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Abstract: The growth of the marine renewable energy sector requires the potential effects on marine
wildlife to be considered carefully. For this purpose, utilization distributions derived from animal-
borne biologging and telemetry data provide accurate information on individual space use. The
degree of spatial overlap between potentially vulnerable wildlife such as seabirds and development
areas can subsequently be quantified and incorporated into impact assessments and siting decisions.
While rich in information, processing and analyses of animal-borne tracking data are often not trivial.
There is therefore a need for straightforward and reproducible workflows for this technique to be
useful to marine renewables stakeholders. The aim of this study was to develop an analysis workflow
to extract utilization distributions from animal-borne biologging and telemetry data explicitly for
use in assessment of animal spatial overlap with marine renewable energy development areas. We
applied the method to European shags (Phalacrocorax aristotelis) in relation to tidal stream turbines.
While shag occurrence in the tidal development area was high (99.4%), there was no overlap (0.14%)
with the smaller tidal lease sites within the development area. The method can be applied to any
animal-borne bio-tracking datasets and is relevant to stakeholders aiming to quantify environmental
effects of marine renewables.

Keywords: tidal turbines; marine planning; seabirds; GPS; TDR; utilization distributions; colli-
sion risk

1. Introduction

Marine renewables (fixed and floating offshore wind; wave; and tidal energy) have
been identified as key to the transition to net-zero emissions [1,2]. In order for consenting
decisions for marine renewable energy developments to be made responsibly, any potential
negative impacts on key ecological receptors (birds, fish, marine mammals, turtles) need to
be assessed [3–5]. A key constraint for marine renewables is understanding how animals
use development sites, and the risk of collision that they may be exposed to [5–8]. Taking
tidal energy as an example, fatal collision with dynamic parts of operating devices (e.g.,
rotating blades) has been identified as a major concern for marine vertebrates [5,7]. Due to
the small number of operational tidal turbines in the water worldwide, detecting collision
events, or the absence thereof, remains challenging [3]. Where such information is lacking,
an alternative is to quantify space use of animals in tidal stream environments [9–11]. As-
sessing spatial overlap of these areas with areas in which turbines are likely to occur, that is
tidal energy development sites, can then inform about the level of risk to wildlife [5,12,13].
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Any connectivity with renewable energy developments will then not only identify popula-
tions at risk of exposure but also inform the need for and extent of any additional research.
This is especially relevant as the marine renewable energy sector continues to expand,
especially offshore wind [14,15].

Animal-borne biologging and telemetry devices are used extensively in marine verte-
brate research to record movements above, at, and below the sea surface [16–18]. Telemetry
devices such as GPS loggers can record the location (typically to within <10 m) of an
individual animal down to every second, thereby providing accurate data at fine spatiotem-
poral scales [19,20]. Time-depth recorders (TDRs) are examples of biologging devices that
continuously record underwater pressure from which important dive metrics (e.g., profile,
depth, duration) can be extracted [21,22]. Such data have previously been used in marine
conservation and management, for example to help designate and evaluate effectiveness of
Marine Protected Areas or to identify interactions between fisheries and vessels [23–28].
At a finer scale, simultaneous deployments of biologging and telemetry devices on mobile
receptors have the potential to identify areas of spatial overlap with marine renewable
energy developments [12,29–31].

The extraction of utilization distributions from animal-borne tracking data to identify
areas used by animals is a common method in ecology, e.g., [32–36]. The outputs are
intensity of area use polygons that can be readily interpreted and are highly comparable
between sites and species [37]. Advantageously, biologging devices supplement GPS posi-
tions with metrics relevant to marine renewables such as flight height or dive depth [38,39].
This allows for the stressor of interest (e.g., collision with rotating blades) to be explicitly
considered in the generation of utilization distributions.

Despite the potential of animal-borne tracking data, a number of factors inhibit their
use in the assessment of effects from marine renewables. These include ethical and logistical
considerations inherent to deployment of tags on wild animals as well as complexity in the
processing and analysis of these types of data [17,40,41]. In order for this high-resolution
data to be useful to stakeholders within the marine renewable energy sector, there is there-
fore a need for straightforward and reproducible workflows, including the development
and presentation of relevant code [42]. Consequently, the aims of this study were: (1) to
develop an analysis workflow in order to rapidly process high-resolution biologging and
telemetry tracking (point) data and produce areas of use (polygon) data, for incorporation
in environmental impact assessments or for decision-making purposes regarding future
siting of marine renewable energy developments; and (2) to demonstrate the methodology
for European shags (Phalacrocorax aristotelis), one of the species assessed to be most vulner-
able to potential adverse effects, collision in particular, from tidal turbines [8,43], including
quantifying spatial overlap with a major tidal energy development area.

2. Materials and Methods
2.1. Study Site

The Pentland Firth is a channel between the north coast of mainland Scotland and the
Orkney archipelago, connecting the North Atlantic Ocean and the North Sea (Figure 1).
The extremely fast tidal currents in this channel (>5 ms−1 at mean spring tide) have led
to it being an important area for tidal development in the UK and to its designation as a
tidal draft plan option [44–46] (https://www.renewableuk.com/page/WaveTidalEnergy,
accessed on 1 July 2020). Within the Pentland Firth, there are two tidal lease sites, the
Inner Sound and Ness of Duncansby. The Inner Sound is currently leased by MeyGen
Ltd. and since 2016/2017 contains four grid-connected horizontal axis tidal turbines [47].
Spatial polygons of tidal draft plan options and tidal lease sites were obtained from Marine
Scotland Science (http://marine.gov.scot/information/draft-sectoral-marine-plans-wind-
wave-and-tidal-2013, accessed on 1 July 2020 [14]) and Crown Estate Scotland (https:
//www.crownestatescotland.com/, accessed on 1 February 2020).

https://www.renewableuk.com/page/WaveTidalEnergy
http://marine.gov.scot/information/draft-sectoral-marine-plans-wind-wave-and-tidal-2013
http://marine.gov.scot/information/draft-sectoral-marine-plans-wind-wave-and-tidal-2013
https://www.crownestatescotland.com/
https://www.crownestatescotland.com/
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Figure 1. The Pentland Firth, Scotland UK, with European shag tracking data showing known dive and non-dive locations, 
nest sites, the tidal development area (draft plan option, PO) and tidal lease sites. 

2.2. Bird-Borne Biologging and Telemetry Dataset 
Data from European shags simultaneously carrying GPS tags and TDRs were ob-

tained through the Environmental Research Institute and RSPB FAME/STAR projects 
(www.fameproject.eu, accessed on 1 October 2018). The dataset consisted of six birds 
tagged within the Pentland Firth during the breeding season (May–June; Five on Muckle 
Skerry (2012 n = 2; 2013 n = 1; 2014 n = 2) and one on Stroma (2012 n = 1). (Figure 1, Table 1, 
Appendix A). The combined weight of devices was always <3% of shag body weight, and 
further details on bird handling, attachment method and devices can be found in [48–50]. 

Table 1. Summary statistics of the six shags included in the analysis. 

