
www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 18

This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Subject Editor: Thorsten Wiegand 
Editor-in-Chief: Miguel Araújo 
Accepted 18 October 2023

doi: 10.1111/ecog.06925

2023

1–18

2023: e06925

© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society 
Oikos

Crowded seas are becoming a pressing management problem with the increased devel-
opment of offshore renewable energy (ORE) to combat climate change. Marine eco-
systems are complex and varied; therefore, we need new tools to help rapidly increase 
our understanding of how they are likely to change with both climate and anthropo-
genic changes. This study uses a pragmatic data-driven Bayesian network approach to 
capture the patterns of ecosystem complexity and reveal trends of ecosystem drivers 
(i.e. indicators) important to ecosystem functioning across space and over time. The 
ecosystem approach assessed physical and biological indicators and their influence on 
population (abundance/productivity) trends in four regions with contrasting habitats 
of the North Sea within the last 30 years (1990–2019). What-if scenarios were con-
ducted to examine species/functional group responses to physical (temperature and 
stratification) representing climate and large-scale ORE development effects, as well 
as anthropogenic (fishing) changes. Clear patterns were revealed, including temporal 
trends of the dynamic nature of bottom-up effects driven by physical change versus 
top-down effects driven by fishing across trophic levels and habitat types. All four 
regions are influenced by both effects; however, the dominance of effects was depen-
dent on region: Shetland and Orkney (bottom-up driven), southern North Sea (top-
down driven). In general, regions with stronger bottom-up effects showed increasing 
population trends whereas those with stronger top-down effects, decreasing trends. 
Our findings also suggest that some species are much better indicators of either bot-
tom-up (e.g. zooplankton), top-down effects (e.g. fish) or both (e.g. grey seal), but the 
strength of indicator is dependent on habitat type. The habitat-specific results provide 
better understanding of what type of ecosystem change they are indicating (physical or 
biophysical) and therefore indicators that assess both ecosystem status and resilience, 
ensuring a more strategic and integrated evaluation of trade-offs for future sustainable 
management of our shallow seas.
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Introduction

In the well-studied North Sea, temperature rises and other 
physical changes like ocean acidification, reduced oxygen 
and sea-level rise are having an impact throughout the food 
web, with effects on abundance, distribution and biodiversity 
seen in plankton (Edwards  et  al. 2020), fish (Wright  et  al. 
2020), seabirds (Mitchell et al. 2020) and mammals (Evans 
and Waggitt 2020). One of the more likely solutions to 
combat climate change is the introduction of large-scale off-
shore renewable energy (ORE) developments (wind, tidal 
and wave) of 100s of gigawatts (GWs) (IRENA 2019). 
However, the introduction of new structures and the extrac-
tion of more energy will have cumulative effects within the 
world’s shallow seas and therefore will also influence whole 
ecosystems (Christiansen  et  al. 2022, Daewel  et  al. 2022, 
Dorrell  et  al. 2022). The size of these developments may 
also end up using more than 30% of shallow sea space, and 
some of the consequences that will most likely follow include 
physical habitat change (e.g. increase in stratification of the 
water column) (De Dominicis et al. 2018), displacement of 
fisheries (Kafas et al. 2017) and possible creation of de facto 
marine protected areas (MPAs) (Raoux  et  al. 2019). There 
is an urgent need for a better level of understanding of the 
combined effects of climate and anthropogenic change if we 
are to use marine spatial planning (MSP) and de facto MPAs 
effectively (Gissi et al. 2019). Physical processes controlling 
rates of mixing and stratification are of key importance to 
understanding changes in the level of primary production on 
a relatively fine to local scale (Schultze et al. 2020) but also 
on an ecosystem-wide spatial scale (Ludewig 2015). Thus, 
understanding how changes to stratification due to the intro-
duction of ORE developments may change primary produc-
tion and lead to further impacts on ecosystem services such 
as fisheries, but also on mobile marine predator populations, 
is essential. 

However, to address that, we first need a much greater 
understanding of how different marine habitats and their 
associated ecosystems, and specifically their multiplicity of 
physical and biological interactions, are likely to change 
across different large-scale habitats in space and over time 
with both climate and anthropogenic transformations. To 
address this, we first need to identify good indicators of 
habitat and ecosystem change. That requires an assessment 
of what makes a good indicator of change in marine eco-
systems and what exactly the indicator is telling us about 
the changes across space and over time; and, therefore, pro-
vide early warning for management decisions and ‘best use‘ 
practice under future climate and increasing anthropogenic  
use scenarios. 

One way to understand the drivers of ecosystem change 
is to use ecosystem models with time series of multispecies 
population characteristics, as well as both physical and bio-
logical ecosystem components, such that patterns of species 
population change can be quantified across space and over 
time, under different climate and/or anthropogenic scenarios. 

Understanding the drivers of ecosystem change is challenging 
because of the variability in observations, for example due 
to imperfect methods of observation (Link et al. 2012) and 
uncertainty in potential associations due to external forces 
like climate change (Proulx et al. 2005). However, probabi-
listic methods such as Bayesian networks (BNs) can be used 
to capture ecological patterns between variables (Hui  et  al. 
2022) and reveal trends across space and over time (Tucker 
and Duplisea 2012), without requiring specific information 
on mechanisms and huge amounts of observational data, in 
contrast to other ecosystem models (Uusitalo 2007). Such 
probabilistic models allow predictions to be made across dif-
ferent spatial and temporal scales and with a range of indi-
cator species or functional groups representing all trophic 
levels. In particular, BNs use a network structure and infer-
ence that allow us to ask, ‘what-if?‘ type questions of the data. 
For example, what is the probability of seeing a change in 
the biomass of pelagic fish assemblage, given that we have 
observed a change in the levels of fishing, as well as a change 
in the stratification of the water column caused by ORE 
developments, and a change in the bottom temperature from 
climate change? 

