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A B S T R A C T

Offshore wind energy is experiencing a rising importance for many electricity markets. While the effects of
wind energy overall on electricity prices have been thoroughly studied, it remains unknown if offshore wind
has a different impact on electricity prices than onshore wind. The aim of this paper is therefore to estimate
the effect of offshore wind energy on wholesale electricity prices and how it differs to the impact of onshore
wind. For this purpose, we propose three time series models to describe the development of electricity prices
in Germany, Western Denmark and Great Britain from 2015–2018. We focus on the impact on the level and
volatility of electricity prices using different time series models such as AR-GARCH or ARMA. Following these
models, we can identify that onshore and offshore wind power do have a significantly different impact on
wholesale electricity prices in the investigated countries. Based on our results, we discuss the implications of
our findings for electricity markets and policy makers.
1. Introduction

Advancing climate change intensifies the urgency to decarbonise the
electricity generation and to increase the share of renewable energy
sources. In Northern Europe, one of the most important renewable
energy source is wind energy, with an ever-rising share of the total
electricity generation. Due to technical developments and innovations,
offshore wind energy is experiencing even higher growth rates and
accounts for a substantial part of the total electricity generation in
various Northern European countries by now [4]. The expansion of
offshore wind energy is politically promoted due to a higher and
more constant electricity feed-in and is indispensable for achieving the
climate policy goals of many European governments and the European
Union.1

A rising share of wind energy has a substantially differing effect on
wholesale electricity prices compared to the impact of power generated
by conventional power plants. Two characteristics of wind power are

∗ Corresponding author at: Chair of Data Science, Faculty of Management, Construction and Social Work, HAWK, Haarmannplatz 3, 37603 Holzminden,
Germany.

E-mail address: jan@schluetergroup.org (J.C. Schlüter).
1 See, for instance, [1], [2] or [3].

mostly responsible for this difference. Firstly, wind is freely available.
Thus, electric power can be harvested from wind with almost no vari-
able costs, reducing wholesale electricity prices. This effect is known as
the merit-order effect and widely supported throughout the literature
[5–7]. Secondly, wind is not a controllable variable and is subject to
strong fluctuations, which is believed to increase the volatility of elec-
tricity prices. Most empirical studies confirm this volatility-enhancing
effect, especially over larger time windows [8–10]. In many countries,
these influences are magnified by legal frameworks specifying that
electricity from renewable energies, including wind energy, must be
purchased and fed-in with priority [9]. We provide a more detailed
summary of the most important empirical studies below.

1.1. Contributions

In the short run, wind energy mostly influences electricity price
levels through the merit-order effect [11–13]. The merit-order curve
vailable online 19 April 2023
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describes the supply curve of all power generators, which offer electric-
ity at their marginal costs. As wind energy has very low marginal costs,
its emergence moves the majority of the merit-order curve rightwards,
thereby crowding out more expensive conventional power generators
and lowering electricity prices. Throughout the empirical literature,
the merit-order effect is confirmed, although its estimated size differs
significantly [5]. The magnitude of the effect depends on the steep-
ness of the supply curve [14]. The steeper the curve at the original
intersection of supply and demand, the stronger the merit-order effect
will be. For different regions, different times of the day are observed to
be more sensitive to wind feed-in than others. For example, Rintamäki
et al. [10] and Paraschiv et al. [15], find that prices are more sensitive
during times of lower demand in Germany, while prices are found to be
more sensitive during peak demand times in Denmark [10] and Texas
[16]. Huisman and Stet [17] observe that the merit-order effect differs
by price quantile in Germany. The merit-order effect is highest during
times with low and high quantile prices, while in between the impact
is lower.

In contrast to the impact on price levels, the factors impacting
the relationship between wind energy and electricity price volatility
are multiple and more complex [10]. Therefore, the empirical studies
are less consistent regarding the sign and magnitude of this impact
[6,9,10,18].

Mauritzen [14] studied the effect of wind power generation on
electricity price volatility in Denmark through different time series
models. He found that wind power reduces intraday volatility of hourly
prices, while it increases the volatility measured over larger periods.
Following the approach by Mauritzen [14], Rintamäki et al. [10]
confirmed Mauritzen’s findings for Denmark. For Germany, on the
contrary, they found that additional wind penetration increases both
intraday volatility and volatility measured over larger periods. They
argue that the intraday volatility is mostly impacted by the elasticity of
prices and the distribution of the wind feed-in at different times of the
day, respectively. If peak prices are lowered more significantly than off-
peak prices, on average, this will lead to an intraday volatility-reducing
impact. At the same time, they believe the volatility measured over
larger time frames to be mostly caused by the intermittent nature of the
wind feed-in. Following their non-parametric regression, Jónsson et al.
[19] concluded that higher wind power penetration is associated with
lower intraday electricity price volatility in Western Denmark. Ketterer
[9] confirms the volatility-enhancing effect of wind energy on daily
aggregated electricity prices for the German-Austrian market through
her time series model. Additionally, she finds that a regulatory change,
reducing the feed-in uncertainty for spot market participants lowered
electricity price volatility significantly. In a study on New Zealand, Wen
et al. [6] find the impact on volatility to differ by season.

Lichter et al. [20] were the first to empirically investigate the
relationship of offshore wind energy and electricity prices, using a time
series model similar to [9]. However, they did not control for onshore
wind energy, which is highly correlated to offshore wind energy. As
we will show in our analysis, this can lead to biased results through
the omitted variable bias.

1.2. Motivation

However, these studies primarily refer to onshore wind energy
as offshore wind energy was mostly not yet as relevant during the
investigated periods. Due to the significantly lower roughness of the sea
surface, the feed-in from offshore wind turbines is more constant and
stronger than the feed-in from onshore plants [21–23]. Additionally,
the offshore wind power feed-in is often less correlated to the total wind
feed-in and follows different feed-in patterns over the day. Therefore,
the question arises to what extent these differing feed-in characteristics
translate into a differing impact on electricity prices.

This question has not yet been empirically tackled in scientific
2

research and will build the core of this analysis. Using different time o
series models, we investigate the impact of offshore wind energy on
the magnitude of electricity prices as well as on its volatility. First, we
will estimate an AR-GARCH-model, capturing both the impact on the
volatility and magnitude of daily electricity prices. Through ARMA-
models, the last two models will solely estimate the impact on the
volatility. While the first model covers the volatility measured over a
shorter, daily time frame, the latter will again investigate the volatility
of daily prices over weekly periods. We will introduce the onshore feed-
in as a control variable to learn whether and how the impact of the two
wind power generating technologies differs and to identify the factors
these findings can be attributed to.

To explore the effects of different regulatory frameworks and market
characteristics, we will consider the three regions with the highest
offshore wind power generation in Europe: Great Britain, Western
Denmark and Germany2 (see Fig. 1). While Germany and Great Britain
experienced a strong offshore capacity growth during the investigated
period, Western Denmark has the highest share of offshore wind power
generation relative to its total electricity generation in the world [4].
Due to its very high exposure to wind energy, it might provide valuable
insights for other regions aiming to follow their example.

2. Data and methodology

This analysis aims to determine the sign and magnitude of the
impact of offshore wind energy on mean electricity prices and its
volatility. To this end, we will develop three time series models. While
the first model captures the effect on mean prices and the volatility
in an integrated approach through an AR-GARCH model, the last
two models solely investigate the impact on electricity price volatility
through an ARMA model, each focusing on the volatility over different
time horizons (see Table 1). This analysis covers the four years from
2015–2018 for Germany,3 Western Denmark and Great Britain. As the

erman bidding zone was reorganised in October 2018, we did not
onsider the last quarter of 2018 for Germany.

.1. Model preparation

.1.1. Introduction of dependent and independent variables
ependent variables

Following Mwampashi et al. [7], Clò et al. [27], Gelabert et al.
28] and Ketterer [9], we use daily electricity prices as our dependent
ariable for the first time series model. Clò et al. [27] and Gelabert
t al. [28] support this approach and argue that daily aggregated prices
re less noisy than hourly prices. According to [15] and [17] hourly
lectricity price data should not be treated as one single time series.
ather, each hour of the day forms an individual time series, due to
reater variations of underlying drivers within a day than from one day
o the other (at the same hour). Thus, when using hourly prices, one
hould form 24 independent time series for each individual hour. We
herefore decide to follow the approach of the aforementioned studies
7,9,27] and use daily electricity prices as dependent variable which
llows for a more comprehensive interpretation of results.

2 Many European countries are split up into bidding zones, with separate
lectricity markets and prices. In order not to dampen the quality of our data,
e do not merge the bidding zones into one country and study the bidding

ones separately. For the UK and Denmark, the remaining zones were not
ncluded in our analysis, as offshore wind energy is not as relevant in these
egions [25].

3 Until September 2018, Germany, Luxembourg, and Austria formed one
idding zone with one common market and wholesale electricity price. As
here are no offshore wind parks in Austria nor Luxembourg (and the Austria
nd Luxembourg only account for roughly 5% of total wind generation in the
idding zone), we will refer to this bidding zone as ‘‘Germany’’ throughout this
aper, yet all data is based on the three countries [26]. From October 2018
nward, Austria forms its own bidding zone with separate electricity prices.
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Fig. 1. European countries with the largest offshore wind power generation over 2015–2018 [24].
Table 1
Overview on the main models. In all models, the applied data is adjusted for trends and seasonalities. In most models, we
will additionally control for net exports.

Model Formula Dependent External
variable regressors

Model 1.A SARX(p)(P) [7]- (11) & (12) Wholesale electricity Offshore feed-in &
GARCHX(1,1) price (1) Total load

Model 1.B SARX(p)(P) [7]- (11) & (12) Wholesale electricity Offshore feed-in &
GARCHX(1,1) price (1) Onshore feed-in &

Model 2 SARMAX (13) Daily electricity Offshore feed-in &
(p,q)(P,Q) [7] price volatility (2) Onshore feed-in

Model 3.A ARMAX(p,q) (14) Weekly electricity Offshore feed-in &
price volatility (4) Onshore feed-in

Model 3.B ARMAX(p,q) (14) Weekly electricity Log sd of offshorea&
price volatility (4) onshore feed-ina

aThis term expresses the logarithmised standard deviation of the daily feed-in over one week.
Fig. 2. Daily electricity price development from 2015–2018 for Germany [EUR/MWh], Western Denmark [EUR/MWh] and Great Britain [GBP/MWh] as defined in (1). The black
lines represent the 90-days rolling average. Prices for Germany not visualised after reorganisation of German bidding zone from October 2018 onward.
The daily electricity price 𝑝𝑡, is defined as the unweighted average of
the hourly electricity prices 𝑝ℎ on a particular day 𝑡, thereby following
[9], [27] and [10]:

𝑝𝑡 =
1
24

∗
24
∑

ℎ=1
𝑝ℎ (1)

Fig. 2 demonstrates its development for the different regions. Partic-
larly striking is the occurrence of negative prices. During these times
fftakers receive money when buying electricity on wholesale markets.