ID Start Date End Date # of Fixes # of Trips Duration (h) Mean ± SD Distance to 
Colony (km) 

Max Distance to 
Colony (km) 

EUSH616 2012-05-26 2012-05-26 236 1 10.8 11.1 ± 4.2 16.1 
ORK0445 2012-05-21 2012-05-24 328 5 59.0 4.5 ± 2.7 8.4 
ORK0451 2012-05-20 2012-05-23 429 7 71.0 1.2 ± 0.5 3.1 
ORK0694 2013-06-14 2013-06-17 184 6 65.2 0.6 ± 0.1 0.9 
ORK0795 2014-06-09 2014-06-11 127 3 43.6 1.8 ± 0.5 3.2 
ORK0797 2014-06-09 2014-06-10 80 2 24.3 2.3 ± 0.7 3.4 

Total   1384 24 273.9 3.6 ± 1.45 16.1 

2.3. Workflow Description 
2.3.1. Preparation and Processing 

Data preparation, processing and analysis were carried out in R version 3.6.1 and R 
Studio version 1.2.1335 [51]. The steps for preparation and processing, adapted from [27], 
are outlined in Figure 2 and followed methods outlined in [48]. The simultaneous GPS 
and TDR datasets from each individual were merged to the nearest GPS point in time, 
resulting in a dataset with dive locations identified. The dataset was then rediscretized 
(linearly interpolated) to 120 s intervals between fixes using the adehabitatLT package [52].  

Figure 1. The Pentland Firth, Scotland UK, with European shag tracking data showing known dive
and non-dive locations, nest sites, the tidal development area (draft plan option, PO) and tidal
lease sites.

2.2. Bird-Borne Biologging and Telemetry Dataset

Data from European shags simultaneously carrying GPS tags and TDRs were obtained
through the Environmental Research Institute and RSPB FAME/STAR projects (www.
fameproject.eu, accessed on 1 October 2018). The dataset consisted of six birds tagged
within the Pentland Firth during the breeding season (May–June; Five on Muckle Skerry
(2012 n = 2; 2013 n = 1; 2014 n = 2) and one on Stroma (2012 n = 1). (Figure 1, Table 1,
Appendix A). The combined weight of devices was always <3% of shag body weight, and
further details on bird handling, attachment method and devices can be found in [48–50].

Table 1. Summary statistics of the six shags included in the analysis.

ID Start Date End Date # of Fixes # of Trips Duration (h)
Mean ± SD
Distance to

Colony (km)

Max Distance to
Colony (km)

EUSH616 2012-05-26 2012-05-26 236 1 10.8 11.1 ± 4.2 16.1

ORK0445 2012-05-21 2012-05-24 328 5 59.0 4.5 ± 2.7 8.4

ORK0451 2012-05-20 2012-05-23 429 7 71.0 1.2 ± 0.5 3.1

ORK0694 2013-06-14 2013-06-17 184 6 65.2 0.6 ± 0.1 0.9

ORK0795 2014-06-09 2014-06-11 127 3 43.6 1.8 ± 0.5 3.2

ORK0797 2014-06-09 2014-06-10 80 2 24.3 2.3 ± 0.7 3.4

Total 1384 24 273.9 3.6 ± 1.45 16.1

2.3. Workflow Description
2.3.1. Preparation and Processing

Data preparation, processing and analysis were carried out in R version 3.6.1 and R
Studio version 1.2.1335 [51]. The steps for preparation and processing, adapted from [27],
are outlined in Figure 2 and followed methods outlined in [48]. The simultaneous GPS and
TDR datasets from each individual were merged to the nearest GPS point in time, resulting
in a dataset with dive locations identified. The dataset was then rediscretized (linearly
interpolated) to 120 s intervals between fixes using the adehabitatLT package [52].

www.fameproject.eu
www.fameproject.eu
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the development area (step 1), preparation (step 2) consists mainly of quality control before identification of behaviors 
relevant to the stressor being assessed (step 3), and extraction of utilization distributions (step 4). The workflow is intended 
as a guide and specifics within each step will depend on characteristics of the data, species, and renewable energy tech-
nology. 

During the breeding season, shags are a central place foragers and are therefore con-
strained to a maximum distance from the nest, making trips from the nest to and from 
foraging sites in order to defend, incubate and feed their offspring [53]. Foraging trip clas-
sification is therefore an inherent part of breeding seabird track analysis. Foraging trips 
were defined as a minimum 30 min round trip from and to a 300 m buffer around the nest. 
These thresholds were chosen to eliminate resting and washing behaviors as far as possi-
ble [54,55]. As the stressor of interest was collision with tidal energy devices which are 
deployed at, in the case of floating tidal, or below the sea surface, GPS fixes likely to be 
flight as well as those on land were removed, leaving only at-sea fixes likely to be part of 
foraging (dives or sitting on the sea surface). Flight fixes were identified based on a speed 
and tortuosity threshold of groundspeeds over 5 m s−1 and turning angles over 45 degrees 
[55,56]. The speed threshold was chosen to account for the exceptional current speeds in 
the channel, regularly exceeding 3.5 m s−1 [45,57,58]. This means that birds drifting pas-
sively with the current, a behavior known as tidal drift, could realistically reach ground-
speeds normally associated with flight [59–61]. An example R script for preparation, pro-
cessing and analysis (steps 2–4 Figure 2) along with a dataset for one individual are pro-
vided in Appendix A and Supplementary Materials. 

2.3.2. Utilization Distributions 
The extraction of utilization distributions to determine the probability of occurrence 
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specify the random-walk model predicting the path of an individual, [68]) was deter-
mined using the maximum likelihood function “BRB.likD()” in the adehabitatHR package, 

Figure 2. Analysis workflow to go from raw bird-borne biologging and telemetry point data to
area of use polygons and assess overlap with marine renewable sites. After obtaining animal-borne
biologging and telemetry data in the vicinity of the development area (step 1), preparation (step 2)
consists mainly of quality control before identification of behaviors relevant to the stressor being
assessed (step 3), and extraction of utilization distributions (step 4). The workflow is intended as a
guide and specifics within each step will depend on characteristics of the data, species, and renewable
energy technology.

During the breeding season, shags are a central place foragers and are therefore
constrained to a maximum distance from the nest, making trips from the nest to and from
foraging sites in order to defend, incubate and feed their offspring [53]. Foraging trip
classification is therefore an inherent part of breeding seabird track analysis. Foraging
trips were defined as a minimum 30 min round trip from and to a 300 m buffer around the
nest. These thresholds were chosen to eliminate resting and washing behaviors as far as
possible [54,55]. As the stressor of interest was collision with tidal energy devices which
are deployed at, in the case of floating tidal, or below the sea surface, GPS fixes likely to
be flight as well as those on land were removed, leaving only at-sea fixes likely to be part
of foraging (dives or sitting on the sea surface). Flight fixes were identified based on a
speed and tortuosity threshold of groundspeeds over 5 m s−1 and turning angles over 45
degrees [55,56]. The speed threshold was chosen to account for the exceptional current
speeds in the channel, regularly exceeding 3.5 m s−1 [45,57,58]. This means that birds
drifting passively with the current, a behavior known as tidal drift, could realistically reach
groundspeeds normally associated with flight [59–61]. An example R script for preparation,
processing and analysis (steps 2–4 Figure 2) along with a dataset for one individual are
provided in Appendix A and Supplementary Materials.