This investigation uses dynamic hidden BN ecosystem 
models that were developed from identified consistent physi-
cal and biological indicators that were found to indicate pat-
terns of ecosystem change and predict the ecosystem state 
within four regions with different habitat types (shelf edge, 
oceanic influences, deep and shallow seas) in UK waters over 
a 30-year period (Trifonova  et  al. 2021). An indicator is a 
variable that has been found to help predict/indicate patterns 
of habitat and/or ecosystem change over the last 30 years 
within the North Sea. We examine the models’ accuracy in 
terms of their ability to reproduce observations of the trends 
(increases versus decreases) in all the ecosystem components 
(oceanographic processes as well as species/functional groups 
at all trophic levels). Therefore, we can explore in more detail 
whether the different regions show similarity in popula-
tion trends given the dynamic aspect of the multiplicity of 
interactions across all trophic levels and their stressors at the 
level of the ecosystem. Then the ecosystem models were used 
in combination with ‘what-if?‘ scenarios based on poten-
tial changes in climate (increase in temperature), climate 
and/or ORE developments (increase in stratification), and 
anthropogenic change (increase versus decrease in fishing) to 
explore the trends of either increases or decreases of differ-
ent ecosystem components in response to such changes. By 
providing an understanding of the reactive responses across 
all trophic levels, we also aim to discover patterns of the 
true dynamic nature of bottom-up versus top-down effects 
across trophic levels and within regions with contrasting 
habitat types. Therefore, we can identify whether the same 
biophysical variables are found to be consistent indicators 
of ecosystem-level changes across space and over time. Here, 
by identifying indicator species and habitats, we further 
build confidence in our ability to examine potential impacts 
of bottom-up versus top-down effects that could inform 
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strategies for coping with and adapting to climate change, 
the placement of ORE developments and potential knock-
on effects, such as fisheries displacements. Being able to pre-
dict implications of climate and other anthropogenic changes 
on ecosystem components and their relative adaptability and 
resilience will be useful to guide what species and/or habitats 
are more resilient/at-risk to what type of disturbances, and  
therefore what management decisions are required for 
the future sustainable management of marine ecosystems 
between different uses of our shallow shelf seas and under 
the influence of future changes. 

Materials and methods

Habitat type

The choice of regions was based on both physical and bio-
logical characteristics. Four spatial regions were defined: 
Shetland/Orkney, west of Scotland, and deep and shallow 
central North Sea regions (Fig. 1). We wanted to compare 
a range of different habitats (shelf edge, Atlantic influenced, 
deep and shallow seas) within the regions that are key features 
of interest with respect to future ORE developments, with 

Figure 1. The spatial boundaries of the four regions: Shetland/Orkney, west of Scotland, deep and shallow central North Sea. Map based on 
Fig. 1 in Trifonova et al. (2021). 
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some regions more likely to have large-scale development of 
either wind (floating in deeper (> 50 m), and static in shal-
low North Sea regions, < 50 m), wave (Atlantic influenced 
with the largest fetch) or tidal (Shetland/Orkney region).

Ecosystem components

The time series input data consisted of annual values (1990–
2019) from the summer season (July, August, September 
and October) as either mean values of physical variables (e.g. 
temperature) or cumulative values of biological variables (e.g. 
net primary production), or maximum values of physical 
and biological variables: current speeds and maximum Chl-
a, respectively. Biological variables for population dynamics 
included total annual abundance, biomass or mean breed-
ing/pupping success per spatial region (Table 1). We refer to 
all the variables in the study as ‘ecosystem components‘ but 
distinguish components based on them being either physi-
cal (e.g. horizontal currents speed) or biological (e.g. sandeel 
larvae) indicators. The ecosystem components in the study 
were chosen as they cover the main physical and biological 
variables that have been shown to be important to marine 
mammals and seabirds and their prey (Carroll  et  al. 2015, 
Wakefield  et  al. 2017, Chavez-Rosales  et  al. 2019). These 
will alter with climate change, and also with the next biggest 
change to our shallow seas: very large extraction of energy 
from ORE (van der Molen et al. 2014, Wakelin et al. 2015, 
Holt et al. 2016, Sadykova et al. 2017, Boon et al. 2018, De 
Dominicis et al. 2018). See Supporting information for more 
details on the choice of ecosystem components.

Model description and ‘what-if?’ scenarios

The modelling approach is a dynamic BN model with a hid-
den variable (HDBN) that is a modified version of the model 
developed in Trifonova et al. (2015, 2017). See Supporting 
information for more information on modelling time series 
with dynamic BNs. Each model (four models per region) was 
built from the identified high dependency interactions for 
capturing similarities in the temporal trends of the paired 
ecosystem components to increase certainty of predictions of 
population changes. In this way, the region-specific indica-
tors that were found to be the most consistent (i.e. the eco-
system components that were most often found in the paired 
high dependency interactions) for predicting the ecosystem 
state and indicating patterns of the associated dynamics for 
each spatial region and their changes over time were iden-
tified (Trifonova  et  al. 2021). Therefore, each HDBN eco-
system model captures the spatial and temporal variability 
of multiple biophysical interactions throughout the trophic 
chain, ensuring that the strongest relationships (i.e. relation-
ships of high dependency that are predictive in an informa-
tive, not causal aspect), and so the most consistent indicators 
of ecosystem change, are the ones identified in this process. 
From the strongest relationships, up to three indicators (i.e. 
‘parent‘ nodes) were selected that drive the target ecosystem 
component (i.e. ‘child‘ node) and were used to build the 

region-specific modelling structures. For example, in Fig. 2b, 
sandeel larvae (the ‘child‘ node) is driven by two ‘parent‘ 
nodes: BT and fisheries catch. 

The model incorporates lower tropic levels (e.g. Chl-a, 
NetPP, zooplankton assemblages), commercial and important 
prey fish groups (sandeel larvae, pelagic and demersal) and top 
predators (seabirds and marine mammals). The model also 
incorporates physical indicators (BT, SST, HSpeed, VSpeed 
and PEA, Table 1) which are those that will produce large 
bottom-up changes with increasing climate change and the 
large-scale ORE developments through temperature, mixing 
and stratification increases (Sharples et al. 2020, Dorrell et al. 
2022). The model is run in the four contrasting habitat types 
(Fig. 1) where the placement of new structures and effects 
of energy extraction of ORE developments can also change 
temperature and levels of stratification (Christiansen  et  al. 
2022) and where varying levels of fishing will be used to 
explore expected top-down effects on the ecosystem compo-
nents (Lynam et al. 2017). 