The second model investigates the impact of offshore wind power
n daily electricity price volatility. Following Rintamäki et al. [10] and
auritzen [14], we define daily volatility as the logarithmised standard

eviation 𝑣𝑡 of the hourly electricity price 𝑝ℎ over the day:

𝑡 = ln

√

√

√

√

24
∑

ℎ=1
(𝑝ℎ − 𝑝𝑡)2 (2)

The daily volatility of electricity prices is demonstrated in Fig. A.1.
3

In the last model, we will study volatility over a weekly horizon.
Analogous to the daily volatility, we specify weekly volatility 𝑣𝑤 as the
logarithmised standard deviation of the average daily electricity price
𝑝𝑡 over the week, again following Rintamäki et al. [10] and Mauritzen
[14] approach:

𝑝𝑤 = 1
7
∗

7
∑

𝑡=1
𝑝𝑡 (3)

𝑣𝑤 = ln

√

√

√

√

7
∑

𝑡=1
(𝑝𝑡 − 𝑝𝑤)2 (4)

Through calculating the weekly volatility based on daily electricity
prices, we can capture the volatility of daily electricity prices, which
are differently impacted than the intraday volatility of hourly prices
[10].
Independent variables

In our time series model, we will also consider external variables as

independent variables. For most external variables, we will calculate
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Table 2
Pearson correlation coefficients of the filtered onshore and offshore feed-in over
different time horizons.

Germany Western Denmark Great Britain

Sum of feed-in
Hour 0.66 0.79 0.75
Day 0.68 0.83 0.74
Week 0.73 0.80 0.75

Volatility of feed-in
Weeka 0.42 0.52 0.23

aDefined by ((4).

the sum over the respective period. In this paper, we aim to study the
impact of offshore and onshore wind energy on wholesale electricity
prices. We therefore consider offshore and onshore wind power feed-in
as main independent variables of our models (see Fig. A.2). Following
Verbeek [29], to estimate the impact of a specific independent variable,
it is not necessary to include all potential variables, as long as the omit-
ted variable bias is prevented by considering the variables correlated to
the independent variable of interest (in this case the onshore wind feed-
in is correlated to the offshore wind feed-in). Considering electricity
prices of neighbouring markets leads to endogeneity problems due to
inter-dependencies with the dependent variable (prices of domestic
electricity market) and are therefor not considered [29]. Main papers
in the literature follow a similar approach [7,9,10]. In addition, we will
control for electricity demand and net electricity exports (see Figs. A.3
and A.4) to increase the robustness of our results similarly to [7,9,27].

Thus, in most models, we run regressions incorporating different
highly inter-correlated independent variables (see Table 2). This can
lead to multicollinearity [29]. Multicollinearity does not result in bi-
ased coefficients, but in both less precise and less significant ones, as
multicollinearity causes a greater standard error of the independent
variables [29]. We will consider this when interpreting the coeffi-
cients of our models. Additionally, we will account for this factor by
also considering a regression model with interaction terms for each
model where multicollinearity probably applies.4 The interaction term
expresses the common effect of the correlated independent variables
on the dependent variable and can help to interpret the results and
increase its informative value when multicollinearity is probably at
play [31]. In order to achieve this, it is important that all indepen-
dent variables are centred around their means, which they do in all
models. Centring also helps to reduce the impact of multicollinearity
when the goal is to identify the contribution of a particular variable
[32]. Additionally, we will perform various stability checks such as
rolling regressions to confirm the stability and robustness of our results.
The relatively high number of observations also helps alleviate the
problem of multicollinearity [29]. Omitting one variable, however, is
not a solution to this problem in our case. As we will show below,
this leads to very biased results through the omitted variable bias.
Following the above modifications of the independent variable, we test
for multicollinearity using the Variance Inflation Factor. It measures the
extent to which the variance of the estimation coefficient is increased
due to collinearity between independent variables [33]. A result greater
than ten is usually perceived as a strong indicator for multicollinearity
[33]. Following the test, no model passes this threshold in any of
the countries, and even stays below five in all cases. Thus, multi-
collinearity does not pose a major concern in our models, despite the
relatively high correlation. The results are depicted in Table A.1 in the
Appendix.

4 Usually, the interaction term 𝑥1 × 𝑥2 is defined as the product of the two
vectors of the original variables 𝑥 and 𝑥 [30].
4

1 2
2.1.2. Filtering trends and seasonalities
In order to construct a time series model, it is necessary for the

dependent and independent variables to be stationary [34]. A time
series is stationary if both its mean and autocovariance function are
independent of the time [35]. For this purpose, we assume a linear
relationship between the variable 𝑥𝑡, the deterministic component 𝑠𝑡
and a stationary stochastic process 𝑦𝑡:

𝑥𝑡 = 𝑠𝑡 + 𝑦𝑡 (5)

The graphs A.1, A.2, A.3 and A.4 illustrate that most variables
represent a cyclical component over the year. Additionally, electricity
prices and demand also reveal a weekly seasonality. In order to filter
time series data, trigonometric functions are often used in the literature
in order to avoid jumps in the data [36–38]. Therefore, the following
model is applied to filter the temporal components of the independent
and dependent variables:

𝑥𝑡 = 𝛽0 +

𝑡𝑟𝑒𝑛𝑑
⏞⏞⏞
𝛽1𝑡 +

𝑦𝑒𝑎𝑟𝑙𝑦
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛾1 cos(𝑡 ∗
2𝜋
365

) +

𝑤𝑒𝑒𝑘𝑙𝑦
⏞⏞⏞
𝛿1𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑡

+ 𝜖𝑡
⏟⏟⏟

𝑦𝑡

(6)

We filter the trend through a linear function, as the describes
the data best. Since most variables are subject to yearly seasonal
fluctuations peaking in the winter, we use a cosine function to filter
these components. The strong effect of weekends on electricity prices,
demand and net exports is considered by the dummy variable 𝑑𝑡, which
reflects the weekends.5 Thus, a linear regression is used to determine
the coefficients 𝛽0, 𝛽1, 𝛾1 and 𝛿1, which are necessary to determine
the seasonal component 𝑠𝑡 of the variable 𝑥𝑡 at any given time 𝑡.
The residual 𝜖𝑡 of the linear regression (6) now corresponds to the
stochastic process 𝑦𝑡 from Eq. (5). Hence, 𝑦𝑡 stands for the detrended
and deseasonalised dependent or independent variable and will form
the respective variable in our time series models presented below. We
follow this procedure for the dependent and independent variables of
our first two models with few exception for some variables where slight
variations proved to capture the seasonality better (see a more detailed
overview in Table A.2).6

For the last model, which studies weekly volatility and weekly
aggregated variables, the filtering process is slightly different, as weekly
effects are not observable and the year only has 52 weeks.

𝑥𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛾1 cos(𝑡 ∗
2𝜋
52

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠𝑡

+ 𝜖𝑡
⏟⏟⏟

𝑦𝑡

(7)

We will follow this procedure for all the dependent and independent
variables used in the weekly model (see Tables A.3, A.4, A.5 and A.6).

As our first model considers the arithmetic mean and variance, it
is particularly prone to outliers of its dependent variable, the daily
electricity price. Therefore, we will filter outliers before filtering the
temporal components of the daily electricity price. Outliers are defined
as the values exceeding a predefined threshold for a specific weekday.
They are replaced by the value of the respective limit.7 The outliers
modified through this procedure account for 0.7%–1.3% of the total
data set depending on the region. After filtering temporal components
of the electricity price we repeat this procedure again.8 As significant
outliers were only observed in the first model, we will only follow this
procedure for this model.

5 Electricity demand offers a strong weekly seasonality, with demand being
ignificantly lower on weekends when industrial and commercial consumption
s lower. This also impacts electricity prices and net exports [39–41].

6 The results of these regressions are found in Tables A.3, A.4, A.5 and A.6.
7 The limit is defined as the triple standard deviation from the average

alue of a certain weekday. The same procedure is also followed by Ketterer
9] and Mugele et al. [42].

8
 Now, 0.6%–1.5% of the data set are modified.
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2.2. Selection of the appropriate models

2.2.1. Estimating daily electricity prices
In the first model, we estimate the impact of offshore and onshore

wind energy feed-in on the level and volatility of daily electricity
prices through an SAR-GARCH model. Since the variance of electricity
prices is heteroskedastic and thus conditionally dependent on the past,
GARCH models9 are suitable for modelling the time series [43]. To
incorporate additional properties such as a strong tendency to return to
the mean, a weekly seasonality, a long memory, and volatility clusters,
an SAR(p)(P)[s,s+1]-GARCH(1,1) process10 is particularly appropriate
to model electricity prices11 and is also often used in the literature for
this purpose [9,36,42]).

Our data is shown to fit the typical characteristics of power prices.
Examining the autocorrelation plot and the partial autocorrelation plot
(see Fig. A.5), we observe that electricity prices are autocorrelated12

and have a long memory, a typical property of electricity prices [44,
45]. Additionally, we test for autoregressive conditional heteroskedas-
ticity as proposed by Engle [46] and confirm this hypothesis with high
significance.1314

𝑦𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑦𝑡−𝑖 +

𝑃
∑

𝑖=1
(𝜙𝑖⋅𝑠𝑦𝑡−𝑖⋅𝑠 + 𝜙𝑖⋅𝑠+1𝑦𝑡−(𝑖⋅𝑠+1)) + 𝜖𝑡 (8)

𝜖𝑡 = 𝜎𝑡𝜂𝑡 𝑤ℎ𝑒𝑟𝑒 𝜂𝑡 ∼ 𝑖.𝑖.𝑑.𝑁(0, 1) (9)

𝜎2𝑡 = 𝜔 + 𝛼𝜖2𝑡−1 + 𝛽𝜎2𝑡−1 (10)

Formula (8) lays out the SAR(p,q)(P,Q)[s] model in sigma notation.
The coefficients 𝜙𝑖 and 𝜙𝑖⋅𝑠 express the influence of the preceding
filtered electricity prices 𝑦𝑡−𝑖 and 𝑦𝑡−(𝑖⋅𝑠+1) on the filtered electricity
price 𝑦𝑡. To account for the observed weekly seasonality, the coefficient
𝜙𝑖⋅𝑠 marks the impact of 𝑃 seasonal autoregressive (SAR) terms 𝑦𝑡−𝑖⋅𝑠.
In the case of weekly seasonality, 𝑠 is set to 7. The electricity prices are
filtered for temporal components in accordance with formula (6).