2.3.2. Utilization Distributions

The extraction of utilization distributions to determine the probability of occurrence
of animals is a common method in ecology [62,63]. The outputs are intensity of area
use polygons that can be readily interpreted and are highly comparable between sites
and species [37]. The 50% and 95% isopleths (i.e., contours) typically extracted from
utilization distributions represent the ‘core’ and ‘active’ areas of use, respectively [64].
High-resolution GPS tracks such as those used in this study (positions every 120 s) are
autocorrelated in time and space [65,66]. Utilization distributions were therefore extracted
using a biased random bridge approach, which accounts for autocorrelation by including
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a non-random “drift” component to the estimation of the probability density function,
implemented in adehabitatHR [52,67]. The diffusion coefficient D (m2 s−1, the aggregate of
distributions that specify the random-walk model predicting the path of an individual, [68])
was determined using the maximum likelihood function “BRB.likD()” in the adehabitatHR
package, described in [69]. The minimum smoothing parameter hmin (m, the minimum
uncertainty surrounding an animal’s position) was set to 200 m following the distribution
of distances between consecutive fixes [70]. The utilization distributions were computed
on a 100 m grid, the size of which was determined by the range of distances between fixes
as well as the scales of the tidal draft plan option (>10 km) and tidal lease sites (<5 km).
As the purpose of this exercise was to assess potential for overlap with turbine structures
at the sea surface (e.g., floating) and underwater (e.g., blades), the ratio of dive locations
within the area of use polygons as compared to total number of dives observed was sought
to be maximized. The 95% utilization distribution isopleths were therefore extracted for
each trip per individual as these retained the majority of dive locations, as determined by
the TDRs (Appendix B). Prior to assessment of overlap with tidal sites, areas overlapping
land were removed using the sf package in R [71].

2.3.3. Variance and Representativeness

As individuals performing multiple trips may exhibit site fidelity, which in turn may
bias results [72,73], a variance test, adapted from [37], was applied. This test determined
whether the proximity between areas of use within one individual was significantly differ-
ent from that of all individuals. First, the proximity (i.e., Hausdorff distances) between 95%
occurrence distribution polygons of each trip by individuals that performed more than one
trip was calculated [74]. These values were then compared to the reference distribution of
distances of all individuals. The reference distribution was attained by randomly selecting
an equal number of trips by each individual and calculating proximity between 95% occur-
rence distributions between individuals. A Mann–Whitney U test was used to compare
within individual distances between trips with the reference distribution. The mean p
value of 100 iterations of the variance test was calculated. If p > 0.25 then site fidelity was
not exhibited and trips from an individual could be used in further analysis, otherwise a
random sample trip would need to be taken.

As only a portion of the population is usually tracked, results obtained from tracking
studies may not be indicative of population-wide behaviors [75–77]. While small tracking
sample sizes may be unavoidable due to ethical or logistical considerations [78,79], assess-
ing representativeness can be used as a measure of uncertainty. A test for representativeness
was therefore performed using the SDLfilter package [80]. Following methods outlined
in [80], the overlap probabilities of the Muckle Skerry utilization distributions, grouped by
individual (n = 5) and trip (n = 23), were quantified, as per the recommendations of [81]. For
each group, the function “boot_overlap()” was applied, with 10,000 iterations and method
“PHR”(the probability distribution) specified. The overlap probability calculates the proba-
bility of a sample utilization distribution being within the utilization distribution of another
sample, thereby quantifying the contribution of each new UD to the existing samples. The
function calculates mean overlap probability for each sample size following built-in boot-
strapping and estimates a horizontal asymptote and curve approaching it using a rational
function. The value at which 95% of the horizontal asymptote is crossed indicates the
minimum sample size needed to represent the overall distribution (i.e., representativeness).

2.4. Overlap with Tidal Development and Lease Sites

The two-dimensional percentage overlap of the 95% utilization distribution isopleths
with the tidal draft plan option and tidal lease sites (e.g., percent of site covered by the
isopleth) within the Pentland Firth were quantified per individual and for all the shags
using the sf package in R [71].
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3. Results

Summary metrics of the at-sea shag data used in the utilization distribution analysis
are presented in Table 1. Variance between individuals was found not to be significant
(p = 0.26), meaning that tracks from all individuals could be used in subsequent analysis.
Greater than 95% overlap probability was achieved at both individual and trip levels,
indicating adequate representativeness (Appendix C). The entire shag foraging occurrence
was contained within the tidal draft plan option (99.4%), and this accounted for 4.6% of the
option area. There was minimal overlap between shag foraging occurrence and the tidal
lease sites (0.14%), of which 0.5% overlapped with the foraging occurrence of individual
EUSH_616 (Table 2, Figure 3).

Table 2. Size of the 95% isopleths of foraging distributions per individual and combined for all shags, and percent-
age overlaps with the tidal draft plan option site (Pentland Firth) and tidal lease sites within (Inner Sound and Ness
of Duncansby).

ID Area (km2) Tidal PO Overlap Tidal Lease Site Overlap

% of Shag UD % of Tidal PO % of Shag UD % of Tidal Lease Site

EUSH616 7.7 99.9 1.7 0.4 0.5

ORK0445 10.3 99.0 2.3 0 0

ORK0451 9.9 99.8 2.2 0 0

ORK0694 0.6 100.0 0.13 0 0

ORK0795 3.5 100.0 0.78 0 0

ORK0797 2.6 100.0 0.59 0 0

Total 20.5 99.4 4.6 0.14 0.5
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Figure 3. 95% isopleths of foraging occurrence distributions of six European shags tracked in the breeding season 2010–2014
in the Pentland Firth, showing overlap with the tidal draft plan option and lease sites by (A) species, (B) colony and
(C) individuals. Dashed line shows foraging range (17 km, [82]) during the breeding season for shags, centered on Stroma
and Muckle Skerry.
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4. Discussion

The potential adverse effects of marine renewable energy devices on marine wildlife,
for example the risk of underwater collision with tidal turbines, remain uncertain [5].
In addition, the need to assess the magnitude of any effects and adopt a precautionary
approach is likely to delay or even prevent developments where empirical measurements
of overlap between animals and sites are lacking. This could make it more difficult to reach
net-zero emissions [2,3,83]. The potential for animal-borne devices to reveal areas of use
and therefore potential for overlap with marine renewables is great [26,84–87]. However,
there are ethical and logistical concerns associated with tagging wild animals, as well as
time and resource constraints to consider when analyzing the complex data retrieved from
the devices [17,41,79]. Additionally, while such data have been used in marine conservation
and management previously (e.g., [26,85]), this is often at a scale (i.e., ocean-basin) less
immediately relevant to developers and stakeholders in marine renewables. In order to
facilitate its use within the assessment of risk to animals from marine renewable energy,
we developed an analysis workflow (Figure 2) and applied it to archival biologging and
telemetry data for six European shags within a major tidal development area.

