing a four-channel underwater
acoustic recorder (SoundTrap ST4300HF, Ocean Instruments
NZ); a three-dimensional-printed tetrahedral mount supporting
four high-frequency hydrophones (HTI-99-HF, High Tech, Inc.);
a motion datalogger (OpenTag, Loggerhead Instruments) to
confirm that the device remained stationary; and a transponder
to facilitate recovery (LRT, Sonardyne). A small (5 cm spacing)
tetrahedral cluster of hydrophones was used to detect differences
in time of arrival of sounds, and to estimate horizontal and
elevation angles to echolocation clicks using methods similar to
those described in [11]. However, whereas [11] used a tight array
of tetrahedral clusters to determine three-dimensional locations,
our study used a dispersed array to measure bearings at
individual clusters.

A dispersed linear array of seven clusters was deployed
within the Moray East Offshore Windfarm site (58°110N,
2°430W), Scotland between 21st August and 2nd September
2019 (figure 1). Individual SoundTraps recorded for 30 s every
2 min at a sample rate of 384 kHz.

(b) Mitigation measures
Mitigation measures were required by regulators (see [15]), either
when construction moved to a new turbine site or when there was
a break in piling of longer than six hours at the same site. During
our deployment, foundations were piled at seven turbine sites, 0.6–
9.3 km from individual hydrophone clusters (figure 1). This resulted
in ten mitigation events, each consisting of a 6–15-min period of
acoustic deterrent device (Lofitech AS, Leknes, Norway; see [15,16]
for signal characteristics) use and a 20-min piling soft start (electronic
supplementarymaterial, table S1).We compared porpoise responses
during the ADD operation and the first 15 min of piling soft start
with baseline data on directional movements from seven periods
with no construction activity due to weather or mechanical
breakdown (electronic supplementary material, table S1).

(c) Noise characterization
Recordings on each hydrophone cluster were processed using
PAMGUARD software [17] to determine noise levels as received
on the recorders from the ADD, the piling soft start and baseline
periods. The initial 5–6 pile strikes of piling soft starts were ident-
ified on acoustic recordings, and engineering records were used
to correct any time drift. Received rms sound pressure levels
were determined for 5 s intervals and frequency weighted with
the harbour porpoise audiogram [18]. To characterize received
noise levels during mitigation activities, received levels were cal-
culated at each hydrophone cluster for each mitigation event and
plotted against distance from the construction site.

(d) Click classification and bearing determination
Porpoise clicks are high-frequency, narrow-band and can be
readily distinguished from other transient sounds. The PAM-
GUARD click detector was configured to classify porpoise clicks
as: click; echo; reflection; and buzz click (see electronic supplemen-
tary material, Porpoise Click Detection). Only clicks and buzz
clicks were used in further analyses. To further screen weak or dis-
tant detections from the dataset, porpoise clicks occurring less than
4 min apart were classified as belonging to the same porpoise
encounter and encounters with fewer than 5 clicks were excluded
from further analyses to exclude false positive detections.