The influence of the preceding squared error term 𝜖2𝑡−1 on the
conditional variance 𝜎2𝑡 in (10) is expressed by the coefficient 𝛼 and
is generally referred to as the ARCH term [46]. The influence of the
past conditional variance 𝜎2𝑡−1 is expressed by the coefficient 𝛽 and is
commonly defined as the GARCH term [47].

In order to include external regressors, the SAR(p)(P)[s,s+1]-
GARCH(1,1) model can be extended to an SARX(p)(P)[s,s+1]-
GARCHX(1,1) model.15 The additional variables are simply added to
the ‘‘conditional mean equation’’ (8) and the ‘‘conditional variance
equation’’ (10):

𝑦𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑦𝑡−𝑖 +

𝑃
∑

𝑖=1
(𝜙𝑖⋅𝑠𝑦𝑡−𝑖⋅𝑠 + 𝜙𝑖⋅𝑠+1𝑦𝑡−(𝑖⋅𝑠+1)) +

𝑚
∑

𝑗=1
𝜃𝑗𝑤𝑡𝑗 + 𝜖𝑡 (11)

𝜎2𝑡 = 𝜔 + 𝛼𝜖2𝑡−1 + 𝛽𝜎2𝑡−1 +
𝑠
∑

𝑘=1
𝛾𝑘𝑤𝑡𝑘 (12)

9 GARCH is an abbreviation for ‘‘generalised auto-regressive conditional
eteroskedasticity’’.
10 SAR is an abbreviation for ‘‘seasonally adjusted autoregressive’’.
11 Note that extending a SAR(p)(P)[s] model to a SAR(p)(P)[s, s+1]-model is
ot encountered in the literature. However, the observed seasonal patterns of
he time series occurring also after the day after a seasonal cycle is completed
ecessitate this very model in order to describe the data appropriately.
12 The Box–Ljung test can also be applied to test for autocorrelation and
onfirms this hypothesis for all countries [34].
13 Both the Portmanteau-Q test and the Lagrange-Multiplier test confirm this
ypothesis with a 𝑝-value of <0.0001 for all regions [43].
14 Similar results were obtained by Ketterer [9] and Lichter et al. [20].
15
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The ‘‘X’’ stands for external regressor or external regressors.
To form the mean Eq. (11) Eq. (8) is extended by the adjusted
external regressors 𝑤𝑡𝑗 . For the variance Eq. (12), the adjusted external
regressors 𝑤𝑡𝑘 are added to the variance Eq. (10). The coefficients
𝜃𝑗 and 𝛾𝑘 describe the influence of these external regressors on the
adjusted electricity price 𝑦𝑡, and the conditional variance of the ad-
justed electricity price 𝜎2𝑡 , respectively. When estimating this model, the
choice of external regressors will vary (see next section and Table 1).

The distribution of the residuals demonstrates that the distribution
is heavy-tailed (see Fig. A.8). Thus, considering the quantile–quantile
plots (QQ-plots) for the different regions, we observe that assuming a
normal inverse Gaussian distribution of residuals provides the best fit
to the data.16 Under this assumption, the individual plots are closest to
the assumed distribution of the residuals.17 Therefore, we assume nor-
mal inverse Gaussian distributed residuals for all AR-GARCH models.
Jónsson et al. [19] and Dev and Martin [48] also advocate for using
alternatives to the normal distribution. Jónsson et al. [19] argue that
assuming a normal distribution can lead to strong distortions.

2.2.2. Estimating the intraday volatility of electricity prices
Our second model investigates the impact of offshore wind en-

ergy on intraday electricity price volatility, the logarithmised daily
standard deviation of electricity prices defined in formula (2) and
filtered by (6). Considering the ACF and PACF plots,18 we observe
utocorrelation in the time series 𝑣𝑡, which implies that current val-
es are correlated to preceding ones19 [35]. Additionally, we observe
trong weekly, seasonal components in the ACF and PACF plots. To
ccount for the impact of preceding periods and the weekly seasonality,
SARMA (p,q)(P,Q)[s] model is usually applied and recommended.

o incorporate external variables, we again extend it to a SARMAX
p,q)(P,Q)[s]-model [34].

𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑦𝑡−𝑖+

𝑞
∑

𝑘=1
𝜃𝑘𝜖𝑡−𝑘+

𝑃
∑

𝑖=1
𝜙𝑖⋅𝑠𝑦𝑡−𝑖⋅𝑠+

𝑄
∑

𝑘=1
𝜃𝑘⋅𝑠𝜖𝑡−𝑘⋅𝑠+

𝑚
∑

𝑗=1
𝛾𝑗𝑤𝑡𝑗 +𝜖𝑡 (13)

The first part is known as the AR-process and analogue to (11). In
ddition to (11), we also consider a MA-process, which describes the
nfluence 𝑞 preceding error terms 𝜖𝑡−𝑘 on the intraday electricity price

volatility 𝑦𝑡. The impact of each individual preceding error term 𝜖𝑡−𝑘
n the volatility 𝑦𝑡 is expressed by the coefficient 𝜃𝑘. The coefficients
𝑖⋅𝑠 and 𝜃𝑘⋅𝑠 mark the impact of 𝑃 seasonal autoregressive (SAR) terms
𝑡−𝑖⋅𝑠 and 𝑄 seasonal moving average (SMA) terms 𝜖𝑡−𝑘⋅𝑠. In the case
f weekly seasonality, 𝑠 is set to 7. The coefficients 𝛿𝑗 describe the
nfluence of the external regressors 𝑤𝑡𝑗 on the intraday volatility. As
xternal regressors, we include the previously introduced and filtered
ariables, namely the daily sum of offshore feed-in as 𝑤𝑡1 and the
nshore feed-in as 𝑤𝑡2 (see Table 1). This model forms the second model
f our analysis and is closely related to the models of Rintamäki et al.
10] and Mauritzen [14].

.2.3. Estimating the weekly volatility of electricity prices
In the last model, we will study the impact of offshore wind energy

n the weekly volatility of electricity prices. Examining the ACF and
ACF plots, we find some degree of autocorrelation,20 but no clear
easonal effects. Therefore, we will apply an ARMAX model here. An
RMAX(p,q) model is closely related to the previous model (13) and is
tructured as follows:

𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑦𝑡−𝑖 +

𝑞
∑

𝑘=1
𝜃𝑘𝜖𝑡−𝑘 +

𝑚
∑

𝑗=1
𝛿𝑗𝑤𝑡𝑗 + 𝜖𝑡 (14)

16 In total, we tested nine different distributions of the residuals.
17 Further, we find that the AIC and BIC values to be lowest when assuming

a normal inverse Gaussian distribution, which confirms our hypothesis.
18 see Fig. A.6 in the Appendix.
19 The Box–Ljung test also confirms autocorrelation for all regions.
20 See Fig. A.7 in appendix. The Box–Ljung test also confirms this hypothesis
for all regions with a significance level of 𝑝 < 0.00001.
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Table 3
Model 1.B with and without the interaction term. As the autoregressive parameters do not change significantly after including the interaction term, we
do not demonstrate them here. For the autoregressive parameters, see Table A.7.

Germany Western Denmark Great Britain

With Without With Without With Without
interaction interaction interaction interaction interaction interaction
term term term term term term

mean equation
Offshore −1.03∗∗∗ −0.94∗∗∗ −6.91∗∗∗ −7.30∗∗∗ −0.66∗∗∗ −0.65∗∗∗

(0.15) (0.15) (1.15) (1.08) (0.08) (0.08)
Onshore −0.78∗∗∗ −0.81∗∗∗ −4.46∗∗∗ −4.29∗∗∗ −0.57∗∗∗ −0.58∗∗∗

(0.03) (0.03) (0.44) (0.40) (0.05) (0.05)
Interaction −0.06∗∗∗ 1.07 −0.02

(0.02) (0.96) (0.03)

variance equation
Offshore 0.00 0.07 1.08 0.00 0.17 0.17

(0.28) (0.31) (3.02) (4.23) (0.12) (0.12)
Onshore 0.00 0.03 3.04∗ 2.42∗ 0.00 0.00

(0.05) (0.06) (1.27) (1.12) (0.07) (0.08)
Interaction 0.00 20.87∗∗∗ 0.23∗∗

(0.04) (6.05) (0.08)

R2 0.83 0.83 0.71 0.71 0.77 0.77
Log likelihood −3734 −3740 −4170 −4177 −3279 −3286
AIC 5.50 5.51 5.74 5.74 4.52 4.52
BIC 5.58 5.58 5.81 5.81 4.59 4.59
Ljung–Box Test 0.35 0.28 0.24 0.10 0.31 0.35

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
The weekly electricity price volatility 𝑦𝑡 refers to the logarithmised
weekly standard deviation which was derived in (4) and filtered by
(7). As external regressors, we will include the weekly sum of offshore
feed-in as 𝑤𝑡1 and onshore feed-in as 𝑤𝑡2. In a second variation of
this model, we will include the volatility of the offshore and onshore
feed-in as independent variables 𝑤𝑡1 and 𝑤𝑡2. It is derived analogously
to the electricity price volatility through Eq. (4). This model helps us
understand how the intermittency of the offshore and onshore feed-
in influences electricity price volatility over a longer time frame and
whether it influences electricity price volatility more prominently than
the magnitude of the feed-in itself.