Within the field of animal-borne biologging and telemetry, there is a broad range of
data preparation, processing, and analysis techniques, making comparability and repro-
ducibility challenging [87–91]. For instance, the sheer number of R packages to analyze
animal movement alone may well be overwhelming to new practitioners [92]. There is
therefore a need for clear and reproducible workflows to facilitate deriving area of use
polygons for incorporation in marine environmental impact assessments or future siting
of developments, similar to that developed for the identification of important seabird
conservation sites from GPS-only data (e.g., [37,93–95]).

The framework presented here expands on Lascelles et al. [37] in that the stressor of
interest (e.g., collision) influences choices made throughout (steps 2–4 in Figure 2), relevant
biologging data are incorporated (steps 2–4 in Figure 2) and there is greater flexibility in the
choice of utilization distribution, isopleths extracted, and calculation of representativeness
(step 4 in Figure 2). Furthermore, the preparation and processing steps required are made
explicit, similar to the approach in appendix 2 of Handley et al. [27]. It is intended as a
malleable guide, allowing the user to modify specific aspects (dotted boxes in Figure 2)
depending on the stressor, species, tags, sampling regime, and familiarity with analytical
methods. It is worth noting that for each step in the workflow there are a myriad of
packages available in R (reviewed in [92]) and that the worked example given in this
study (Appendix A) identifies a few relevant ones. In the interest of accessibility and
reproducibility, R was the software of choice (R is a major coding language in movement
ecology), yet other open-source programs such as Python or QGIS may be alternatives.

Several of the components of the analysis workflow merit further discussion. The
amount of processing in step two (data preparation, Figure 2) will vary depending on
the type of animal-borne device deployed, sampling regime and time period sampled.
Visual inspection for outliers and removal of duplicates, and, where available, filtration
based on metrics of positional quality often recorded in conjunction with GPS fixes, such
as dilution of precision or number of satellites, should be performed. Seabird tracking data
are often collected during the breeding season, when the birds are central-place foragers
and therefore necessitating analysis at a trip level, as performed here [53]. This processing
step may not be appropriate for data collected outside of this season nor for other marine
animals. Processing in step three (data processing, Figure 2) will depend on the species and
behavior of interest which in turn depends on the stressor applied by the renewable energy
technology. In this instance, only foraging positions (on the sea surface and below) were
retained due to shags being pursuit-divers and the energy extracted being tidal [96]. For
example, in the case of plunge-divers such as Northern Gannet (Morus bassanus) or overlap
with offshore wind, positions identified as flight might be retained [97]. There are also
many methods to identify animal behaviors including first passage time, speed/tortuosity
thresholds, state-space models and machine learning [48,56,98–100]. As dive locations
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were known from the TDRs, a speed and tortuosity threshold was applied to distinguish
flight from foraging, although any of the other methods mentioned previously could be
substituted in the workflow (step 3, Figure 2).

In order to extract information on space use from the processed points, utilization
distributions, commonly used in ecology to identify areas used by animals based on
positional data, were derived [62,64] (step 4, Figure 2). Utilization distributions are used
to estimate where an animal is located over a season (home range) or over a short tag
deployment period (occurrence distribution) [65]. Due to the short sampling period (on the
scale of days, see Table 1) per individual in the shag example, the utilization distribution
calculated represented an occurrence distribution [47,65]. As tracking data are serially
autocorrelated (points near each other in time tend to be near each other in space as well)
at high sampling intervals, a biased random bridge estimator was used although other
estimators such as Continuous-time correlated RAndom Walk (CRAWL) or timeseries
Kriging may be appropriate [67,70,101,102]. Where data are taken to be representative of
the individual’s use of space over a longer timespan (e.g., an entire breeding season), a
home range estimator such as kernel density may be applied instead, which would likely
yield larger isopleths [62]. Larger isopleths are more precautionary and may therefore be
more appropriate in impact assessments; the use of a longer timeseries tracking dataset
and autocorrelated kernel density estimator (AKDE), appropriate for high-resolution
tracking data, would achieve this [65,103]. The workflow allows for flexibility in choice
of distribution, and estimator, depending on data, level of caution, and preference of the
practitioner (see step 4, Figure 2).

The isopleths commonly extracted from utilization distributions are typically taken
to represent the ‘core’ (50%) and ‘active’ (95%) areas [64,81]. Whether core or active areas
should be used in further analysis will depend a great deal on the level of caution being
ascribed, which in turn depends on the stressor and species. In the example given, where
shag collision with turbine structures either at the surface (e.g., floating mooring) and
especially underwater (e.g., rotating blades) is highly undesirable, the 95% isopleths were
extracted (step 4, Figure 2). Comparing the ratios of dives retained within the 50 and
95% isopleths revealed that a majority of known dive locations (>94%) were retained
within the 95% isopleth, while anywhere from 18 to 86% were retained in the 50% isopleth
(Appendix B). In the more common case where locations of dives are not known (i.e.,
GPS-only tracking data), and given similar behavioral analyses, this result can aide isopleth
level selection.

Within animal-borne tracking datasets, individuals often contribute data unequally.
For example, over the same time period, an individual may perform more trips while
another from the same tagging campaign remains relatively stationary. This may bias
results should individuals exhibit site fidelity [72,73]. A test to determine whether all
trips by a central-place foraging individual can be used in subsequent analyses or whether
a random sample needs to be taken should therefore be applied [37] (step 4, Figure 2).
The extremely conservative significance threshold (p = 0.25) recommended by Lascelles
et al. [37] will depend on the species’ overall tendency to site fidelity, although should
be set no lower than 0.05. As animal-borne tracking data are by definition obtained for
individuals, it is not necessarily representative of the wider population and therefore a
test for representativeness is also recommended [75,81,94] (step 4, Figure 2, Appendix C).
Small sample sizes may be unavoidable, yet in this way the level of representativeness can
serve as a proxy for uncertainty. This can inform risk level applied to the resulting areas of
use as well as determine the need and extent of future data collection efforts.

The area of use polygons resulting from the workflow have applications beyond the
assessment of the extent of spatial overlap animals have with marine renewable energy de-
velopments. The polygons can be used by stakeholders to determine connectivity between
a colony and a renewable energy development area as well as flag exposure to collision risk
at specific sites. This is useful as it identifies populations that a development project may
impact and, if a Special Protected Area (SPA) population, indicate need for an Appropriate
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Assessment under the EU Birds or Habitats Directives [104,105]. The representativeness of
the polygons could also help to determine the need for additional data to increase sample
size and/or temporal coverage (e.g., seasons, years). Should the polygons be deemed
sufficiently robust, relevant complementary data from devices (e.g., depth) could be used
to populate collision risk models to estimate collision mortality [106–110].