Hence, we perform ‘what-if?’ scenario analyses, following 
moderate and extreme changes to mean bottom tempera-
ture (BT) or mean sea surface temperature (SST) (increase 
by 1°C and increase by 2°C) and mean potential energy 
anomaly (PEA) (increase by 50 J m-3 and increase by 100 J 
m-3), under three levels of fishing: high, medium and low to 
investigate the effects on the ecosystem components. Then, 
the ecosystem components were classified as either consistent 
indicators of bottom-up effects driven by physical changes in 
BT/SST, and/or PEA versus indicators of top-down effects 
driven by fishing or indicators of both effects across space and 
over time. This was determined based on whether any type of 
change (increase or decrease) was consistently predicted for 
an ecosystem component in response to the scenario changes 
in BT/SST, PEA (i.e. bottom-up driven), and/or fishing (i.e. 
top-down driven) across space and over time. To identify 
whether an indicator is bottom-up or top-town driven, we 
also used the responses of other ecosystem components to 
‘what-if?’ scenarios that drive the population trends. In this 
way, based on how often the type of indicators (bottom-up 
versus top-down or both) were identified across regions, we 
were able to define if regions were more or less often driven 
by the same effects. In addition, to identify whether a region 
is bottom-up, top-down driven or both, we considered the 
region-specific indicators that were found to be the most con-
sistent (i.e. the ecosystem components that were most often 
found in the paired high dependency interactions) for build-
ing the models. 

Non-parametric bootstrap (re-sampling with replacement 
from the training set, Friedman et al. 1999) was applied 250 
times to each baseline model and scenario run to obtain 
validation in the predictions for each region. Model perfor-
mance, in terms of sum of squared error (SSE), was assessed 
for each baseline model and predictions were compared on a 
year-to-year basis versus the original input data:

( )predicted original input data�� 2
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Table 1. Summary of data. See Supporting information for more detailed information on the data sources and citations. 

Category
Ecosystem 
component Explanation Source

Physical  BT Annual summer mean bottom temperature (°C) Atlantic-European North West Shelf-
Ocean Physics Reanalysis provided by 
E.U. Copernicus Marine Service 
Information (CMEMS-NWS physics)

Physical  SST Annual summer mean sea surface  
temperature (°C)

CMEMS-NWS physics

Physiochemical PEA Annual summer mean potential energy anomaly 
(J m-3). The energy required to mix the water 
column completely that can be used as a 
proxy of stratification and mixing rate (De 
Dominicis et al. 2018)

CMEMS-NWS physics

Physical HSpeed Annual summer maximum depth averaged 
horizontal currents speed (m s-1)

CMEMS-NWS physics

Physical VSpeed Annual summer maximum depth averaged 
vertical currents speed (m s-1)

CMEMS-NWS physics

Primary production Chl-a Annual summer mean maximum chlorophyll-a 
at any depth (mg C m-3)

Atlantic-European North West Shelf-
Ocean Biogeochemistry Reanalysis 
provided by E.U. Copernicus Marine 
Service Information (CMEMS-NWS 
biogeochemistry)

Primary production  NetPP Annual summer mean depth averaged net 
primary production (g C m−2 year−1)

CMEMS-NWS biogeochemistry

Abundance Sandeel larvae Annual winter (January, February, March and 
April) total sum count of sandeel larvae

Continuous plankton recorder (CPR) 
survey

Abundance Zooplankton 
assemblage A2

Annual summer total sum count of zooplankton 
species (e.g. Calanus helgolandicus)

CPR survey

Abundance Zooplankton 
assemblage A4

Annual summer total sum count of zooplankton 
species (e.g. Para-Pseudocalanus spp.)

CPR survey

Abundance Zooplankton 
assemblage A5

Annual summer total sum count of zooplankton 
species (e.g. Acartia spp.)

CPR survey

Abundance Zooplankton 
assemblage A6

Annual summer total sum count of zooplankton 
species (e.g. Calanus finmarchicus)

CPR survey

Biomass Pelagic fish 
assemblage (PEL)

Annual summer total sum biomass (kg h-1) of 
pelagic fish species: sandeel Ammodytes 
marinus, herring Clupea harengus, sprat 
Sprattus sprattus and Norway pout Trisopterus 
esmarkii

North Sea International Bottom Trawl 
Survey (IBTS), Quarter 3 (July–
September)

Biomass Demersal fish 
assemblage (DEM)

Annual summer total sum biomass (kg h-1) of 
demersal fish species: cod Gadus morhua, 
haddock Melanogrammus aeglefinus, saithe 
Pollachius virens and whiting Merlangius 
merlangus

North Sea IBTS, Quarter 3 (July–
September)

Breeding success Black-legged 
kittiwake Rissa 
tridactyla

Annual summer mean number of chicks fledged 
per pair

Seabird monitoring programme (SMP)

Breeding success Common guillemot 
Uria aalge

Annual summer mean number of chicks fledged 
per pair

SMP

Breeding success Northern gannet 
Morus bassanus

Annual summer mean number of chicks fledged 
per pair

SMP

Abundance Harbour porpoise 
Phocoena 
phocoena

Annual summer mean of encounter rate Waggitt et al. (2020). Distribution maps of 
cetacean and seabird populations in the 
North-East Atlantic

Productivity Grey seal 
Halichoerus grypus

Annual summer mean estimates of pup 
production

Special Committee on Seals (SCOS) 
(2019)

Abundance Harbour seal Phoca 
vitulina

Annual summer (August) total sum count of 
harbour seals

SCOS (2019)

Human pressure Catch of pelagic fish 
species (Catch PEL)

Annual total sum of nominal catches (tonnes live 
weight)

ICES Historical Nominal Catches 
(1950–2010) and Official Nominal 
Catches (2006–2018)

Human pressure Catch of demersal 
fish species  
(Catch DEM)

Annual total sum of nominal catches (tonnes live 
weight)

ICES Historical Nominal Catches 
(1950–2010) and Official Nominal 
Catches (2006–2018)
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The modelling structure varies depending on the spatial 
region (e.g. Shetland/Orkney model shown in Fig. 2b), 
but the general form is presented in Fig. 2a. Each model 
included a single hidden variable that was modelled as a dis-
crete node with two states. Given the probability distribu-
tion over X[t] where X = X1…Xn are the n variables observed 
along time t, to predict each ecosystem component, we 
inferred the component at time t by using the observed 
evidence (or available data) from t − 1. We used an exact 
inference method: the junction tree algorithm (Murphy 
2002). The data were standardised prior to conducting the 
experiments to a mean of 0 and standard deviation of 1. 

See Supporting information for more information on the 
scenarios and experiments. 