3. Results and discussion

3.1. Estimating the impact on daily electricity prices

First, we choose the appropriate number of autoregressive parame-
ters to be included in the model by minimising the BIC values. Thus,
we decide to estimate a SARX(3)(3)[7,7+1]-GARCHX(1,1)-model in all
regions21 (see (11) and (12)). Both the ACF and PACF plots, as well
as the Box–Ljung and Durbin–Watson tests do not confirm significant
autocorrelation of the residuals in most regions.22 Therefore, we con-
clude that the models perform rather well on the estimated data. The
results of this model are illustrated in Table A.7. We observe neither
explosive processes in the mean equation, nor in the variance equation,
as the sum of autoregressive parameters 𝜙𝑖 is below one, and 𝛼+𝛽 < 1.
This means that both processes have a tendency to return to the mean
and are thus stationary, which holds in all regions [43]. In all regions,
we observe a significant merit-order effect of offshore wind energy. In
the first model specification, an increase in 1 GWh of offshore wind

21 Modelling is performed using the ugarchfit function, which fits univariate
R-GARCH models. The corresponding ‘‘rugarch’’ package was developed by
halanos [49].
22 See ACF and PACF plots of the residuals in Fig. A.9 in the appendix.
nly in Great Britain, some patterns of autocorrelation remain in the residuals.
s the autocorrelation was significantly reduced when comparing it to the
utocorrelation of the dependent variable, and the Durbin–Watson test does
ot support the hypothesis of autocorrelation, we conclude that this model
6

erforms necessarily well and its results can still be interpreted. t
energy feed-in has a significantly stronger effect on electricity prices
than a 1 GWh decrease in demand. This difference is most staggering
in Germany, where results differ fivefold and are in line with [20].
Therefore, we suspect the effect of offshore wind energy feed-in to be
overestimated when not considering the onshore wind energy feed-in,
as both feed-ins are highly correlated. Thus, the offshore wind feed-in
probably carries explanatory power from the not considered onshore
feed-in in this model and is therefore overestimated. This effect is also
known as the omitted variable bias [29]. In the next model, we therefore
consider the feed-in from both technologies jointly and confirm the
merit-order effect for both.23 This finding is in line with [5], [19]
and [9] who confirmed the merit order effect of wind energy. All
coefficients for the offshore feed-in are significantly lower than in the
first model, which confirms the omitted variable bias following the
definition of Verbeek [29] and Greene [50].24 The difference is most
significant in Germany, where the share of offshore feed-in of the total
wind feed-in is the smallest.

In Western Denmark, the price-reducing impact of offshore wind is
significantly greater than the one of onshore wind energy. Following
a t-test on the difference of the two coefficients, we find that the
difference is significant on a 2% level.25 Also estimating the model with
the interaction term confirms this hypothesis, as the interaction term
is insignificant but positive in Denmark. Thus, the merit-order effect of
offshore wind energy is significantly greater than the merit-order effect
of onshore wind energy in Western Denmark. This finding is robust and
confirmed throughout various model specifications and under different
control variables (see 3.4 Alternative model specifications). In Germany

23 In the next model, we will not consider demand anymore, as it is
not correlated to the wind feed-in and should therefore not influence the
magnitude of the coefficients.

24 According to [29], the omitted variable bias is present when an indepen-
dent that is correlated to an other independent variable is omitted from the
model while it has a significant impact on the dependent variable. This case
applies here for onshore wind as proven by the correlation in Table 2 and the
highly significant coefficient for onshore wind in Tables 3 and 4. As onshore
wind and offshore wind are correlated and both have a significant coefficient,
both variables should be considered in the model.

25 We state the null hypothesis 𝐻0 ∶ 𝛾2 − 𝛾1 > 0. To conduct a t-test on this
hypothesis, we must first derive the 𝑡-value. 𝑡 = 𝛾1−𝛾2

√

𝑆𝐸(𝛾1)2+𝑆𝐸(𝛾2)2
. 𝛾2 and 𝛾2 mark

he coefficient for offshore and onshore feed-in respectively, in this case [51].
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and Great Britain, the coefficients for the onshore feed-in are also
higher, but not significantly so.

The positive coefficient of the interaction term in Western Denmark
helps to explain this finding, as it suggests the marginal impact of an
additional unit of wind feed-in to be declining26 (see Table 3). Thus,
the higher the feed-in, the lower the merit-order effect of an additional
unit of wind energy.27 As the average onshore feed-in is significantly
greater than the average offshore feed-in and both feed-in sources are
not perfectly correlated, the onshore feed-in will have a lower average
impact on the electricity price. Hence, the magnitude of its coefficient
must be lower.

In Great Britain and Germany, the interaction term is negative and
very close to zero. This indicates that the marginal impact of the wind
feed-in is not declining, but constant or even slightly increasing.28

To understand the different result, one must consider the different
relevance of wind energy in the different electricity markets. While
wind generation is very relevant and often exceeds the total electricity
demand in Western Denmark, it is less prominent in Germany and Great
Britain. During the investigated period, on 14% of the days, the total
wind feed-in was higher than the total electricity demand in Western
Denmark for that day. Thus, a large portion of the generated wind
energy had to be exported. When wind is exported, the total price
elasticity is bound to be lower, as a greater overall market is served,
where the Danish wind has a relatively lower relevance in. Thus, the
marginal impact of wind energy on the electricity price will inevitably
decrease. In Germany and Great Britain, on the contrary, the total
electricity demand was not exceeded by the wind feed-in on a single
day. Hence, the wind can always crowd out other generation forms
and might therefore even lower the prices stronger, depending on the
generation mix and the merit-order curve at a particular time.

Thus, the trends observed in Western Denmark might also be await-
ing the British and German electricity markets with a further rising
relevance of wind energy. This observation is not only valid for these
two technologies, but can also be transferred to any feed-in which is
less correlated to the total feed-in when the marginal impact of an
additional unit of feed-in is declining. This finding has implications
for the planning and allocation of wind plants in regions with high
wind feed-in. Instead of only focusing on the total expected feed-in,
central planners should also consider the correlation of the wind power
generation of new plants to the power generation patterns of the overall
wind energy grid.

A higher impact on electricity prices is associated with a higher mar-
ket value and is potentially welfare-enhancing as it helps to compensate
for the cost of state-backed support schemes [27]. Hence, to a certain
extent, this model advocates the further expansion of offshore wind
energy capacities. Still, the validation of the merit-order effect does not
necessarily imply that wind energy lowers electricity prices over larger
time periods [52,53]. Similar to the short run, the electricity prices also
depend from the generation capacities in the long run. A rising share
of renewable generation plants could alter the capacity mix towards
more flexible technologies with higher compatibility to intermittent
energy sources. These technologies often have higher marginal costs
and would, therefore, raise electricity prices in the future [52].

Regarding the impact on the conditional variance, the models con-
vey that offshore wind energy does not significantly impact volatility.
Through out all models, only the coefficient for the onshore wind
feed-in is significant in Denmark. However, its significance might be

26 A positive coefficient for the squared onshore and offshore feed-in also
onfirms the reducing marginal impact of wind energy feed-in.
27 Neither the onshore nor the offshore feed-in ever reach the necessary

hreshold to reverse the merit-order effect in Western Denmark.
28 Also considering the squared feed-in of onshore and offshore feed-in
uggests the marginal impact to be increasing, as the coefficients are negative
7

n both regions.
underestimated due to multicollinearity. When including the interac-
tion term, the interaction term is highly significant in Denmark and
Great Britain. This indicates the collective feed-in of both technolo-
gies to impact the conditional variance most, while the offshore and
onshore feed-in are probably not impacting it differently. The results
from this model are only partially in line with the literature. Papers
that studied the conditional variance through GARCH models also had
mixed findings [9,20]. However, in different approaches to describe
the impact on volatility, it is mostly found to be significantly positive
[10,18,27]. In order to better describe the impact on volatility we will
further investigate this relationship in the next sections.

3.2. Estimating the impact on intraday volatility

In the second model, we estimate the impact of offshore and onshore
wind energy feed-in on the intraday volatility, which we defined as
the logarithmised standard deviation of hourly electricity prices. Min-
imising the BIC values, we decide to estimate a SARMAX(1,2)(1,1)[7]-
model in Germany and Great Britain, and a SARMAX(3,2)(1,1)[7]-
model in Western Denmark (see formula (13)).29 The results are illus-
trated in Table 4. As the sum of the estimated autoregressive parame-
ters 𝜙𝑖 and 𝜃𝑖 is lower than one, we confirm the model to be stationary.

dditionally, both the Box–Ljung test and the ACF and PACF plots of
he residuals demonstrate that the residuals of the time series are not
utocorrelated (see Fig. A.10).

The model reveals that offshore and onshore wind feed-in impact
ntraday electricity price volatility differently. Onshore wind energy
ends to increase volatility in Denmark and Germany, while offshore
ind energy reduces it there. In Western Denmark, the volatility-

educing effect of offshore wind energy is stronger and more significant
han in Germany. If the offshore feed-in rises by 100 MWh in Denmark,
he electricity price volatility decreases by 13.2%, ceteris paribus. In
ermany, rising offshore wind power generation by 1 GWh will lead to
.2% lower electricity price volatility. For Great Britain, the opposite
ffects are observed. Here, onshore wind energy tends to reduce the
ntraday volatility, while the offshore feed-in does not significantly
mpact it. Overall, these results are in line with the literature [10,14,
9]. These findings can primarily be attributed to a different frequency
f outliers, differing legal frameworks and a different distribution of
he feed-in over the day. This is laid out in more detail in the next
aragraphs.

In Germany, we find the onshore wind energy to significantly
ncrease the intraday volatility, while the coefficient for offshore wind
eed-in is slightly significant and negative. A more constant offshore
eed-in with less outliers mostly explains this finding.

Fig. 3 reveals that the onshore feed-in has far more outliers than the
ffshore feed-in. During these times, electricity prices are significantly
educed. When defining extreme outliers as 2.5 times the average feed-
n of a particular year, the prices are 65% lower during these hours,
n average. As these outliers mostly only occur for a few hours a day,
e expect this to further raise the volatility of the electricity prices.
e demonstrate this argument to be valid by following Welch’s t-test30

to test if the electricity volatility is higher during times of extreme
outliers of the feed-in. The test confirms this hypothesis with a 𝑝-value
of less than 0.001 for all years. On average, the volatility is 25% higher
on days with extreme outliers of the feed-in. These outliers occur on
around 12% of the days and have a significant importance in explaining
the different impact of offshore and onshore feed-in. As the wind tends
to be more strong and constant on the sea, the offshore feed-in is always

29 We use the Arima function to fit these SARMAX models. The
corresponding ‘‘forecast ’’ package was developed by Hyndman et al. [54].

30 Welch’s t-test is especially recommended for hypothesis tests on data sets
with differing numbers of observations and different variances. The 𝑡-value is
defined as follows: 𝑡 = 𝑋1−𝑋2

√ 𝑠1 𝑠2
[55].
𝑁1
+

𝑁2
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Table 4
Estimation results of the SARMAX model on intra-day volatility with and without the interaction term.