In the worked example in this study, the difference in overlap between shags and the
draft plan option and tidal lease sites in the Pentland Firth highlights the importance of
scale [12,13,111] (Table 2, Figure 3). At the scale of >10 km, the overlap between seabird
area use and development area was 99.4%, whereas at the much smaller scale at which tidal
lease sites occur in the UK (<5 km), there was negligible overlap. It is important to note
here that while the data were assessed to be adequately representative of Muckle Skerry
shag occurrence, this is explicitly for a few days within the breeding season based on data
collected prior to installation of turbines within the site (Appendix C). Shags are also fairly
local foragers (maximum range ca. 17 km, [82]), and the degree of overlap will almost
certainly depend on proximity of sites to the breeding colonies, (Figure 3B). Shags nesting
along the mainland Scottish coast just south of the Inner Sound or Ness of Duncansby lease
sites should therefore be prioritized in data collection efforts (Figure 3B,C). Incidentally,
the directional shape of the distribution suggests that the shags favour areas conducive
to foraging (rather than uniformly foraging within a 17 km radius, Figure 3A), that may
readily be explained by environmental factors such as bathymetry, hydrodynamics, or
prey [13,112,113]. It is also worth noting that the same workflow performed on diving
species that forage farther afield (e.g., razorbills Alca torda, harbor seals Phoca vitulina) will
likely yield larger polygons. While density of birds within the distribution is not explored
further here (some indication is given in Figure 3C), this becomes increasingly relevant
when considering non-uniform placement of arrays of energy extracting devices within the
development area.
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Appendix A. Worked Example of Data Preparation, Processing and Analysis for
One Shag

The following script details steps 2–4 (excluding variance and representativeness anal-
ysis) in the workflow for the use of simultaneous animal-borne biologging and telemetry
data to arrive at utilization distribution areas for use in assessing overlap with marine
renewables (Figure 2). The following worked example uses data from a shag tagged on
Stroma in 2012 ‘named’ EUSH_616, raw data files provided in Supplementary Materials.

Appendix A.1. Step 2: Data Preparation

Appendix A.1.1. Process Raw Biologging Data (e.g., TDR) and Merge with GPS

Read in TDR and GPS Data

Before beginning, the TDR dataset was ‘clipped’ to the same deployment length as
the GPS, and pressure readings (in dBar) were converted to depth in the water column (m)
using a conversion factor of 1 Bar = 10.1974 m.
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Create TDR Object 
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Create TDR Object

Create a TDR object for working in divemove package [114,115]. Check the metadata
and plot the dives.
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Create TDR Object 
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shag<-createTDR(tdr.time2, zz2$Depth, file = “zz2”) 
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## Time-Depth Recorder data -- Class TDR object 
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## Sampling Interval (s): 1 
## Number of Samples : 83760 
## Sampling Begins : 2012-05-25 19:31:00 
## Sampling Ends : 2012-05-26 18:46:59 
## Total Duration (d) : 0.9694329 
## Measured depth range : [−1.029937,48.30508] 

plotTDR(shag, interact=FALSE, xlab.format = “%Y-%m-%d %H:%M”, xlab = “Time”, ylab.depth = “Depth (m)” ) #plot 
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Figure A1. Plot of raw un-processed dives from TDR.

Choose Smoothing Parameters

After visual inspection of data and with reference to package documentation, select
smoothing parameters. These will allow for the surface to be set and for drift to be corrected.

k = c(x, y), where x is the window width (in seconds) of the first smoothing step
(median), i.e., the small one, (in this case 3 s given 1 s intervals), and y is the window width
for the large filter (in this case 120 s). p = c(a, b), where a is the quantile for the first step
and b is the quantile for the second, if there is little noise after first filter then a smaller
quantile (i.e., 0.01–0.05) can be used for the second step.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 32 
 

 

 
Figure A2. Plot of zero-offset calibration for determining sea surface in TDR data. 

Calibrate Data 
Select k and p values from previous step and extract dives with calibrated data. In 

this case, dive threshold was set to 3 m for consistency with method in [48]. 

dcalib <- calibrateDepth(shag, dive.thr=3, zoc.method=“filter”, k=c(3, 120), probs=c(0.5, 0.35), na.rm=FALSE) 

Extract Data 
Extract the calibrated TDR data. 

tdr_data<-getTDR(dcalib)  
tdr_calib<-as.data.frame(tdr_data)  

Visualize calibrated TDR data, including 3 m foraging dive threshold, using ggplot2 
[116]. 

tdr_plot<-ggplot(tdr_calib, aes(time, -depth)) +  
 geom_line() + 
 geom_hline(yintercept=-3, linetype=‘dashed’, color=‘red’)+   
 xlab(“Time”) + 
  ylab(“Depth (m)”) + 
  scale_x_datetime(date_labels = “%Y-%m-%d %H:%M”) 
 
tdr_plot 

Figure A2. Plot of zero-offset calibration for determining sea surface in TDR data.



J. Mar. Sci. Eng. 2021, 9, 263 12 of 31

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure A1. Plot of raw un-processed dives from TDR. 

Choose Smoothing Parameters 
After visual inspection of data and with reference to package documentation, select 

smoothing parameters. These will allow for the surface to be set and for drift to be cor-
rected. 

k = c(x, y), where x is the window width (in seconds) of the first smoothing step (me-
dian), i.e., the small one, (in this case 3 s given 1 s intervals), and y is the window width 
for the large filter (in this case 120 s). p = c(a, b), where a is the quantile for the first step 
and b is the quantile for the second, if there is little noise after first filter then a smaller 
quantile (i.e., 0.01–0.05) can be used for the second step. 

d<-getDepth(shag) 
K<-c(3, 120) 
P<-c(0.5, 0.35) 
db<-c(-1.029937, 1) 
 
d.filter<-diveMove:::.depthFilter(depth = d, k = K, probs = P, depth.bounds = db, na.rm = FALSE)  

Visualize smoothing parameters. First row is original data, second is smoothing, and 
3 is the what the data looks like with the smoothing applied. 

old.par<-par(no.readonly = TRUE) 
plotZOC(shag, d.filter, ylim =c(-1.029937, 5)) 

Visualize smoothing parameters. First row is original data, second is smoothing, and
3 is the what the data looks like with the smoothing applied.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure A1. Plot of raw un-processed dives from TDR. 

Choose Smoothing Parameters 
After visual inspection of data and with reference to package documentation, select 

smoothing parameters. These will allow for the surface to be set and for drift to be cor-
rected. 

k = c(x, y), where x is the window width (in seconds) of the first smoothing step (me-
dian), i.e., the small one, (in this case 3 s given 1 s intervals), and y is the window width 
for the large filter (in this case 120 s). p = c(a, b), where a is the quantile for the first step 
and b is the quantile for the second, if there is little noise after first filter then a smaller 
quantile (i.e., 0.01–0.05) can be used for the second step. 

d<-getDepth(shag) 
K<-c(3, 120) 
P<-c(0.5, 0.35) 
db<-c(-1.029937, 1) 
 
d.filter<-diveMove:::.depthFilter(depth = d, k = K, probs = P, depth.bounds = db, na.rm = FALSE)  

Visualize smoothing parameters. First row is original data, second is smoothing, and 
3 is the what the data looks like with the smoothing applied. 

old.par<-par(no.readonly = TRUE) 
plotZOC(shag, d.filter, ylim =c(-1.029937, 5)) 

Calibrate Data

Select k and p values from previous step and extract dives with calibrated data. In this
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Visualize calibrated TDR data, including 3 m foraging dive threshold, using gg-
plot2 [116].
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Appendix A.1.2. Visualize 
Now that the raw biologging data has been processed and merged with the GPS data, 
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2). Base maps should be high enough resolution for subsequent analyses (e.g., removal of 
land), so in this case were downloaded from Digimap: https://digimap.edina.ac.uk/os (ac-
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Appendix A.1.2. Visualize

Now that the raw biologging data has been processed and merged with the GPS data,
resulting in a dataset with known dive locations, the track should be visualized (Figure 2).
Base maps should be high enough resolution for subsequent analyses (e.g., removal of
land), so in this case were downloaded from Digimap: https://digimap.edina.ac.uk/os
(accessed on 1 February 2020). There are no obvious outliers or positions extremely far
from the colony.
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Appendix A.1.3. Check for Outliers and Remove Duplicates

Remove any duplicates.
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This removes 65 observations.