Results

Model performance and accuracy: comparison of sum 
of squared error and timeseries of population trends

The dynamic Bayesian network model with a hidden variable 
(HDBN) across all the regions reported outcomes of high 
predictive accuracy for the ecosystem components by using 

Figure 2. (a) General structural form of the dynamic Bayesian network model with a hidden variable (HDBN) where X1…XN represents the 
set of variables and arrows denote conditional independence relationships. (b) The strongest data-driven relationships, identified in 
Trifonova et al. (2021), that were used to build the HDBN model for the Shetland/Orkney region in this study. Blue-coloured links indicate 
relationships with the physical indicators, red with fisheries catch, green with primary production components, orange with zooplankton 
assemblages and purple with sandeel larvae and fish assemblages. Four different zooplankton assemblages were used to develop the models 
in this work; however, for visual purposes, relationships with only A4 are shown. Symbols used to denote the ecosystem components are 
shown below the relationships. 
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Table 2. Sum of squared error (SSE) of ecosystem components predictions generated by the Bayesian network model with hidden variable 
(HDBN) models. Values highlighted in bold are the most accurately predicted (values of SSEs that are less than 25.00) ecosystem  
components per region. The symbols denote component-specific interactions that are used to build the HDBN models across the  
four regions. PEL, pelagic fish assemblage; DEM, demersal fish assemblage.
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up to three indicators (see symbols in Table 2) that generally 
provided low values (less than 25.00) of SSE (68% of the 
ecosystem components having values lower than the thresh-
old of 25.00, Table 2). We found the threshold of 25.00 to 
be most appropriate based on examining the range of SSE 
values across habitats as well as across ecosystem components 
within a habitat. Comparison of the predictive performance 
of the region-specific ecosystem models indicates varying spa-
tially predictive accuracy. The Shetland/Orkney region had 
the most ecosystem components predicted with values of SSE 
less than 25.00 (86% of components), followed by the two 
regions within the central North Sea (66% of components) 
and finally, west of Scotland region (53% of components). 
Within the majority of ecosystem components that were 
accurately predicted, sandeel larvae, NetPP and the two seal 
species were predicted with high accuracy across all regions, 
whilst the A4 zooplankton, pelagic fish assemblages and kit-
tiwake were predicted most accurately in three out of the four 
regions. However, there were 32% of the components with 
lower accuracy. For example, the A5 zooplankton assemblage 

in the deep central North Sea had the highest SSE of 29.71 
(Supporting information). 

We show the time series of the predicted ecosystem 
components from the baseline HDBN models to visu-
ally demonstrate how well they performed in reproducing 
the inter-annual variability and long-term patterns (always 
shown as blue lines) versus the original input data (black 
lines) (Fig. 3–6). Note, we only show some illustrative 
examples, with the time-series for all remaining ecosystem 
components and their predicted responses to the scenarios, 
including 95% confidence intervals calculated from the boot-
strap predictions’ mean and standard deviation, shown in 
the Supporting information. The HDBN models were able 
to capture many of the changes (increases versus decreases) 
of the ecosystem components across space and over time, 
predicting the general trends in population dynamics for all 
functional groups and species using three or fewer indicators. 
In the figures (Fig. 3–6), the solid black symbols represent 
the indicators identified as the most confident data-driven 
interactions (Trifonova et al. 2021), and were therefore used 

Figure 3. Baseline predictions (blue line) versus real data (black line) and moderate (green line) and extreme (red line) scenario predictions 
generated by the Bayesian network model with a hidden variable (HDBN) model for the bottom-up lower trophic level indicators and their 
changes over time. Solid black symbols represent the indicators used to build the relationships for the modelling network structures, whilst 
coloured symbols indicate scenario changes driving those indicators. 
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to build the region-specific HDBN modelling structures. 
We encountered time lags in some of the predictions (e.g. 
guillemot in Fig. 6c), which we believe is to be explained 
by structural uncertainties (i.e. species-specific relation-
ships and/or colony-specific drivers used to build the mod-
els, see Discussion on bottom-up and top-down indicators). 
Although we encountered some time lags, the models per-
formed well in reproducing the inter-annual variability and 
long-term patterns across space and over time (e.g. guillemot 
and kittiwake annual breeding success declines during late 
1990s–early 2005 and increase after 2015). 

‘What-if?’ scenarios

Next, we describe the results from the scenarios by examin-
ing if the predictions, and specifically if the temporal trends 
of the ecosystem components, were predicted to increase or 
decrease in comparison to the original input data over the 
same time period, separately for the different regions. The 

scenario analyses included changes in the indicators: bottom 
temperature (BT), sea surface temperature (SST), poten-
tial energy anomaly (PEA) and levels of fishing (denoted by 
coloured symbols in Fig. 3–6). Across all regions, however, 
whether an increasing or declining trend would be predicted 
for an ecosystem component, following the scenarios, was 
dependent on the component-specific interactions with the 
physical, biological and/or fishing indicators used to build 
the HDBN models in the different regions (denoted by solid 
black symbols). That is why, in some figures, coloured symbols 
indicating scenario changes are either temperature, PEA and/
or both dependent on the component-specific interactions  
in that region. 

We summarize the predicted trends (increasing or decreas-
ing blue coloured arrows) for all ecosystem components in 
response to the ‘what-if?’ scenarios in Table 3. To determine 
the illustrative examples in Fig. 3–6, we considered the  
values of SSEs and timeseries plots, thus showing the top 
one and/or top two ecosystem components with the lowest 

Figure 4. Baseline predictions (blue line) versus real data (black line) and moderate (green line) and extreme (red line) scenario predictions 
generated by the Bayesian network model with a hidden variable (HDBN) model for the bottom-up top predator indicators and their 
changes over time. Solid black symbols represent the indicators used to build the relationships for the modelling network structures, whilst 
coloured symbols indicate scenario changes driving those indicators. 
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SSE values per region. Also, the selection of ecosystem com-
ponents, shown in the figures below (Fig. 3–6), was based 
on whether the ecosystem components were identified as 
consistent indicators of bottom-up effects driven by physi-
cal changes in BT/SST, and/or PEA versus top-down effects 
driven by fishing or indicators of both effects across space and 
over time. 