Germany Western Denmark Great Britain

With Without With Without With Without
interaction interaction interaction interaction interaction interaction
term term term term term term

𝜙1 0.96∗∗∗ 0.96∗∗∗ 0.17∗ 0.17∗ 0.93∗∗∗ 0.93∗∗∗

𝜙2 0.78∗∗∗ 0.78∗∗∗

𝜙7 0.97∗∗∗ 0.97∗∗∗ 1.00∗∗∗ 1.00∗∗∗ 0.94∗∗∗ 0.94∗∗∗

𝜃1 −0.73∗∗∗ −0.71∗∗∗ 0.17∗ 0.17∗ −0.57∗∗∗ −0.56∗∗∗

𝜃2 −0.16∗∗∗ −0.18∗∗∗ −0.69∗∗∗ −0.69∗∗∗ −0.17∗∗∗ −0.19∗∗∗

𝜃3 −0.24∗∗∗ −0.24∗∗∗

𝜃7 −0.84∗∗∗ −0.85∗∗∗ −0.99∗∗∗ −0.99∗∗∗ −0.84∗∗∗ −0.85∗∗∗

Offshore −0.02 −0.03∗ −1.15∗∗∗ −1.32∗∗∗ 0.01 0.01
(0.01) (0.01) (0.19) (0.18) (0.01) (0.01)

Onshore 0.01∗∗∗ 0.01∗∗∗ 0.13 0.20∗∗∗ −0.04∗∗∗ −0.03∗∗∗

(0.00) (0.00) (0.07) (0.06) (0.01) (0.01)
Interaction 0.01∗∗∗ 0.38∗ 0.04∗∗∗

(0.00) (0.16) (0.00)

R2 0.34 0.32 0.30 0.29 0.42 0.39
R2 no XRa 0.29 0.29 0.25 0.25 0.37 0.37
Log likelihood −366 −383 −1426 −1428 −222 −266
AIC 751 783 2873 2877 463 547
BIC 798 824 2931 2930 510 590

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
a𝑅2 of the model without considering external regressors.
Fig. 3. Density plot of hourly offshore and onshore feed-in in 2017. The red areas represent onshore wind, the turquoise areas offshore wind. The feed-in is standardised by the
respective average feed-in. Thus, a value of ‘‘1’’ on the 𝑥-axis represents the average feed-in in a given year, country, and technology, while a value of ‘‘2’’ equates to twice the
average feed-in. Due to many extreme outliers in 2017, the data of 2016 is used for Great Britain.
closer to its maximum capacity and is, therefore, less prone to outliers
(see Fig. 3 and [21]).31 In addition to the lower quantity of outliers, the
volatility-decreasing impact of offshore wind power is also supported
by a higher feed-in during times of peak prices (see Figs. A.12 and A.13)
and lower feed-in during times of the lowest prices, which lowers the
intraday volatility.

Through a rolling regression (see Fig. 4), we are able to demonstrate
why the coefficient for offshore wind energy is only slightly significant
in Germany. It reveals that the coefficient is only significantly negative
during the winter and insignificant in the summer. During the summer,
solar generation is highest and known to reduce the intraday electricity
price volatility [10]. From this, one could infer that the elasticity of
peak electricity prices is higher when the solar feed-in is lower, and
thus the volatility-decreasing impact of offshore wind energy is higher
during the summer. Fig. 4 also reveals that the coefficient of the on-
shore feed-in does not follow any seasonal trends and is always positive,
which could again demonstrate the impact of extreme outliers. Similar
seasonal effects were also observed by Wen et al. [6] in New Zealand.
According to their study, the merit-order effect of wind energy was
most pronounced during the wet season when hydro power generation

31 During the investigated period, outliers of the offshore wind power feed-in
ere not observed on a single hour.
8

was highest. At the same time, the volatility-enhancing effect was
lowest during this season of the year.

In Denmark, the impact of the onshore feed-in is significant and
volatility-enhancing (see Table 4). The effect of the offshore feed-in
is shown to be negative, but declining with a rising magnitude of the
onshore feed-in. When weighting the coefficients by the average feed-
in of each technology, our results confirm a intraday volatility-reducing
effect of the total wind energy feed-in in Denmark as demonstrated by
Jónsson et al. [19], Mauritzen [14] and Rintamäki et al. [10]. Again,
the lower number of outliers helps explain the differences (see Fig. 3).
We confirm this volatility-enhancing effect of outliers to be highly
significant also in Denmark through Welch’s t-test for most years.32 As
extreme outliers of the onshore feed-in were observed on approximately
13% of the days, this effect helps to explain the significant difference
in the impact of two technologies. Similarly to Germany, these outliers
were not observed on a single hour for the offshore feed-in.

Additionally, differing legal frameworks regarding the support of
onshore and offshore feed-in in Western Denmark help explain the
findings: Around 50% of the total offshore capacities were not sub-
sidised during times of non-positive prices, which is found to have

32 Only in 2016, the difference was not shown to be significant. For the
other years, the 𝑝-value was lower than 0.001.
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Fig. 4. Rolling regression over 120 days for the coefficients of the model on intraday volatility in Germany. The blue lines represents the coefficient of the offshore feed-in, while
the green one represents the coefficient of the onshore feed-in. The faint lines represent the 95% coefficient interval.
significant consequences on the feed-in decision of affected plant op-
erators. Only at about 9% of the times when prices were non-positive,
the offshore feed-in exceeded the threshold, that is indicating that the
non-subsidised plants must have also been contributing to the feed-
in. As long as the prices were slightly positive (below 5e/MWh), this
threshold was exceeded 90% of the time. The onshore feed-in surpassed
this threshold about 80% of times during non-positive times, and 72%
of times when prices were only slightly positive. Thus, this regulation
most likely reduces the offshore feed-in at times of very low prices
(which is mostly at night), and thereby lowers its volatility-enhancing
impact. Note that non-positive prices were only observed on about 6%
of the days. For onshore wind energy, none of these mechanisms are in
place so far.

In Great Britain, the onshore feed-in is shown to lower intraday
volatility on average, while the offshore wind feed-in is not significantly
impacting it. Legal frameworks limiting the feed-in in at times of
excess generation help explaining this finding. In the other regions,
the volatility-enhancing effect of the onshore feed-in was attributed
to its quantity and magnitude of outliers. In Great Britain, on the
contrary, these outliers cannot be observed (see Fig. 3). This can be
explained by differing legal provisions on the grid usage of electricity
generated through wind energy. In contrast to Germany and Denmark,
wind power is not granted prioritised grid usage in Great Britain and
cannot exceed a certain predefined entry capacity agreement [56].
Thus, when the total onshore feed-in is about to surpass this limit, a
certain number of wind plants is disconnected from the grid in order to
limit its total feed-in. As a consequence, no outliers of onshore feed-in
in Great Britain were observed.

Additionally, this finding is supported by a differing feed-in profile
over the day. On average, the onshore feed-in is higher when prices are
greater during the day and lower at night (see Figs. A.12 and A.13).
Therefore, the onshore feed-in is lowering peak prices more than off-
peak prices, and reducing the intraday volatility. This does not apply
to the offshore wind feed-in, that has a different distribution over the
day.

Overall, through this model, we could demonstrate the impact of the
onshore and offshore feed-in to differ. The difference can be primarily
explained through a differing hourly feed-in profile over the day and
a lower magnitude of outliers. Additionally, we were able to show
that the impact on the intraday volatility can be lowered through
various regulatory frameworks limiting the feed-in at times of excess
supply. While the lower quantity of outliers advocates the expansion of
offshore capacities, the example of Great Britain proposes to establish
regulations to curb the emergence of extreme outliers of the feed-in and
its consequences.

Lowering intraday volatility is associated with welfare gains, as it
leads to more income security of conventional plant operators and to a
higher utilisation rate of power plants. Both factors foster investments
9

in capacities and contribute to lower average costs of producers [57].
However, hourly prices often follow clear patterns which can more
reliably be anticipated. Thus, in order to reduce the income uncertainty
of conventional plant operators and encourage investments, estimating
the volatility over longer time frames is probably even more important.
Therefore, we will estimate how offshore and onshore wind energy
impact weekly volatility of daily electricity prices in the next section.

3.3. Estimating the impact on weekly volatility

In the third model, we study the impact on weekly volatility of elec-
tricity prices, which we defined as the logarithmised standard deviation
of daily electricity prices (see formula (4)). We decide to investigate an
ARMA(1,1) model in order to study the weekly volatility.33 This model
also yields the lowest BIC values. Again, the Box–Ljung test, and the
ACF and PACF plots, confirm the residuals not to be autocorrelated (see
Fig. A.11).

The results convey that the magnitude of both the offshore and the
onshore wind energy mostly do not have a significant impact on elec-
tricity prices (see Table A.10). These results also hold after including
an interaction term, which is not significant in all regions. In a second
variation of this model, we therefore investigate the impact of the
volatility of the feed-in and find that it explains the weekly electricity
price volatility significantly better in all countries (see Table A.11). This
finding is also observed by Rintamäki et al. [10]. According to this
second model, only the volatility of the onshore feed-in significantly
impacts the volatility of the weekly electricity price in Germany and
Denmark. The effect of offshore wind energy, however, might have
been ignored due to its lower magnitude and relevance for the overall
electricity market.

Therefore, we will estimate an additional model, where we only
introduce the volatility of the total wind feed-in as external variable.34

This model does not only have a higher explanatory power but also
the most significant coefficient of all models (see Table 5). Therefore,
we assume the volatility of the wind feed-in to best explain the weekly
volatility of electricity prices. When the volatility of the wind feed-in
rises by 10%, the weekly price volatility will rise by 3.4% to 4.5%,
depending on the region.

This suggests the volatility measured over a larger time horizon,
e.g. over one week, to be mostly impacted by shifts of the supply
curve rather than the overall magnitude of the feed-in in this period.
These shifts are primarily caused by fluctuations in the feed-in from

33 Again, the Arima function from the ‘‘forecast ’’ package was used to fit
these models [54].

34 The volatility of the total wind feed-in is defined as its logarithmised
standard deviation of the filtered daily total wind feed-in over a week (see
formula (4)).
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Table 5
ARMAX(1,1) model on the weekly electricity price volatility. The volatility of the wind
feed-in forms the only independent variable here.