Appendix A.1.4. Remove Low Quality Positions

When these variables are available, data can be filtered to only include points with low
dilution of precision and/or high number of satellites. This is not the case in this example,
which instead will require paying close attention to groundspeeds calculated further down
in the analysis and removing any fixes that reach above maximum flight speeds of shags
(>30 m/s [117]).

Appendix A.2. Step 3: Data Processing

Appendix A.2.1. Rediscretize to Consistent Sampling Interval

The package adehabitatLT [52] can be used to regularize the sampling interval, in
this case to 120 s between each fix. Converting the dataframe into an ‘ltraj’ object required
for the rediscretization function to work will calculate a number of relevant variables,
including distance covered between succesive fixes (‘dist’). Should a readily interpretable
unit (e.g., metres) be desired, the coordinate reference system (CRS) supplied needs to
be in that unit. In this case, the CRS is WGS84 (standard for GPS data), so Longitude
and Latitude are in decidegrees. Prior to rediscretization, this can be converted to a CRS
with units in metres, British National Grid in this example, although Universal Transverse
Mercator would also work. The ‘st_transform’ and ‘map’ functions contained in the sf and
tidyverse packages can be used for this conversion [71,118].
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 y = unlist(map(as_sf$geometry,2))) %>%  
 st_drop_geometry() 
#class(EUSH_616_gps_tdr) 

After conversion to British National Grid (BNG), these coordinates can be used in the 
rediscretization process, for details see [52]. 

interval<-120 #assign desired sampling interval 
traj <- as.ltraj(xy = EUSH_616_gps_tdr[,c(“x”, “y”)],  
 date = EUSH_616_gps_tdr$Datetime, #needs to be a POSIXct object 
 id= EUSH_616_gps_tdr$ID,  
 infolocs = EUSH_616_gps_tdr[, 1:ncol(EUSH_616_gps_tdr)]) #to retain all variables 
#view trajectory 
traj  

##  
## *********** List of class ltraj *********** 
##  
## Type of the traject: Type II (time recorded) 
## * Time zone unspecified: dates printed in user time zone * 
## Irregular traject. Variable time lag between two locs 
##  
## Characteristics of the bursts: 
## id burst nb.reloc NAs date.begin date.end 
## 1 EUSH_616 EUSH_616 566 0 2012-05-25 19:31:00 2012-05-26 18:46:00 
##  
##  
## infolocs provided. The following variables are available: 
## [1] “Row” “Color_ring” “ID” “Date”  
## [5] “Time” “Datetime” “Latitude” “Longitude”  
## [9] “phase.no” “activity” “beg” “end”  
## [13] “begdesc” “enddesc” “begasc” “desctim”  
## [17] “botttim” “asctim” “divetim” “descdist”  
## [21] “bottdist” “ascdist” “bottdep.mean” “bottdep.median” 
## [25] “bottdep.sd” “maxdep” “postdive.dur” “descD.min”  
## [29] “descD.1stqu” “descD.median” “descD.mean” “descD.3rdqu”  
## [33] “descD.max” “descD.sd” “bottD.min” “bottD.1stqu”  
## [37] “bottD.median” “bottD.mean” “bottD.3rdqu” “bottD.max”  
## [41] “bottD.sd” “ascD.min” “ascD.1stqu” “ascD.median”  
## [45] “ascD.mean” “ascD.3rdqu” “ascD.max” “ascD.sd”  
## [49] “dive.id” “x” “y” 

#check if dataset has regular sampling interval 
is.regular(traj)  

## [1] FALSE 

#can plot sampling interval if desired 
#plotltr(traj, “dt”)  
 
#the following code allows all the relevant variables from the original df, e.g., activity, to be retained 
#put missing values in using setNA, this makes the dimensions the same for the interpolated df and the infolocs of the df and in-
serts NA’s where infolocs data is ‘missing’, i.e., the interpolated points 

After conversion to British National Grid (BNG), these coordinates can be used in the
rediscretization process, for details see [52].
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trips from and to the nest [53]. In order to identify trips, fixes can be assigned as being: 0: 
not on trip; 1: last point of trip; 3: middle points of trip; 2: first point of trip; where the 
points are relative to a biologically relevant buffer distance set around the nest. In this 
case, 300 m was chosen in order to eliminate resting and washing behaviors as far as pos-
sible [54,55,119]. First, distance to the colony needs to be calculated. 

#add nest location 
interp<-interp %>% mutate(nest_x = 336215, nest_y = 977686) 
 
#convert to simple feature 
as_sf2<-interp%>% 
 mutate(X = x, Y = y) %>% #create duplicate of coordinates as these dissappear in next step 
 st_as_sf(coords = c(“X”, “Y”), crs = 27700) 
 

The rediscretized dataset now contains 698 observations.

Appendix A.2.2. Set Colony/Nest Buffer and Assign Trips

During breeding, shags are a central place foragers and perform regular foraging trips
from and to the nest [53]. In order to identify trips, fixes can be assigned as being: 0: not on
trip; 1: last point of trip; 3: middle points of trip; 2: first point of trip; where the points are
relative to a biologically relevant buffer distance set around the nest. In this case, 300 m was
chosen in order to eliminate resting and washing behaviors as far as possible [54,55,119].
First, distance to the colony needs to be calculated.
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Applying a duration (e.g., >30 min duration) and minimum maximum distance (e.g.,
500 m) to nest filtration on trips helps ensure likely foraging behavior as well [54,55]. This
individual performed one trip with 324 fixes, with a duration of 10.7 h and a maximum
distance of 16.1 km from the nest. In this case, no further filtration on the trip is required.
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Appendix A.2.3. Identify Behaviors of Interest

The dataset now needs to be filtered to exclude points that are likely flight and on land.
This is because for the purpose of further analysis we are only interested in observations
either on the surface of the sea or below (where components of tidal turbines are).

One straightforward method to distinguish between flight and rest/foraging is to
apply both speed and tortuosity thresholds [55,56,120–122]. This works on the principle
that flight is associated with high speed and low tortuosity. In other words, commut-
ing/transit tends to have a high degree of directionality, that is, tends to occur in a straight
line. Foraging is associated with lower speed and high tortuosity, and resting with low
speed and low tortuosity [55,56,123].

Appendix A.3. Speed

In order to identify flight fixes, groundspeed needs to be calculated. As difference in
distance and time variables have previously been calculated when converting to an ltraj
object, this is simply a matter of dividing ‘dist’ by ‘dt’.
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Examining a histogram of these ground speeds reveals a range that agrees with those
reported for shags in the literature [96,117,124].