Bottom-up indicators: lower trophic levels – 
maximum Chl-a, net primary production and 
zooplankton

Following scenario increase in BT and/or PEA, both Chl-a 
and NetPP were predicted to have a declining trend over time 
in the deep central North Sea, and Shetland/Orkney, respec-
tively (Fig. 3b,d). In the deep central North Sea region, the 
majority of zooplankton assemblages were predicted to have a 
declining trend, following scenario increases in BT and/PEA. 
For example, a declining trend in the deep central North 
Sea region was predicted for A4 (Fig. 3f ), following scenario 

increases in PEA, which also predicted declining trends for 
Chl-a (Fig. 3b) and sandeel larvae (Fig. 5b) that drive the A4 
annual abundance trend in this region (Fig. 3e). 

Bottom-up indicators: top predators – gannet, 
harbour porpoise and harbour seal

The upper trophic level species that were found to be pre-
dicted with either increasing or decreasing trend due to 
scenario increases in BT or PEA were gannet, harbour por-
poise and harbour seal. Gannet breeding success in the west 
of Scotland was predicted to be increasing over time due 
to scenario increases in PEA only (Fig. 4b). Note, there 
were no explicit changes of either increase or decrease in 
the other ecosystem components that were shown to drive 
gannet annual breeding success (Fig. 4a), such as A5 and 
sandeel larvae abundance, which is, in turn dependent on 
fishing levels (Supporting information). Harbour porpoise 
in the Shetland/Orkney region, were not predicted with an 
explicit trend of either increase or decrease (Fig. 4d) given 

Figure 5. Baseline predictions (blue line) versus real data (black line) and moderate (green line) and extreme (red line) scenario predictions 
generated by the Bayesian network model with a hidden variable (HDBN) model for the top-down indicators and their changes over time. 
Solid black symbols represent the indicators used to build the relationships for the modelling network structures, whilst coloured symbols 
indicate scenario changes driving those indicators. 
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the scenario increases in BT and PEA. For the zooplankton 
assemblages (A4, A5 and A6) that drive harbour porpoise 
annual abundance (Fig. 4c) there were no explicit trends of 
either increase or decrease for A5 but there were increasing 
trends for A4 and A6 due to scenario increases in BT and 
PEA (Supporting information). The trend for harbour seal 
abundance was predicted as a declining trend (Fig. 4f ), due 
to scenario increases in BT in the west of Scotland region. 
Harbour seal annual abundance in that region is also driven 
by Chl-a and NetPP (Fig. 4e), with the scenario predicting 
declining trends (Supporting information). 

Top-down indicators: sandeel larvae and fish 
assemblages

The species/groups that were found to be predicted with either 
increasing or decreasing trend due to scenario changes in fish-
ing were, unsurprisingly, sandeel larvae and commercial fish 
species. Sandeel larvae abundance was predicted to decline, 
following a scenario increase in BT and a high fishing level in 
the deep central North Sea (Fig. 5b). The pelagic and demer-
sal fish assemblages were predicted with a declining trend 

following the scenario of high fishing levels (Fig. 5d,f ) in the 
shallow central North Sea. Following scenarios of low and 
medium fishing levels, an increasing trend was predicted, that 
was more explicit for the demersal fish assemblage (Fig. 5d), 
in comparison to the pelagic fish assemblage (Fig. 5f ). For 
sandeel larvae that drive fish assemblages’ annual biomass 
trends (Fig. 5c,e) in that region, varying trends were pre-
dicted that were dependent on fishing levels (Supporting 
information). A decreasing trend was predicted for the zoo-
plankton assemblage A2 that drives the pelagic assemblage  
(Supporting information), whilst no explicit trend of either 
increase or decrease was predicted for NetPP (Supporting 
information) that drives the demersal fish assemblage annual 
biomass trend (Fig. 5c). 

Bottom-up and top-down indicators: top predators 
– grey seal, guillemot and kittiwake

There were some upper trophic level species (grey seal, guil-
lemot and kittiwake) that were found to be predicted with 
either increasing or decreasing trend due to scenario changes 
in BT/SST, PEA and fishing, thus identifying those species 

Figure 6. Baseline predictions (blue line) versus real data (black line) and moderate (green line) and extreme (red line) scenario predictions 
generated by the Bayesian network model with a hidden variable (HDBN) model for both bottom-up and top-down indicators and their 
changes over time. Solid black symbols represent the indicators used to build the relationships for the modelling network structures, whilst 
coloured symbols indicate scenario changes driving those indicators. 
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Table 3. Predicted trends: increasing or decreasing (denoted by directed arrows) for the ecosystem components per region. Double directed 
arrows indicate both increasing and decreasing years rather than an explicit trend of one direction. The symbols denote component-specific 
interactions that are used to build the Bayesian network with hidden variable (HDBN) models across the four regions. PEL, pelagic fish 
assemblage; DEM, demersal fish assemblage.
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as indicators of both bottom-up and top-down driven effects 
across regions. Grey seal productivity in the deep central 
North Sea was predicted with an increasing trend until 
2010, but after that, the trend was predicted to decline 
(Fig. 6b). The predicted trend was dependent on the sce-
nario increases in BT but also on the levels of fishing that 
led to changes in the predicted trends for sandeel larvae 
abundance (Fig. 5b) that drive grey seal annual productiv-
ity in that region (Fig. 6a). Guillemot breeding success in 
the Shetland/Orkney area was predicted to have a declining 
trend in the late 1990s–early 2000s, compared to the original 
input data; however, after 2005, the trend was not predicted 
with an explicit increase or decrease, nor did the predicted 
trend match any of the decreases (e.g. in 2008, 2011) of 
the original input data (Fig. 6d). The predicted trend was 
dependent on the scenario increases in BT and PEA, which 
predicted increasing trends for the zooplankton assemblages  
A2 and A6 (Supporting information), and fishing levels, 
which predicted varying trends for the demersal fish assem-
blage (Supporting information) that drive guillemot annual 
breeding success in that region (Fig. 6c). Kittiwake breeding 
success in the west of Scotland was not predicted with an 
explicit trend of either increase or decrease (Fig. 6f ). Similarly 
to guillemot, declining trends were predicted during the late 
1990s–early 2000s; and then, after 2015, the predicted trend 
did not match any of the decreases during 2005–2008, com-
pared to the original input data. The predicted trend was 
dependent on the scenario increase in SST and fishing levels, 
which predicted varying trends for sandeel larvae (Supporting 
information) that drive kittiwake annual breeding success in 
that region (Fig. 6e). 