Germany Western Denmark Great Britain

𝜙1 0.67∗∗∗ 0.90∗∗∗ 0.78∗∗∗

(0.20) (0.06) (0.18)
𝜃1 −0.46 −0.72∗∗∗ −0.51

(0.25) (0.09) (0.27)
vol of wind 0.45∗∗∗ 0.34∗∗∗ 0.47∗∗∗

(0.07) (0.09) (0.11)

R2 0.24 0.22 0.21
R2 no XRa 0.06 0.15 0.13
Log likelihood −112.20 −152.11 −191.19
AIC 232.41 312.21 390.39
BIC 245.50 325.58 403.72

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
a𝑅2 of the model without considering external regressors.

Table 6
ARMAX(1,1)-model investigating the impact of the magnitude of the onshore and
offshore feed-in on the filtered volatility of the overall wind feed-in.

Germany Western Denmark Great Britain

𝜙1 −0.60∗∗ 0.90∗∗∗ −0.54
𝜃1 0.73∗∗∗ −0.84∗∗∗ 0.54
Intercept 0.10∗∗∗ 0.11∗∗ 0.11∗∗∗

Offshore 0.04∗ −0.00 −0.03
(0.02) (0.09) (0.02)

Onshore 0.02∗∗∗ 0.18∗∗∗ 0.05∗∗∗

(0.00) (0.03) (0.01)
Interaction −0.01∗∗∗ −0.27∗∗∗ −0.02∗∗∗

(0.00) (0.03) (0.00)

𝑅2 0.53 0.42 0.28
AIC 129.30 99.36 156.92
BIC 152.21 122.76 180.24
Log likelihood −57.65 −42.66 −71.46

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

renewable energy sources such as wind. The more prominent these
shifts, the more will they increase the volatility of prices [10].35

Tables A.8 and A.9 demonstrate that the relative fluctuations of the
offshore feed-in tend to be lower than the relative fluctuations of the
onshore feed-in in Western Denmark. Moreover, there is an additional
factor at play. The onshore feed-in and the offshore feed-in are not
perfectly correlated. This allows for reducing the volatility of the total
feed-in by increasing the share of the minor party. Thus, up to a certain
point, an additional unit of offshore feed-in will lower the volatility
of the total feed-in less than an additional unit of onshore feed-in. As
the volatility of the offshore feed-in is not significantly higher in any
country, this point will probably not be located too far below an equal
share of the offshore feed-in is reached, or even higher. This hypothesis
has similarities to the portfolio theory introduced by Markowitz [58].
To confirm this hypothesis, we will set up a linear regression, where
the volatility of the total wind feed-in forms the dependent variable and
the offshore and onshore feed-in represent the independent variables,
respectively. As the wind feed-in is slightly autocorrelated, we will also
include the first-order AR- and MA-process, upgrading the model to an
ARMAX(1,1)-model.

The regression reveals that the weekly volatility of the total wind
feed-in is significantly negatively impacted by the offshore wind feed-
in in Western Denmark and Great Britain (see Table 6). Thus, a rising

35 This also helps explaining why the coefficients for the onshore and
ffshore feed-in were not or only slightly significant in the variance equation of
he GARCH model (see Table A.7). In this model, the magnitude of the feed-in
onstitutes the external variable, which is also correlated to the volatility of
he feed-in. In times of higher feed-in, the volatility also tends to be higher.
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share of offshore feed-in will lower the weekly volatility of the total
wind feed-in. At the same time, the onshore feed-in is positively af-
fecting the volatility of the total wind feed-in. For instance, rising the
onshore feed-in by 1 GWh per day, will result in 18% higher weekly
volatility of the total wind feed-in, if the offshore feed-in is at its
average weekly magnitude. In Germany, the coefficient for the offshore
feed-in is positive, while the interaction term is negative. Thus, on days
with high onshore feed-in, the offshore feed-in will have a negative
impact on the volatility of the total wind feed-in. Below, its impact will
be volatility-enhancing.

Following this regression, we can cautiously derive that the offshore
feed-in lowers the weekly volatility of electricity prices less than the
onshore feed-in does, as the volatility of the wind feed-in is the main
variable in explaining the weekly volatility of electricity prices. This
holds especially for Great Britain and Denmark and is also confirmed
for most times through a rolling regression (see A.15). In Germany,
the differing results could be potentially explained by a high corre-
lation of the offshore feed-in with the overall wind feed-in (which is
primarily generated in Northern Germany), while many onshore plants
are located at locations with less correlated wind patterns, such as the
German Uplands or Southern Germany [59].

In essence, this model demonstrates the importance of reducing
the similarity of the different feed-in sources in order to reduce the
volatility of the feed-in. Thus, up to a specific point, increasing the
offshore wind power generating capacities offers a solution to lower
the volatility of the feed-in and thus, of electricity prices. This is also
supported by the less volatile nature of the offshore wind feed-in (see
Table A.8).

As stated above, lowering the volatility over a longer time frame,
such as a week, is very important to reduce income uncertainty for
plant operators. Higher uncertainty leads to higher costs and discour-
ages investments and grid expansions [57]. Generalising this argu-
ment, it advocates an allocation procedure focusing on wind power-
generating plants with less correlated wind patterns and a further
expansion of cross-border transmission capacities [60].

3.4. Alternative model specifications

As the obtained results depend upon the model specification and
considered exogenous variables, we will check the robustness of the
results by including different control variables and different specifica-
tions of our models. As both Denmark and Germany are located in the
centre of Europe and their electricity grids are highly interconnected
with foreign grids, we additionally introduce net electricity exports as a
control variable.36 In Western Denmark, we additionally control for the
impact of wind energy generation in Germany and Eastern Denmark.
We will also introduce net exports as a control variable in Great Britain.
Throughout all specifications, the previously introduced and presented
main results manifest themselves as stable and robust (see Tables A.12
and A.13). Further, we demonstrate the results to be robust through a
rolling regression over a yearly period (see Fig. A.14).

3.5. Impact of climate change

Since the beginning of Industrialisation in the 19th century, the
global average temperature has risen by 1.1–1.3 ◦C and is threatened to
further increase with accelerating climate change [62]. In this section,
we will briefly discuss the impact of climate change on wind energy
and electricity prices.

According to [62] there is medium evidence for wind speeds to
have declined over the past four decades globally. In the future, there

36 Net exports are probably endogenous from electricity prices and their
volatility and therefore hard to interpret [61].
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is medium evidence that wind speeds will further decline in North-
ern Europe over this century, while the estimations differ by region
and scenario. In addition, Akhtar et al. [63] expect that continued
deployment of offshore wind farms in the North Sea will reduce wind
speeds in this region in the future, reducing capacity factors by up
to 20%. Regarding the variability of wind, IPCC [62] has medium
confidence that it will increase in the extreme warming scenario in
Northern Europe. For the other scenarios, results are inconclusive so
far. For extreme weather events, IPCC [62] expects a slight increase in
the frequency and amplitude of storms in Northern Europe.

Following the results of our models, the expected trends will also
impact the effect of wind energy on electricity prices. First, lower wind
speeds will reduce wind power generation dis-proportionally due to
the cubic relationship between wind speeds and wind power genera-
tion [64]. This will reduce the absolute merit-order effect per unit of
installed capacity. IRENA [65] show that a reduction of wind speeds
in many European countries was offset by technological advancements,
thus increasing the overall capacity factors despite less favourable wind
conditions. It is uncertain if technical innovations can also prevail over
wind speed reductions in the future. On the other hand, increasing vari-
ability and extreme weather events such as storms will also contribute
towards rising volatility of power prices, due to the volatility-enhancing
effects introduced previously. The cubic relationship between wind
speed and wind power production further amplifies the impact of the
increasing variability. Policy makers and investors need to consider
these trends in the planning and investments decisions for wind parks,
both offshore as well as onshore.

3.6. Impact of technological developments

The future wind feed-in patterns are also highly affected by tech-
nological developments [66]. This will also influence the impact on
electricity prices [67]. While the feed-in of the existing fleet can be
mostly influenced by advancements in technologies for operations and
maintenance [68], new turbine models can offer new characteristics
that allow for different generation potential and curves [66,69,70]. In
this section, we will provide a short overview on expected trends and
briefly discuss the potential impact of these developments on electricity
prices.

The operation and maintenance of wind farm presents an optimisa-
tion problem around minimising the costs of maintenance while min-
imising foregone revenues during downtime [68]. Historically, offshore
wind turbines have experienced a higher failure rates than onshore
wind turbines, thus there is more improvement potential [71]. Further
advancements in remote operations and maintenance are expected to
reduce downtime, which will also reduce the volatility of the feed-in
[68,72]. In addition, there is a vast potential to minimise downtime
through predictive maintenance, yet many applications are still in a
nascent stage [68,73]. Similar trends also apply to onshore wind, where
automated inspections via drones are less complex than offshore [74].
In the future, it is also expected that a rising number of projects will
carry out automated repairs via drones [75]. In addition to develop-
ments in maintenance, improved wind prediction models will facilitate
the system integration of wind energy, offshore as well as onshore
[76,77].

Over the past decades, new offshore wind turbines have grown
significantly [78]. While new turbines reached a rotor diameter of
94 m in 2010, GWEC [79] expects turbines deployed in 2030 to have
diameters of 275 m [78]. These larger diameters are also associated
with more generation potential and higher capacity factors [79,80].
Similarly, development and deployment of floating wind turbines will
allow for more steady wind generation [79,81]. Floating wind turbines
can often exploit the most favourable wind conditions that are not
accessible to bottom-fixed models [82]. GWEC [82] expects global
floating wind installations to reach more than 10 GW by the of this
11

decade, up from only 120 MW in 2021 [82]. On shore, turbines have
grown similarly, yet at a smaller scale, increasing rotor diameters from
82 metres in 2010 to 120 metres in 2020 with capacity factors rising
across the world [65,83]. In the coming years, repowering will become
increasingly important for onshore wind, with almost 80 GW onshore
wind farms reaching the end of their normal economic life during this
decade in Europe [84]. These wind farms are often located at the sites
with the best wind conditions [85]. New turbines will allow to capture
higher capacity factors through the more advanced technology that can
be deployed today [65].

With increasing wind deployment, the system integration becomes
increasingly important [66]. New model designs that optimise for feed-
in stability rather then overall generation volumes would increase the
feed-in at times when wind is only moderate and help reduce both
the intermittency of the feed-in as well as system integration costs
[66,70,86]. Due to a higher feed-in of these turbines at times with lower
wind speeds, the market value of their output is higher compared to
‘‘conventional’’ wind turbines [67,86]. This is relevant for onshore and
offshore wind. Yet especially onshore, an increasing share of projects
will be located on sites with only second-best wind conditions with
lower wind speeds, increasing the need with turbines with lower cut-
in speeds [87]. Optimising turbine design for feed-in at lower wind
speeds also reduces the exposure to potentially declining wind speeds
in Northern Europe as discussed in the previous section [62,63,88].
In addition, integrating wave energy conversion systems into offshore
wind farms offers an additional solution to reduce the volatility of
the feed-in from offshore wind farms [89,90]. A similar effect can
be achieved through the integration of floating solar photovoltaic in
offshore wind parks [91].