Horizontal angles to clicks were estimated as described in
[11]. A second click detector in PAMGUARD was configured
to detect and measure bearings to the lower-frequency piling
noises. These bearings were compared with the known piling
locations to determine the orientation of the clusters and thus
orientate the bearings of detected porpoise clicks from each clus-
ter. Accelerometer data (heading, pitch and roll) were inspected
to confirm that the clusters remained stationary and data were
excluded following any sudden movements (electronic sup-
plementary material, table S2). To examine directionality of
porpoise movements, we calculated the difference in the circular
median bearing [19] to porpoise detections in each second and
the bearing to the noise source from that hydrophone cluster.
Values close to 0° represent porpoise clicks detected in a direc-
tion directly toward the construction site (see §3). Due to the
highly directional nature of porpoise clicks, these are consistent
with porpoises swimming directly away from the noise source
(see electronic supplementary material, Angle of arrival; elec-
tronic supplementary material, figure S1). The distribution of
differences in bearings was tested initially for uniformity, and
then for uniformity against a unimodal alternative with a speci-
fied mean direction of 0° using Rayleigh tests in R [19,20]: to
verify that test results were robust to the failure to account for
the dependence structure of the data, data were also analysed
by encounter (electronic supplementary material, table S5).
3. Results
(a) Noise characterization
The duration of individual SoundTrap recordings varied
between six and 11 days (electronic supplementary material,
table S2). During baseline periods, mean received noise levels
were relatively consistent across the array but decreased slightly
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with distance from the construction site (figure 1). We attribute
slightly elevated background noise levels closer to the construc-
tion site to noise from construction vessels (figure 1). Mean
received noise levels during ADD use and piling soft start
declined with range (figure 1). Noise levels during ADD use
approached baseline within 5 km, whereas piling soft starts
remained at least 6 dB above background across the extent of
our array and all received noise levels were significantly
(greater than 50 dB) above the porpoise hearing threshold.
(b) Movements during baseline periods
During the baseline periods, there were 5925 s (0.46% of the
time) during which porpoises were detected on any single
hydrophone cluster (electronic supplementary material,
table S3). These porpoise detections were distributed in all
directions (figure 2a) and, although they were weakly direc-
tional (electronic supplementary material, table S4; Rayleigh
test: R = 0.074, p < 0.001), they showed no departure from
uniformity against an alternative with a specified mean
direction of 0° (Rayleigh test: R =−0.052, p = 1.00).
(c) Evasive responses to mitigation measures
During the deployment of mitigation measures, individual
hydrophone clusters were between 0.6 and 9.3 km from
the construction site (electronic supplementary material,
table S3). The ADD was deployed for a total of 1.4 h while
the hydrophone cluster array was in situ, during which there
were 75 s (0.25% of the time) with porpoise detections
(figure 2b; electronic supplementary material, table S3). In the
2.5 h of piling soft start, there were 112 s with porpoise detec-
tions (0.21% of the time) on the hydrophone clusters during
the initial 15 min (figure 2c; electronic supplementarymaterial,
table S3). These sample sizes were insufficient to explore vari-
ation in evasive responses with distance. Nevertheless, by
pooling all directional data within the range of distances
studied, porpoise movements showed a strong directional
response away from the sound source during ADD use and
piling soft start when compared to baseline (electronic sup-
plementary material, table S4; table S5; figure 2b and c;
electronic supplementarymaterial, figure S2). The null hypoth-
esis of uniformity was rejected (Rayleigh test: ADD, R = 0.573,
p < 0.001; piling, R = 0.626, p < 0.001) and the distribution of
bearings to porpoise detections relative to the sound source,
for bothmitigation activities,was consistentwith an alternative
hypothesis with a specifiedmean direction of 0° (Rayleigh test:
ADD, R = 0.564, p < 0.001; piling, R = 0.592, p < 0.001).
4. Discussion
We successfully demonstrated directional movement
responses of harbour porpoises to mitigation measures prior
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to piling during construction of an offshorewindfarm. The por-
table system developed here removes the dependence on
existing infrastructure, extending the application of passive
acoustic methods developed by [6] and [11] and providing
opportunities to study responses of mobile, cryptic or rare
species in specific underwater locations at particular times.