The minimum groundspeed of a flying shag is 1 m/s [117], shown in the above plot
with a dashed line. The blue shaded area (3.5–5 m/s) is the range of peak current speeds in
the Pentland Firth [45,57,58]. Between 1 and 5 m/s, there is therefore a range of speeds that
normally could be classified as flight but in this case could be tidal drift (bird sitting on the
sea surface and drifting with the tide, [59–61]). The cautious approach would therefore be
to set a speed threshold of >5 m/s.

Appendix A.4. Tortuosity

The ‘rel.angle’ (relative angle) variable computed by adehabitatLT used when redis-
cretizing the tracks to 120 s measures the change of direction between the step built by
fix − 1 and the current fix and the step between current fix and fix + 1, also known as the
turning angle [52].

In order for the turning angle to be readily interpretable and comparable with other
values in the literature, we can calculate a tortuosity index that goes from 0 (tortuous) to 1
(straight).
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The red dashed line shows a turning angle equivalent to 45 degrees, previously set in
shag behavioral classification analysis [55], above which the fix is assessed to be straight.

Appendix A.4.1. Identify Flight Using Speed, Tortuosity and Dive Classification

Now that groundspeed and a tortuosity index have been calculated, these can be
combined with the dive locations identified via TDR to determine behavioral states and
identify flight.
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noland<-st_difference(EUSH_616_nonflight, scot) 
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Figure A7. Behavioral states identified using speed/tortuosity thresholds and known dive locations.

The behaviors that can be discriminated in the above plot are resting (bottom right
quadrant), foraging (bottom and top left quadrants), and transit/flight (top right quad-
rant). Where fixes are marked as dives these take precedence over speed and tortuosity
classifications, as these are identified empirically. For example, 1 dive fix occurs at transit
speeds and this is likely due to the fast tidal currents in the area.

Retain Only Behaviors of Interest

The dataset can now be filtered by dive classification, speed, and tortuosity to remove
flight, leaving 297 observations.
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distances between consecutive fixes [70]. Grid size will depend on study species’ move-
ment ecology (range of distances between fixes as well as maximum range), GPS interval 
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Appendix A.5. Step 4: Analysis

Now the track has been prepared and processed to only include foraging locations (po-
sitions at which the shag is either on the sea surface or below). This is where spatial overlap
with either floating mooring or rotating blades of tidal stream turbines is possible. The next
step is extract the utilization distribution (UD) from this track, effectively transforming the
point data into a volume. As the length of the track is short (<48 h), the UD will be one of
occurrence as opposed to a home range [62,64]. As the track is autocorrelated in time and
space [65,66], the biased random bridge method implemented in the adehabitatHR package
was applied [52]. Where data are taken to be representative of the individual’s use of the
space over a longer timespan (e.g., an entire breeding season), a home range estimator such
as auto-correlated kernel density estimation may be applied instead, implemented in the
‘ctmm’ package [103,125].

Appendix A.5.1. Utilization Distribution

The “BRB()” function in adehabitatHR accounts for autocorrelation by including a
non-random “drift” component to the estimation of the probability density function [67].
The diffusion coefficient D (in units of the coordinates, in this case m2/s, the aggregate of
distributions that specify the random-walk model predicting the path of an individual, [68])
was determined using the maximum likelihood function “BRB.likD()”, described in more
detail in [69]. The minimum smoothing parameter hmin (m, the minimum uncertainty
surrounding an animal’s position) was set to 200 m following the distribution of distances
between consecutive fixes [70]. Grid size will depend on study species’ movement ecology
(range of distances between fixes as well as maximum range), GPS interval and error, scale
of environmental variables being compared with, and computing power. The smaller the
grid size, the higher the resolution, the larger the file. In this case, grid size (100 m) was
selected based on range of distances between fixes, scale of tidal lease site (<5 km), and
reasonable file size.



J. Mar. Sci. Eng. 2021, 9, 263 23 of 31

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 23 of 32 
 

 

 
Figure A8. Foraging locations of EUSH 616. Base map is © Crown copyright 2021. 

Appendix A.6. Step 4: Analysis 
Now the track has been prepared and processed to only include foraging locations 

(positions at which the shag is either on the sea surface or below). This is where spatial 
overlap with either floating mooring or rotating blades of tidal stream turbines is possible. 
The next step is extract the utilization distribution (UD) from this track, effectively trans-
forming the point data into a volume. As the length of the track is short (<48 h), the UD 
will be one of occurrence as opposed to a home range [62,64]. As the track is autocorre-
lated in time and space [65,66], the biased random bridge method implemented in the 
adehabitatHR package was applied [52]. Where data are taken to be representative of the 
individual’s use of the space over a longer timespan (e.g., an entire breeding season), a 
home range estimator such as auto-correlated kernel density estimation may be applied 
instead, implemented in the ‘ctmm’ package [103,125]. 

Appendix A.6.1. Utilization Distribution 
The “BRB()” function in adehabitatHR accounts for autocorrelation by including a 

non-random “drift” component to the estimation of the probability density function [67]. 
The diffusion coefficient D (in units of the coordinates, in this case m2/s, the aggregate of 
distributions that specify the random-walk model predicting the path of an individual, 
[68]) was determined using the maximum likelihood function “BRB.likD()”, described in 
more detail in [69]. The minimum smoothing parameter hmin (m, the minimum uncer-
tainty surrounding an animal’s position) was set to 200 m following the distribution of 
distances between consecutive fixes [70]. Grid size will depend on study species’ move-
ment ecology (range of distances between fixes as well as maximum range), GPS interval 
and error, scale of environmental variables being compared with, and computing power. 
The smaller the grid size, the higher the resolution, the larger the file. In this case, grid 
size (100 m) was selected based on range of distances between fixes, scale of tidal lease 
site (<5 km), and reasonable file size. 

#EUSH_616_foraging<-noland 
#make grid from data 
#summary(EUSH_616_foraging$x) 
#summary(EUSH_616_foraging$y) 
 
xmin<-min(EUSH_616_foraging$x) 
xmax<-max(EUSH_616_foraging$x) 
ymin<-min(EUSH_616_foraging$y) 
ymax<-max(EUSH_616_foraging$y) 
 J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 24 of 32 
 

 

#make the grid larger than dataframe values to allow space for the UD 
x_res<-seq(xmin-10000, xmax+10000, by =100) #if grid desired is 100 x 100 m 
y_res<-seq(ymin-10000, ymax+10000, by =100) 
xy <- expand.grid(x=x_res,y=y_res) 
 
coordinates(xy) <- ~x+y 
gridded(xy) <- TRUE 
#class(xy) 
traj_ud<-dl(EUSH_616_foraging) #convert to ltraj 
 
#get D using maximum likelihood 
vv<-BRB.likD(traj_ud[1], Tmax = 120*2, Lmin = 0) #Tmax is the max duration (in seconds) allowed for a step built by succes-
sive relocations (can be checked using ‘dt’ variable). Lmin is the minimum distance (in m) bw successive relocations defining in-
tensive use or resting. 
 