To reduce the rising level of curtailment of wind farms across
Europe [92,93], integration with energy storage systems will increase
the utilisation of wind farms [94] and will in addition allow wind farm
operators to maximise the economic value of the power generation,
shifting grid feed-in to times of higher prices. To date, more than 100
MW of combined wind-and-storage projects have been developed in
Europe, the vast majority onshore [95].

The aforementioned developments allow for a more steady, less
volatile feed-in. This will help reduce the volatility-enhancing impact
of offshore and onshore wind that were discussed in previous sec-
tions. Improved wind prediction models will also reduce the volatility-
enhancing impact as outlined by Weber and Woerman [76].

4. Conclusion

Through our time series models, we identified that onshore and
offshore wind power do have differing effects on wholesale electricity
prices in the investigated countries. Where results differ, offshore wind
energy mostly offers more desirable results, as it mostly tends to reduce
price levels or price volatility more than the onshore feed-in does
[27,57]. We were also able to demonstrate that the differences can
mostly be attributed to a more constant feed-in with fewer outliers and
a lower correlation of the offshore feed-in to the overall wind feed-
in compared to the onshore feed-in. Thus, the diversification of the
feed-in sources reduced the volatility of the feed-in and of the volatility-
enhancing impact itself. New wind turbine designs can also contribute
towards a more constant wind feed-in in the future [70]. Additionally,
our paper highlights the effect of regulations that have limited the
feed-in during times of excess supply, and thereby also reduced the
volatility-enhancing effect of the wind feed-in.

In Western Denmark, which has the highest share of offshore wind
power generation relative to its total electricity generation in the
world, the wind feed-in was shown to have a decreasing marginal
impact on prices. Therefore, diversification also helped to maintain a
greater merit-order effect of an additional unit of wind power feed-in in
Denmark. Generalising this argument, central planners should therefore
not only consider the expected wind feed-in when commissioning new

sites in the future, but also the correlation of the feed-in of these new
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Fig. A.1. Intraday electricity price volatility of hourly prices as defined in (2). The black lines represent the 90-days rolling average.
Fig. A.2. Daily offshore (above in blue) and onshore feed-in (below in green) in GWh for Germany, Western Denmark and Great Britain. The black lines represent the 90-days
rolling average.
sites to the total feed-in for diversifying the feed-in structure. This can
also be achieved by extending market coupling within regions with
often differing weather conditions [60]. Diversified feed-in sources will
not only help to reduce prices and the volatility-enhancing impact of
wind power, but also achieving power supply security at lower costs
[96]. With a rising share of renewables, the diversification of feed-
in sources will therefore play a decisive role in reaching the most
ambitious climate goals.
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Appendix

See Figs. A.1–A.15.
See Tables A.1–A.13.

Table A.1
Variance Inflation Factors for the independent variables representing the onshore and
offshore wind feed-in for the different models. Model 1.A is not considered as onshore
wind does not form an independent variable in this model.

Germany Western Denmark Great Britain

Model 1.B 1.84 3.33 2.22
Model 2 1.84 3.33 2.22
Model 3.A 2.12 2.72 2.33
Model 3.B 1.22 1.39 1.06

Table A.2
Selected filtering procedures for the variables in first two models. While all variables
where filtered for trends, not all where for weekly or yearly seasonality, as they were
not observable for some variables.

Variable Weekly S. Yearly S. Trend

Daily electricity prices ✓ ✕ ✓

Daily volatility of prices ✕ ✓ ✓

Offshore and onshore feed-in ✕ ✓ ✓

Total load ✓ ✓ ✓

https://doi.org/10.17632/p3npk87pxw.3
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Fig. A.3. Daily electricity demand [GWh] in Germany, Western Denmark and Great Britain. While the black lines represent the 90-days rolling average, the purple lines represent
the 7-days rolling average.

Fig. A.4. Daily electricity net exports [GWh]. A positive value indicates that more electricity has been exported than imported on this specific day. The black lines represent the
90-days rolling average.

Fig. A.5. ACF and PACF plots of daily electricity prices. Germany is depicted to the left, Western Denmark in the centre, and Great Britain to the right. The plots for the original
data are in the upper rows, while the ones for the filtered one are below.
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Fig. A.6. ACF and PACF plots of daily electricity price volatility. Germany is depicted to the left, Western Denmark in the centre, and Great Britain to the right. The plots for
the original data are in the upper rows, while the ones for the filtered one are below.
Fig. A.7. ACF and PACF plots of weekly electricity price volatility. Germany is depicted to the left, Western Denmark in the centre, and Great Britain to the right. The plots for
the original data are in the upper rows, while the ones for the filtered one are below.
Table A.3
Regression estimates for filtering of dependent variables.

Electricity price Intraday volatility

GER DK1 GB GER DK1 GB

Intercept 19.88∗∗∗ 13.31∗∗∗ 32.13∗∗∗ 1.96∗∗∗ 1.18∗∗∗ 2.31∗∗∗

(0.72) (0.60) (0.48) (0.02) (0.04) (0.02)
Time 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Cosine 0.26∗∗∗ 0.11∗∗∗ 0.19∗∗∗

(0.02) (0.03) (0.01)
Weekend dummy 9.89∗∗∗ 5.79∗∗∗ 2.43∗∗∗

(0.62) (0.52) (0.42)

R2 0.25 0.46 0.48 0.18 0.09 0.13
Num. obs. 1364 1461 1461 1364 1461 1446

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
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Fig. A.8. Quantile–Quantile Plots of the residuals of the AR-GARCH-models assuming normal distribution (above) and normal inverse Gaussian distribution (below). Germany is
depicted to the left, Western Denmark in the centre, and Great Britain to the right.

Fig. A.9. ACF and PACF plots of the residuals of the SARX(p)(P)[s,s+1]-GARCHX(1,1) model estimating daily electricity prices. Germany is depicted to the left, Western Denmark
in the centre, and Great Britain to the right.

Fig. A.10. ACF and PACF plots of the residuals of the SARMAX(p,q)(1,1)[7] model estimating the intraday volatility. Germany is depicted to the left, Western Denmark in the
centre, and Great Britain to the right.
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Table A.4
Regression estimates for filtering of independent variables for Germany.

Offshore Onshore Demand

Intercept 19, 418.55∗∗∗ 188, 167.04∗∗∗ 1, 280, 575.69∗∗∗

(1, 260.37) (7, 962.88) (5, 870.54)
Time 26.50∗∗∗ 54.27∗∗∗ 59.90∗∗∗

(1.61) (10.15) (5.87)
Cosine 10, 384.30∗∗∗ 94, 047.44∗∗∗ 104, 216.67∗∗∗

(894.81) (5, 653.28) (3, 269.37)
Weekend dummy 259, 635.29∗∗∗

(5, 081.29)

R2 0.21 0.18 0.73
Num. obs. 1364 1364 1364

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
Table A.5
Regression estimates for filtering of independent variables for Western Denmark.

Offshore Onshore Demand

Intercept 8, 675.43∗∗∗ 19, 910.42∗∗∗ 46, 390.16∗∗∗

(261.72) (766.49) (238.83)
Time 0.05 0.66 0.81∗∗∗

(0.31) (0.91) (0.22)
Cosine 1, 678.58∗∗∗ 5, 143.34∗∗∗ 4, 598.48∗∗∗

(184.91) (541.53) (132.40)
Weekend dummy 9, 602.68∗∗∗

(207.23)

R2 0.05 0.06 0.70
Num. obs. 1461 1461 1461

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
Table A.6
Regression estimates for filtering of independent variables for Great Britain.

Offshore Onshore Demand

Intercept 35, 946.69∗∗∗ 46, 244.93∗∗∗ 819, 755.71∗∗∗

(1, 364.32) (2, 030.75) (3, 194.78)
Time 14.38∗∗∗ 35.62∗∗∗ −90.80∗∗∗

(1.62) (2.41) (2.97)
Cosine 15, 983.01∗∗∗ 21, 511.95∗∗∗ 104, 326.34∗∗∗

(963.90) (1434.73) (1, 771.08)
Weekend dummy 99, 627.94∗∗∗

(2, 771.98)

R2 0.20 0.23 0.80
Num. obs. 1461 1461 1461

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
Fig. A.11. ACF and PACF plots of the residuals of the ARMAX(1,1) model estimating the weekly volatility. Germany is depicted to the left, Western Denmark in the centre, and
Great Britain to the right.
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Table A.7
Estimation results of the SARX-GARCHX models on daily electricity prices.