Discussion

Model performance and accuracy: habitat matters

Our results highlight the need to include region-specific 
ecosystem level changes and dynamics of the multiplicity 
of interactions when building predictive models of complex 
and heavily exploited ecosystems within shallow seas, such 
as the North Sea. Hidden variables can pick up ecological 
patterns in the data that agree with ecosystem change that 
might not be strictly represented within the model structure 
(Uusitalo et al. 2018). Indeed, the accurate performance of 
the models was likely due, at least in part, to the inclusion of 
the hidden variable that reduced the likelihood of introduc-
ing spurious interactions into the analysis and allowed for 
more plausible modelling network structures. Overall, we 
found variability in species response to change driven by the 
habitat type (shelf edge, oceanic influences, deep and shallow 
seas) associated within the different regions. Therefore, effort 
should be emphasized on the integral habitat and, specifi-
cally, to determine what aspects of the habitat (e.g. bottom-
up forcing through physical trends and primary production 
dynamics versus top-down human pressures) are relevant 
to marine animals to be able to address a wider range of 

ecological questions. With the improved understanding of 
the exact bottom-up (e.g. levels of mixing and stratification) 
versus top-down (e.g. predators and fishing) mechanisms 
that influence habitat use by marine animals across spatial 
(< 1 km through to 1000 km) and temporal (days through 
to years) scales, the effects of biophysical interactions on 
populations and ecosystems and how these vary with climate 
change can be better understood. Therefore, to understand 
and predict ecosystem level changes caused by large-scale 
ORE developments, as well as separating out the effects of 
climate change, one needs to start with an appreciation of the 
changes that both these factors have on bottom-up forcing 
of levels of mixing (and stratification), and primary produc-
tion, an overall indicator of ocean health (Tett et al. 2008, 
2013). This new level of understanding will require the more 
targeted collection of at-sea data with simultaneous informa-
tion on both animal behaviour and physical processes at the 
appropriate physical scales. Our findings of some less accu-
rate predictions (e.g. the A5 zooplankton assemblage in the 
deep central North Sea, Table 2) have indicated the need to 
investigate the potential for different units of measure (mean, 
median or percentile) for some physical and biological indi-
cators. Although the mean is the most widely used unit 
across studies, examples such as maximum Chl-a (Scott et al. 
2010) illustrate that other units can have a more meaningful 
interpretation, when the specifics are understood of why the 
variable is important to mobile marine species. As such, it is 
imperative that this type of study is performed in habitats 
that have spatially and temporally rich baseline data, such 
that the understanding of mechanisms is achieved and can be 
subsequently transferred to other locations and across larger 
regional and shelf-wide scales through the use of ecosystem 
modelling. 

Regional summary: bottom-up dominated regions 
more robust than top-down regions

Across the four spatial regions, there were a lot of similari-
ties in the trends (increasing versus declining) of species 
response to change. However, it was noted that the species 
in the deep and shallow regions within the central North 
Sea were predicted more often by declining trends, whilst 
the Shetland/Orkney region was the only region in which 
many species were predicted with increasing trends, fol-
lowed by the west of Scotland region. These results suggest 
that the ecosystem dynamics in the latter two regions might 
be more robust to natural and/or anthropogenic changes. 
To further support the potential higher level of robustness 
in the latter two regions, previous results on the modelled 
ecosystem state by the hidden variable also suggested that 
their dynamics were in a more desirable (predictable) state, 
with the timing of the North Sea ‘regime shift‘ more clearly 
identified for the central North Sea regions, rather than for 
the other two regions (Trifonova et al. 2021). The Shetland/
Orkney region is strongly dominated by bottom-up pro-
cesses driven by BT and PEA, but with changes in fishing 
levels also found to have strong top-down effects. This region 

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06925 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 14 of 18

has large resources of tidal power; however, the extraction of 
reasonable amounts of tidal energy (6 GW) has been shown 
to have effects on PEA tens to hundreds of miles downstream 
(De Dominicis et al. 2018). For the other oceanic influenced 
region, the west of Scotland, which is the type of region tar-
geted for wave and floating wind, our results suggested that 
bottom-up driven effects on the dynamics are also domi-
nant. These findings suggest the possible mechanisms behind 
region-specific and temporal ecosystem changes are needed 
to reveal insights into the details of marine ecosystem struc-
ture and function under the stress of both climate change 
and anthropogenic forces. 

Stronger bottom-up effects driven by BT and PEA also 
dominated the deep central North Sea region; however, top-
down effects driven by fishing (captured well in sandeel larvae 
abundance predictions) were also found to be highly impor-
tant for the ecosystem dynamics. The number of interactions 
that direct the model for this region were dominated by more 
biological indicators (e.g. sandeel larvae, Chl-a, Table 2), in 
comparison to all the other regions. These results suggest that 
both bottom-up and top-down forcing can alter the ecosys-
tem dynamics for this region through species interactions 
mediated by key species (sandeel larvae) and/or processes 
(primary production), and that it is the strong variation in 
the relative importance of bottom-up versus top-down forc-
ing over time that characterizes this region. 

Conversely, the shallow central North Sea region was char-
acterised by stronger top-down effects, with only some bot-
tom-up effects, driven by SST and PEA. Predicted declining 
trends dominated the region’s ecosystem dynamics, which we 
suggest is most likely due to large influences from density-
driven stratification, high turbidity and rapid warming (van 
Leeuwen  et  al. 2016), in comparison to the other regions. 
This characterized the region as more temporally variable 
(Capuzzo  et  al. 2018) and an ‘early indicator‘ of profound 
ecosystem changes that may later be seen within the northern 
and deeper regions, given future climate and anthropogenic 
changes. By investigating baselines, our findings indicate that 
we need to pay much closer attention to how different habi-
tat types of our global shallow seas are managed, as the same 
human (large-scale ORE developments, changes in fishing, 
etc.) and climatic changes will be felt very differently in dif-
ferent regions. 