A limitation of using PAM is that if animals respond to dis-
turbance by reducing vocalization rates some of their responses
may not be detected (e.g. [21]). Therefore, although detection
rates, expressed as the percentage of time with porpoise detec-
tions, decreased from 0.46% to 0.25% and 0.21% for ADD use
and the piling soft start respectively, these numbers cannot
tell us definitively whether there were fewer animals present,
or whether they had changed their vocalization behaviour.
Directional hydrophone clusters, however, showed clearly
that vocalizing porpoises responded by moving away from
the noise source both during ADD use and during the mitiga-
tion piling soft start. However, as theADDwas activated before
every piling soft-start, observed responsive movements during
the soft-start could represent a prolonged flight response
initially triggered by the ADD. Some studies of cetacean
responses to construction at offshore windfarms have been
unable to distinguish the relative contribution of mitigation
measures, piling or construction vessels to observed cumulat-
ive responses (e.g. [7,9]). In addition, displacement has not
been observed directly, instead being inferred from changes
in broader-scale occurrence of either acoustic [7,9,22] or
visual [23] detections in response to disturbance events. This
demonstration of negative phonotaxis is key to establishing
the efficacy of mitigation measures for reducing the risk of
injury or death in the near-field zone [24,25]. Additionally, it
validates, at least for vocalizing individuals, a key assumption
of agent-based models for assessing the population conse-
quences of anthropogenic disturbances [26]; i.e. that animals
respond to disturbance by moving away from the sound
source. Based on simulations presented in electronic sup-
plementary material (’Angle of arrival as an indicator of
swim direction’ and figure S1), it would appear that animals
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are swimming very directly away from the sound source with
little deviation to either side.

Piling noise is predominantly low frequency [15] and por-
poise hearing is most sensitive at high frequencies [27].
Audibility of both the ADD and piling would have been
dependent both on environmental conditions [28] and on
the level above the porpoise hearing threshold [8]. When
filtered using the harbour porpoise audiogram and compa-
red to both background noise and the porpoise hearing
threshold, our data indicate that the sound of the piling soft
start was likely to be audible to a range of at least 10 km.
The ADD would have appeared quieter than the piling soft
start, but likely would still have been audible to a porpoise
to at least 4 km. However, due to the complex nature of the
noise sources and known variation in audibility of signals
as a function of their duration [18], we are unable to say
with any precision just how far away the signals would
have been audible to free-swimming animals.

Observed responsive movements away from ADD sources
during the construction of an offshore windfarm (figure 2) are
consistent with previous studies that conducted experimental
field trials using the Lofitech ADD [16,29,30] or simulated Lofi-
tech sounds [31]. However, the studies of cetacean responses
relied on visual observations and all lost visual contact with
some focal animals at or shortly after the time of exposure
[16,30,31]. While experimental exposures of tagged animals
provide opportunities to assess longer-range responses, the
probability of tagged individuals occurring within specific
locations during particular disturbance events can be extre-
mely low for mobile species. Limited sample sizes precluded
statistical analysis of variation in evasive responses with dis-
tance, nevertheless inspection of figure 2 revealed the range
of distances at which responses were observed. Using our por-
table acoustic system, evasive responses were observed at
distances of up to 7 km during ADD use and 9 km (the maxi-
mum distance between hydrophone clusters and the
construction site; electronic supplementary material, table S3)
during the piling soft start, overcoming constraints posed by
studies that rely on visual observations or tagging. Acoustic
studies have shown deterrence effects due to the Lofitech
ADD over a similar range of distances [22,32].

Our results demonstrate how these techniques can improve
the evidence base required to assess the costs and benefits of
alternative mitigation measures, whether these be different
types of ADD that reduce far-field disturbance or alternative
approaches such as technical noise abatement systems (see
[15,33]). The importance of context in determining individual
behavioural responses has become increasingly evident [34],
making it challenging to incorporatemultiple contextual factors
into either predictions or management advice based on exper-
imental studies of individual responses. Harris et al. [35]
advocate the use of opportunistic exposure studies to collect
data over more relevant spatial and temporal scales to validate
experimentally derived relationships and predictions on the
scale of behavioural responses to noise. While not overcoming
all the challenges involved in carrying out such work in
open marine systems (see electronic supplementary material,
additional discussion), our hydrophone cluster system means
that targeting opportunistic studies of specific offshore activities
spatially and temporally is more feasible than ever. This system
nowprovides opportunities to characterize responses tomitiga-
tion measures and other disturbance sources across a broader
and more representative suite of habitats and contexts.
Ethics. This study was approved by the University of St Andrews
School of Biology Ethics Committee (Ref number: SEC19024). This
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