Model Germany Western Denmark Great Britain

A B A B A B

mean equation
𝜙1 0.54∗∗∗ 0.46∗∗∗ 0.55∗∗∗ 0.51∗∗∗ 0.54∗∗∗ 0.57∗∗∗

𝜙2 0.02 0.09∗∗∗ 0.04 0.10∗∗ 0.09∗∗ 0.11∗∗∗

𝜙3 0.10∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.17∗∗∗ 0.16∗∗∗

𝜙7 0.20∗∗∗ 0.23∗∗∗ 0.06∗ 0.11∗∗∗ 0.06∗ 0.07∗∗

𝜙8 −0.04 −0.02 0.07∗∗ 0.03 0.06∗ 0.01
𝜙14 0.07∗∗ 0.15∗∗∗ 0.06∗ 0.07∗∗ 0.04 0.06∗∗

𝜙15 0.02 −0.09∗∗∗ −0.00 −0.03 −0.01 −0.04
𝜙21 0.10∗∗∗ 0.20∗∗∗ 0.06∗ 0.10∗∗∗ 0.06∗∗ 0.08∗∗∗

𝜙22 −0.03 −0.16∗∗∗ −0.02 −0.05∗ −0.04∗ −0.05∗∗

Offshore −3.65∗∗∗ −0.94∗∗∗ −16.53∗∗∗ −7.30∗∗∗ −1.28∗∗∗ −0.65∗∗∗

(0.15) (0.15) (0.61) (1.08) (0.06) (0.08)
Demand 0.65∗∗∗ 10.71∗∗∗ 0.42∗∗∗

(0.05) (1.03) (0.05)
Onshore −0.81∗∗∗ −4.29∗∗∗ −0.58∗∗∗

(0.03) (0.40) (0.05)

variance equation
𝜔 1.39∗ 1.37 0.83∗ 4.65∗∗∗ 0.49∗∗∗ 0.57∗∗∗

(0.68) (0.76) (0.42) (1.39) (0.13) (0.14)
𝛼1 0.12∗∗ 0.10∗∗ 0.11∗∗∗ 0.24∗∗∗ 0.22∗∗∗ 0.25∗∗∗

(0.04) (0.03) (0.03) (0.05) (0.04) (0.05)
𝛽1 0.83∗∗∗ 0.82∗∗∗ 0.86∗∗∗ 0.54∗∗∗ 0.72∗∗∗ 0.68∗∗∗

(0.06) (0.07) (0.04) (0.10) (0.04) (0.05)
Offshore 0.00 0.07 0.00 0.00 0.00 0.17

(0.31) (0.31) (1.17) (4.23) (0.08) (0.12)
Demand 0.00 0.00 0.00

(0.07) (1.11) (0.03)
Onshore 0.03 2.42∗ 0.00

(0.06) (1.12) (0.08)

R2 0.73 0.83 0.69 0.71 0.77 0.77
R2 no XRa 0.55 0.55 0.49 0.49 0.71 0.71
Log likelihood −4015.10 −3740.26 −4193.74 −4177.12 −3314.47 −3286.02
AIC 5.91 5.51 5.77 5.74 4.56 4.52
BIC 5.98 5.58 5.83 5.81 4.63 4.59

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
a𝑅2 of the model without considering external regressors.
Fig. A.12. Average offshore and onshore wind feed-in per hour of the day for different seasons. 1 = Average feed-in over the year.
Table A.8
Coefficient of variation (CV) of the hourly offshore and onshore feed-in. The CV of the daily wind feed-in
provides very similar results, yet proportionally lower for all regions.

Offshore Onshore

Germany .77 .78
W. Denmark .66 .83
Great Britain .68 .66
17



Applied Energy 341 (2023) 120910E. Hosius et al.
Table A.9
Relative first difference of offshore and onshore wind energy feed-in. The relative first difference is defined
as the ratio of the average first difference of the daily feed-in and the average feed-in.

Offshore Onshore

Germany .43 .42
W. Denmark .43 .54
Great Britain .41 .38
Fig. A.13. Average electricity prices per hour of the day for different seasons and the total year.
Table A.10
Estimation results ARMAX model on weekly volatility of electricity prices.

Germany Western Denmark Great Britain

𝜙1 0.81∗∗∗ 0.80∗∗∗ 0.93∗∗∗ 0.93∗∗∗ 0.84∗∗∗ 0.83∗∗∗

(0.12) (0.12) (0.04) (0.04) (0.10) (0.10)
𝜃1 −0.67∗∗∗ −0.66∗∗∗ −0.77∗∗∗ −0.77∗∗∗ −0.62∗∗∗ −0.62∗∗∗

(0.15) (0.15) (0.07) (0.07) (0.14) (0.14)
Offshore 0.05∗ 0.05∗ 0.21 0.21 −0.00 −0.00

(0.02) (0.02) (0.16) (0.16) (0.03) (0.03)
Onshore 0.01∗ 0.01∗ 0.03 0.03 −0.02 −0.02

(0.00) (0.00) (0.05) (0.06) (0.02) (0.02)
Interaction −0.00 −0.01 −0.00

(0.00) (0.06) (0.01)

R2 0.21 0.21 0.20 0.20 0.14 0.14
R2 no XR 0.06 0.06 0.15 0.15 0.13 0.13
Log likelihood −114.91 −114.19 −153.64 −153.63 −201.64 −201.62
AIC 239.82 240.39 317.27 319.26 413.28 415.24
BIC 256.19 260.02 333.99 339.31 429.99 435.29

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
Table A.11
Estimation results ARMAX model on weekly volatility of electricity prices.

Germany Western Denmark Great Britain

𝜙1 0.67∗∗∗ 0.67∗∗∗ 0.90∗∗∗ 0.90∗∗∗ 0.78∗∗∗ 0.78∗∗∗

(0.20) (0.20) (0.06) (0.06) (0.18) (0.18)
𝜃1 −0.46 −0.46 −0.72∗∗∗ −0.71∗∗∗ −0.51 −0.51

(0.25) (0.24) (0.09) (0.09) (0.27) (0.27)
Vol of wind 0.45∗∗∗ 0.34∗∗ 0.47∗∗∗

(0.07) (0.09) (0.11)
Vol of offshore 0.02 0.14 0.36∗∗∗

(0.09) (0.11) (0.11)
Vol of onshore 0.40∗∗∗ 0.26∗∗ 0.13

(0.07) (0.10) (0.07)

R2 0.24 0.24 0.22 0.22 0.20 0.21
R2 no XR 0.06 0.06 0.15 0.15 0.13 0.13
Log likelihood −112.20 −112.83 −152.11 −151.53 −191.19 −191.89
AIC 232.41 235.66 312.21 313.06 390.39 393.78
BIC 245.50 252.02 325.58 329.77 403.72 410.44

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
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Table A.12
Estimation results of alternative model specifications for the ARMAX-GARCHX models.

Germany Western Denmark Great Britain

a b a b a b

𝜙1 0.45∗∗∗ 0.41∗∗∗ 0.49∗∗∗ 0.51∗∗∗ 0.57∗∗∗ 0.55∗∗∗

𝜙2 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.11∗∗∗

𝜙3 0.11∗∗∗ 0.13∗∗∗ 0.10∗∗∗ 0.07∗ 0.16∗∗∗ 0.12∗∗∗

𝜙4 0.04 0.08∗∗ 0.10∗∗∗

𝜙5 0.03 0.02 0.02
𝜙6 −0.03 −0.00 0.07∗∗

𝜙7 0.23∗∗∗ 0.36∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.07∗∗

𝜙8 −0.01 −0.07∗∗ 0.05∗ 0.03 0.02
𝜙14 0.15∗∗∗ 0.10∗∗∗ 0.06∗∗

𝜙15 −0.09∗∗∗ −0.04 −0.04
𝜙21 0.20∗∗∗ 0.08∗∗∗ 0.08∗∗∗

𝜙22 −0.16∗∗∗ −0.05∗ −0.05∗

Offshore −0.94∗∗∗ −0.93∗∗∗ −8.25∗∗∗ −7.55∗∗∗ −0.64∗∗∗ −0.61∗∗∗

(0.15) (0.16) (1.12) (1.10) (0.08) (0.07)
Onshore −0.81∗∗∗ −0.79∗∗∗ −4.83∗∗∗ −4.31∗∗∗ −0.59∗∗∗ −0.61∗∗∗

(0.03) (0.03) (0.57) (0.41) (0.05) (0.05)
Net exports −0.03 3.23∗∗∗ 0.07

(0.05) (0.47) (0.06)
Wind DK2 −0.02

(0.02)
Wind GER −8.32∗∗∗

(0.88)

𝜔 1.15∗ 1.53∗ 2.06∗∗∗ 4.14∗∗ 0.57∗∗∗ 0.64∗∗∗

𝛼1 0.10∗∗∗ 0.10∗∗∗ 0.17∗∗∗ 0.21∗∗∗ 0.24∗∗∗ 0.28∗∗∗

𝛽1 0.84∗∗∗ 0.82∗∗∗ 0.73∗∗∗ 0.60∗∗∗ 0.69∗∗∗ 0.66∗∗∗

Offshore 0.00 0.00 0.00 0.00 0.17 0.17
(0.29) (0.38) (3.09) (2.36) (0.12) (0.14)

Onshore 0.00 0.00 0.00 2.28 0.00 0.00
(0.05) (0.06) (0.79) (1.25) (0.08) (0.09)

Net exports 0.00 0.00 0.00
(0.08) (0.55) (0.04)

Wind DK2 0.14∗

(0.06)
Wind GER 0.00

(3.86)

R2 0.83 0.81 0.72 0.71 0.77 0.76
Log likelihood −3740.48 −3803.62 −4115.54 −4164.11 −3285.41 −3278.75
AIC 5.51 5.60 5.67 5.72 4.52 4.51
BIC 5.59 5.67 5.75 5.79 4.60 4.56

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
Fig. A.14. Rolling regression for the mean equation of the GARCH model (above) and the intra-day volatility (below) calculated over a moving window of 365 days. The blue
lines represents the coefficient of the offshore feed-in, while the green one represents the coefficient of the onshore feed-in. The faint lines represent the 95% coefficient interval,
respectively.
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Fig. A.15. Rolling regressions on the weekly volatility of the wind feed-in over a moving window of 52 weeks (see Table 6). The blue lines represents the coefficient of the
offshore feed-in, while the green one represents the coefficient of the onshore feed-in. The faint lines represent the 95% coefficient interval, respectively.
Table A.13
Estimation results of alternative model specifications for the SARMAX models.

Germany Western Denmark Great Britain

𝜙1 0.41 0.12 0.62
(0.24) (0.08) (0.40)

𝜙2 0.53∗ 0.82∗∗∗ 0.31
(0.23) (0.07) (0.38)

𝜃1 −0.15 0.22∗∗ −0.19
(0.24) (0.07) (0.40)

𝜃2 −0.54∗∗ −0.71∗∗∗ −0.37
(0.17) (0.06) (0.21)

𝜃3 −0.15∗∗∗ −0.24∗∗∗ −0.13
(0.04) (0.03) (0.08)

𝜙7 0.96∗∗∗ 1.00∗∗∗ 0.97∗∗∗

(0.01) (0.00) (0.02)
𝜃7 −0.84∗∗∗ −0.99∗∗∗ −0.91∗∗∗

(0.03) (0.01) (0.03)
Offshore −0.03∗ −1.54∗∗∗ 0.00

(0.01) (0.19) (0.00)
Onshore 0.01∗∗∗ −0.04 −0.01∗∗∗

(0.00) (0.09) (0.00)
Net exports 0.00 0.11 0.00

(0.01) (0.07) (0.00)
Wind DK2 −0.00

(0.00)
Wind GER 0.57∗∗∗

(0.16)

R2 0.33 0.30 0.42
Log likelihood −381.17 −1421.05 1300.37
AIC 784.35 2868.11 −2578.75
BIC 841.75 2936.83 −2520.70

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
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