Species summary

Bottom-up indicators: lower trophic levels – maximum Chl-a, 
net primary production and zooplankton
The biological ecosystem components (Chl-a, NetPP and 
zooplankton assemblages) were identified as indicators of 
bottom-up effects, as expected, as plankton abundance is 
known to be directly driven by the physical forcing of tem-
perature and stratification (Simpson and Sharples 2012). 
In general, where Chl-a and NetPP were predicted with 
decreasing regional trends across all scenarios, the population 
trends of higher trophic levels were also predicted to decline, 
suggesting that ecosystems will respond consequently to 

anthropogenic changes in both temperature and stratifica-
tion. Notably, NetPP was more often predicted to be driven 
by vertical current speed with field data also indicating that 
mean seasonal change in NetPP is through vertical mixing 
(Zhao et al. 2019). This is an important distinction, as NetPP 
values are more highly influenced by depth, with shallower, 
more mixed areas generally having higher depth integrated 
production; whilst Chl-a, which has a critical habitat role in 
shelf seas (Mérillet  et  al. 2020, Trifonova  et  al. 2021), can 
be influenced by a greater variety of weather and physical 
variables (Molinero  et  al. 2013). The potential for spatial 
changes in NetPP can have strong implications for fisheries 
production given future climate and fisheries management 
changes (Capuzzo  et  al. 2018). Therefore, understanding 
the drivers of primary production changes in response to  
ORE developments across regions of contrasting depth and 
hydrodynamic conditions is important for successful ecosys-
tem-based management, and could influence the implemen-
tation of MPAs and highly protected marine areas (HPMAs) 
(Benyon et al. 2020).

The modelled outputs showed that predicted changes in 
zooplankton abundances consequently progress to affect pop-
ulation trends of fish assemblages (Fig. 5) and even top preda-
tors (Fig. 6), as it has been shown from direct analysis with 
abundance changes in zooplankton assemblages affecting fish 
recruitment (Beaugrand  et  al. 2003). Predicted zooplank-
ton assemblages showed mostly decreasing trends within the 
North Sea regions but with increasing trends predicted for 
A2 (e.g. Calanus helgolandicus) and A6 (e.g. Calanus finmar-
chicus) in the Shetland/Orkney region (Supporting infor-
mation). These findings again confirm the importance of 
understanding regional differences in bottom-up indicators 
and possible drivers to be integrated into spatial management 
policies (Tweddle et al. 2018). 

Bottom-up indicators: top predators – gannet, harbour 
porpoise and harbour seal
Gannet, harbour porpoise and harbour seal appear to be 
the identified top predator indicators of bottom-up effects. 
Gannets are the most generalist foragers of the seabird spe-
cies, foraging at a broad depth range within the water column 
(Mitchell  et  al. 2020), and harbour porpoise are the only 
marine mobile in this study not to exhibit centrally placed 
foraging, with known large spatial distribution shifts (Evans 
and Waggitt 2020) and harbour seals take a wide variety of 
prey which can vary seasonally and across regions (SCOS 
2021). For these reasons we speculate that species with more 
flexible diet and/or locational needs are better bottom-up 
indicator species. Seabirds and mammals have long been 
recognised as being useful (more easily detectable) ‘indica-
tors‘ of the health of marine ecosystems (Parsons et al. 2008, 
SMRU 2016), with some specialists such as kittiwakes sug-
gested as being the better indicators of environmental change 
(Wanless et al. 2007); however, results from our study ques-
tion if we have been going about this the wrong way. It may 
be better to know what precisely the particular visible top 
predator species is good at indicating in terms of physical or 
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biophysical ecosystem changes, as this work has showed for 
gannet, harbour porpoise and harbour seal to be indicators 
of bottom-up effects with numerous strong interactions with 
specific physical and/or biological ecosystem components. 
This increase in knowledge about what top predators are tell-
ing us about how the ecosystem is functioning and respond-
ing to environmental change is essential for effective spatial 
management, and we need to pay much closer attention to 
what indicator species are telling us about how specific com-
ponents of the ecosystem are likely to be influenced by differ-
ent climatic conditions or changed physical conditions due to 
ORE developments. 

Top-down indicators: sandeel larvae and fish assemblages
As fishing has been demonstrated as a long-term dominant 
external stressor (Lynam et al. 2017), it is not surprising that 
all fish species/assemblages were identified as indicators of 
top-down fisheries driven forcing with changes in popula-
tion trends that were dependent on the levels of fishing across 
the regions. For example, in the shallow central North Sea, 
a region characterised by stronger top-down fishing effects, 
the demersal assemblage was consistently predicted with 
a large increasing trend in response to scenarios with low 
fishing levels, i.e. any reduction in fishing pressure is posi-
tive for demersal fish. In contrast, in a less top-down, more 
bottom-up dominated region (Shetland/Orkney) neither low 
nor medium levels of fishing produced much of an increas-
ing trend for either sandeel larvae, pelagic or demersal fish 
assemblages (Supporting information). For sandeels, much of 
this area has been closed for fishing for decades (Régnier et al. 
2017), thus reducing fishing alone has little effect. These 
results highlight that we can use sandeel larvae and fish 
assemblages to assess ecosystem resilience to anthropogenic 
changes to identify what habitats (e.g. shallow central North 
Sea) and species (e.g. demersal assemblage) are more at risk. 
This approach will help to support effective spatial man-
agement of exploited species and avoid potential knock-on 
effects of ORE developments, such as fisheries displacement. 

Bottom-up and top-down indicators: top predators – grey seal, 
guillemot and kittiwake
The results highlighted the following top predator species: 
grey seal, guillemot and kittiwake as indicators of assessing 
effects of not only physical effects of climate change and ORE 
developments, but also effects of fishing. Strong regional dif-
ferences in colony demographics and population dynamics 
have been reported for grey seals which has made it chal-
lenging to identify the drivers of population change (SCOS 
2021). Our results, based on the use of regional productivity 
data, have concluded that by identifying strong and consis-
tent relationships, but with very different indicators in the 
different regions (Fig. 6a and grey seals plots in Supporting 
information), both physical (e.g. PEA) and biological (e.g. 
sandeel larvae) ecosystem components indeed drive produc-
tion trends. Other modelling studies have discussed the role 
of grey seals in regulating the equilibrium of the ecosystem by 
exerting top-down control on their prey (Serpetti et al. 2017). 

A very recent modelling study, based on assumed relation-
ships rather than population trends, showed that the number 
of grey seals modelled tend to vary based on the interactive 
effects of both warming and fishing through changes in lower 
trophic levels and pelagic and demersal fish (Thorpe  et  al. 
2022). With this range of new evidence, it is important that 
the spatial location of grey seals should be considered when it 
is being used as an indicator species. 