#extract ud 
#checking the distribution of distances between consecutive fixes will help in setting hmin, as will knowledge of GPS error (typi-
cally <10 m). 
#summary(traj_ud[[1]]$dist) 
ud<-BRB(traj_ud[1], D = vv, Tmax = 120*2, Lmin = 0, hmin=200, grid = xy) 
 
#visualize 
#plot(getverticeshr(ud, 95, add=TRUE, lwd=2)) 

Appendix A.6.2. Extract Relevant % UD Isopleth 
The 50% and 95% isopleths (i.e., contours) typically extracted from utilization distri-

butions represent the ‘core’ and ‘active’ areas of use, respectively [64]. As we want to as-
sess potential for overlap with turbine structures at the sea surface (e.g., floating mooring) 
and especially underwater (e.g., blades), known dive locations as determined by the TDR 
should be retained as far as possible, as these are the highest risk areas in terms of colli-
sion. Therefore, check whether 50 or 95% isopleths should be used in further analyses. 
This has ramifications for level selection in datasets where dive locations are unknown 
(e.g., GPS-only data). 

#get 50 & 95% isopleths 
vertex_50<- getverticeshr(ud, 50, unin =c(“m”), unout=c(“m2”)) 
vertex_95<- getverticeshr(ud, 95, unin =c(“m”), unout=c(“m2”))  

 
Figure A9. The 50% and 95% isopleths of foraging distribution of EUSH 616 overlaid on known 
dive locations (in blue). Base map is © Crown copyright 2021. 

Appendix A.5.2. Extract Relevant % UD Isopleth

The 50% and 95% isopleths (i.e., contours) typically extracted from utilization dis-
tributions represent the ‘core’ and ‘active’ areas of use, respectively [64]. As we want to
assess potential for overlap with turbine structures at the sea surface (e.g., floating mooring)
and especially underwater (e.g., blades), known dive locations as determined by the TDR
should be retained as far as possible, as these are the highest risk areas in terms of collision.
Therefore, check whether 50 or 95% isopleths should be used in further analyses. This
has ramifications for level selection in datasets where dive locations are unknown (e.g.,
GPS-only data).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 24 of 32 
 

 

#make the grid larger than dataframe values to allow space for the UD 
x_res<-seq(xmin-10000, xmax+10000, by =100) #if grid desired is 100 x 100 m 
y_res<-seq(ymin-10000, ymax+10000, by =100) 
xy <- expand.grid(x=x_res,y=y_res) 
 
coordinates(xy) <- ~x+y 
gridded(xy) <- TRUE 
#class(xy) 
traj_ud<-dl(EUSH_616_foraging) #convert to ltraj 
 
#get D using maximum likelihood 
vv<-BRB.likD(traj_ud[1], Tmax = 120*2, Lmin = 0) #Tmax is the max duration (in seconds) allowed for a step built by succes-
sive relocations (can be checked using ‘dt’ variable). Lmin is the minimum distance (in m) bw successive relocations defining in-
tensive use or resting. 
 
#extract ud 
#checking the distribution of distances between consecutive fixes will help in setting hmin, as will knowledge of GPS error (typi-
cally <10 m). 
#summary(traj_ud[[1]]$dist) 
ud<-BRB(traj_ud[1], D = vv, Tmax = 120*2, Lmin = 0, hmin=200, grid = xy) 
 
#visualize 
#plot(getverticeshr(ud, 95, add=TRUE, lwd=2)) 

Appendix A.6.2. Extract Relevant % UD Isopleth 
The 50% and 95% isopleths (i.e., contours) typically extracted from utilization distri-

butions represent the ‘core’ and ‘active’ areas of use, respectively [64]. As we want to as-
sess potential for overlap with turbine structures at the sea surface (e.g., floating mooring) 
and especially underwater (e.g., blades), known dive locations as determined by the TDR 
should be retained as far as possible, as these are the highest risk areas in terms of colli-
sion. Therefore, check whether 50 or 95% isopleths should be used in further analyses. 
This has ramifications for level selection in datasets where dive locations are unknown 
(e.g., GPS-only data). 

#get 50 & 95% isopleths 
vertex_50<- getverticeshr(ud, 50, unin =c(“m”), unout=c(“m2”)) 
vertex_95<- getverticeshr(ud, 95, unin =c(“m”), unout=c(“m2”))  

 
Figure A9. The 50% and 95% isopleths of foraging distribution of EUSH 616 overlaid on known 
dive locations (in blue). Base map is © Crown copyright 2021. 



J. Mar. Sci. Eng. 2021, 9, 263 24 of 31

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 24 of 32 
 

 

#make the grid larger than dataframe values to allow space for the UD 
x_res<-seq(xmin-10000, xmax+10000, by =100) #if grid desired is 100 x 100 m 
y_res<-seq(ymin-10000, ymax+10000, by =100) 
xy <- expand.grid(x=x_res,y=y_res) 
 
coordinates(xy) <- ~x+y 
gridded(xy) <- TRUE 
#class(xy) 
traj_ud<-dl(EUSH_616_foraging) #convert to ltraj 
 
#get D using maximum likelihood 
vv<-BRB.likD(traj_ud[1], Tmax = 120*2, Lmin = 0) #Tmax is the max duration (in seconds) allowed for a step built by succes-
sive relocations (can be checked using ‘dt’ variable). Lmin is the minimum distance (in m) bw successive relocations defining in-
tensive use or resting. 
 
#extract ud 
#checking the distribution of distances between consecutive fixes will help in setting hmin, as will knowledge of GPS error (typi-
cally <10 m). 
#summary(traj_ud[[1]]$dist) 
ud<-BRB(traj_ud[1], D = vv, Tmax = 120*2, Lmin = 0, hmin=200, grid = xy) 
 
#visualize 
#plot(getverticeshr(ud, 95, add=TRUE, lwd=2)) 

Appendix A.6.2. Extract Relevant % UD Isopleth 
The 50% and 95% isopleths (i.e., contours) typically extracted from utilization distri-

butions represent the ‘core’ and ‘active’ areas of use, respectively [64]. As we want to as-
sess potential for overlap with turbine structures at the sea surface (e.g., floating mooring) 
and especially underwater (e.g., blades), known dive locations as determined by the TDR 
should be retained as far as possible, as these are the highest risk areas in terms of colli-
sion. Therefore, check whether 50 or 95% isopleths should be used in further analyses. 
This has ramifications for level selection in datasets where dive locations are unknown 
(e.g., GPS-only data). 

#get 50 & 95% isopleths 
vertex_50<- getverticeshr(ud, 50, unin =c(“m”), unout=c(“m2”)) 
vertex_95<- getverticeshr(ud, 95, unin =c(“m”), unout=c(“m2”))  

 
Figure A9. The 50% and 95% isopleths of foraging distribution of EUSH 616 overlaid on known 
dive locations (in blue). Base map is © Crown copyright 2021. 
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Base map is © Crown copyright 2021.

In the 50% isopleth, 0% of dive locations are retained, while virtually all are in the
95% isopleth. Therefore, the 95% isopleth should be used in this case. The utilization
distribution is now ready to be used in further analyses (e.g., assessing overlap with marine
renewable areas).
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