Our findings have demonstrated that guillemot is also an 
indicator of predicting how the ecosystem is responding to 
the interactive effects of multiple bottom-up and top-down 
changes, which is in line with previous findings about seabirds, 
highlighting the complex ways in which climate interacts with 
other drivers with impacts on prey availability (Mitchell et al. 
2020). Our results showed that demersal/pelagic fish assem-
blages (Fig. 6c and guillemot plots in Supporting informa-
tion) drive guillemot breeding success in all regions, which 
possibly indicates the potential for guillemot to also be a 
strong indicator for top-down fishing effects. The time lags 
that we encountered in some of the annual predictions for 
guillemot (Fig. 6c) are, we suggest, due to structural uncer-
tainties in either the species-specific and/or colony-specific 
drivers and whether their relationships with guillemot annual 
breeding success should be modelled inter-annually (i.e. 
between two or more years) versus intra-annually (e.g. within 
the same year), as the few studies on other species have shown 
inconsistent patterns between different colonies and their 
drivers (Carroll et al. 2015, Eerkes-Medrano et al. 2017). To 
address this, we will be investigating ecosystem models on a 
finer spatial scale with spatially and temporally rich baseline 
data (e.g. Isle of May), such that the understanding of mecha-
nisms is achieved and can be subsequently transferred across 
larger regional and shelf-wide scales. 

For kittiwake, the HDBN model did well in reproduc-
ing the observed trends in annual breeding success (e.g. 
decline in early 2000s and later increases, shown in Fig. 6e, 
Supporting information), suggesting that bottom-up forcing 
is mediated through interactions with primary production 
and zooplankton but also indirect influence from fishing is 
mediated through interactions with sandeel larvae. However, 
our results for kittiwakes failed to predict any explicit trends 
in response to the scenarios, which we explain is due to the 
complex effects across and between trophic levels, resulting 
from the interacting effects from other factors (e.g. fishing 
and temperature, and phenological effects, such as the tim-
ing of phytoplankton blooms) which might be more influ-
ential drivers governing this species dynamics (Carroll et al. 
2015, Eerkes-Medrano et al. 2017). The ambiguity around 
the potential drivers for kittiwake is a good example remind-
ing us that the strength of relationships with indicators that 
control population trends/breeding success can rise and fall 
over time (Trifonova et al. 2021); and, as this study shows, 
specifically for the deep central North Sea, so as the influ-
ence of bottom-up versus top-down effects can change over 
time. Therefore, more detailed understanding across a range 
of spatial (< 1 km through to 1000 km) and temporal (days 
through to years) scales is needed to pinpoint the mechanisms 

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06925 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 16 of 18

behind species dynamics, as studies have shown inconsis-
tent patterns between different colonies and their drivers 
(Carroll et al. 2015, Eerkes-Medrano et al. 2017). Still, our 
results highlight kittiwakes as indicators of both bottom-up 
and top-down effects. Given the large declines in breeding 
abundance of this species (JNCC 2021), ongoing scrutiny is 
needed across habitats to continue to improve understanding 
of how both types of forcing can alter ecosystem dynamics via 
kittiwakes’ relationships with other ecosystem components 
under future climate and anthropogenic change. 

Conclusion

The effects of physical and biophysical interactions on pop-
ulations and ecosystems, and how these vary with climate 
change and anthropogenic transformations, need to be bet-
ter understood. Given the complexity of marine ecosystems, 
full understanding might be challenging, so we need to have 
pragmatic methods to make advances. Through the applied 
BN approach, we were able to make tractable predictions 
of the true dynamic nature of bottom-up versus top-down 
effects and their patterns across trophic levels and regional 
habitats, and their changes over time. This increases knowl-
edge necessary to add to the traditional use of top predator 
population dynamics as separate aspects of marine systems, 
and will reduce uncertainties of the level of direct and indi-
rect effects on populations across a range of trophic levels. 
Our results indicated that the ecosystem dynamics in some 
regions (Shetland/Orkney, west of Scotland) might be in a 
more desirable (‘healthy’) state (given the number of pre-
dicted increasing population trends). However, due to the 
interacting effects of climate (temperature, PEA and plank-
ton production), fishing and future implications of ORE 
developments – including potential fisheries displacement 
– all these factors should be considered within current man-
agement and decision making. We have showed that the 
ecosystem dynamics in the shallow central North Sea might 
not be as robust to climate and/or anthropogenic changes; 
therefore, many trade-offs will need to be weighed up rapidly 
for the future sustainable management of marine ecosystems 
between different uses of our shallow shelf seas under the 
influence of future changes. 

We also showed that the deep central North Sea region 
seems somewhat unique with both types of forcing (bottom-
up and top-down) leading to complex patterns of control on 
the ecosystem, suggesting intense scrutiny is needed within 
this region, given the future implications of hundreds of GW 
of ORE developments by 2050 (Wind Europe 2022). The 
identified indicators of bottom-up (e.g. gannet) and top-
down effects (e.g. sandeel larvae), as well as indicators of 
both bottom-up and top-down forcing (e.g. grey seal) should 
be used to better guide strategic and integrated research 
approaches to monitoring and field surveys. Specifically, 
bottom-up indicators (e.g. NetPP and zooplankton) should 
be prioritized as they affect the availability of fulcrum pelagic 
fish species (Cury  et  al. 2000) that are the main prey of 

mobile top predators and larger commercial fish species. It 
has been shown that top predator foraging locations are due 
to fish availability being tied to locations of new primary pro-
duction, including tidal fronts and patchy areas of subsurface 
chlorophyll – areas where fish are actively foraging in space 
(Scott et al. 2010, Embling et al. 2013, Scales et al. 2014). 
However, it is also necessary to include top-down indica-
tors (e.g. sandeel larvae and fish assemblages) to be able to 
predict the changes in fish availability from the changes in 
fishing fleet distributions and levels of catch induced by the 
changes in fishing levels due to ORE developments. Finally, 
insights on the identified indicators of both bottom-up and 
top-down driven effects, with better understanding of what 
type of ecosystem change (physical or biophysical) they are 
indicating and their predicted responses to combined climate 
and anthropogenic change, should also be used to evaluate 
accurate cumulative effects through impact assessments to 
support MSP and to enable evaluation of trade-offs to pro-
vide the most sustainable future spatial use of our seas. 
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