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Abstract
Atlantic Cod Gadus morhua, which are overfished in the United States, are potentially vulnerable to disturbance

from offshore wind energy (OWE) construction and operation during their spawning period. While many aspects of
Atlantic Cod biology are well studied, little is known of their habitat use and spawning behavior at the extreme south-
ern extent of the species' range. As Atlantic Cod form dense spawning aggregations and produce sounds associated
with courtship behaviors, we used a combination of fixed-station and glider-based passive acoustic monitoring methods
to evaluate the spatiotemporal spawning dynamics of Atlantic Cod in the Georges Bank stock. Additionally, we
assessed potential interactions with OWE in designated offshore wind lease areas within southern New England
waters of the western North Atlantic Ocean. Generalized linear modeling was used to evaluate correlations between
cod grunt activity and multiple environmental cycles. Results from the southern New England spawning grounds were
compared to similar data describing the geographically separated Massachusetts Bay winter-spawning subpopulation
within the western Gulf of Maine stock. Temporal patterns in Atlantic Cod grunts suggest that spawning in southern
New England waters is concentrated in November and December and is greatest near the new and full moons.
Although there were fine-scale differences in the temporal dynamics of grunt presence between the two regions, the
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overall seasonality of inferred spawning was similar. Results suggest that Atlantic Cod spawning in southern New
England overlaps with planned OWE construction in time and space. An understanding of cod spawning phenology in
the western North Atlantic can be used to minimize disturbance to spawning through limiting construction timelines
and consideration of turbine or cable placement.

To meet demand for a transition to renewable energy,
offshore wind energy (OWE) development is rapidly
expanding in the United States. As a result, there has been
increasing effort to understand the potential interactions
between marine ecosystems and offshore wind farms
throughout all phases of development. Evidence suggests
that interactions can include positive effects for some spe-
cies, such as increased epibiont abundance (Hutchison
et al. 2020) and fish densities (Bergström et al. 2013; Sten-
berg et al. 2015) around the turbine structure, as well as
negative effects to existing complex habitat (Guarinello
and Carey 2022). For marine animals, acoustic distur-
bance can result in masking of auditory communication,
displacement, hearing loss (Popper and Hawkins 2019),
and increased stress (Wysocki et al. 2006). Each phase of
OWE development includes different sources of potential
interactions with unique spatiotemporal risk zones. During
project siting, operation, and decommissioning, most of
the disturbance stems from vessel activity and associated
noise at the wind energy area. This noise pollution gener-
ally has a small spatial effect but persists over multiple
decades. Conversely, the construction phase involves
numerous sources of potential disturbance that can occur
at both small and large spatial scales and persist over mul-
tiple years. These disturbances include habitat effects from
construction of turbine foundations and cable laying as
well as acoustic effects from vessel activity and pile driv-
ing (Mooney et al. 2020).

Due to the risk of broad spatial and temporal overlap,
interactions between the construction phase of OWE
development and marine ecosystems have received the
most attention. A priority concern is pile driving, which
results in loud, impulsive noise pollution that is sustained
during all times of day for multiple weeks and can propa-
gate at elevated sound levels for tens of kilometers away
from the source (Bailey et al. 2010; Andersson et al.
2017). Impulsive sounds have complex effects on the beha-
vior, movement, and physiology of marine animals; the
magnitude of these effects depends on distance from the
sound source as well as the role of acoustic communica-
tion in the behavior and life history characteristics of the
species (Madsen et al. 2006). For example, comparison of
sound exposure criteria for bottlenose dolphins Tursiops
truncatus to measured sound levels from pile driving
revealed that auditory damage was possible within 100m
of the sound source, but behavioral effects could extend to
50 km (Bailey et al. 2010). Exposure to pile-driving sounds

has been shown to also affect the behavior of certain fish
species, such as European Bass Dicentrarchus labrax and
Atlantic Cod Gadus morhua, by negatively affecting group
cohesion (Herbert-Read et al. 2017) as well as eliciting
changes in depth and movement away from the sound
source (Neo et al. 2016; van der Knaap et al. 2022).
Moreover, experimental exposure to noise reduced spawn-
ing success in two goby species due to reduced acoustic
courtship by males and a lack of spawning by females (de
Jong et al. 2018). The combined effects of ground-
disturbing activities on habitats and acoustic disturbance
from construction on fish spawning are of particular con-
cern for species that use acoustic communication during
courtship and that are unlikely to successfully shift their
reproduction to locations that are not disturbed, such as
fishes that exhibit high fidelity to a spawning site (de Jong
et al. 2020).

Of the U.S. OWE projects that are currently in devel-
opment, many are located off southern New England and
the Mid-Atlantic Bight in the western North Atlantic
Ocean. As a result, an understanding of potential interac-
tions between OWE and fisheries resources, specifically
Atlantic Cod, has become a management priority in the
region. Atlantic Cod have a complex metapopulation
structure consisting of multiple subpopulations, each with
multiple spawning components (Zemeckis et al. 2014a).
Within these components, individuals exhibit high spawn-
ing site fidelity that is generally consistent in space and
time each year (Robichaud and Rose 2001; Zemeckis
et al. 2014b). During the spawning season, Atlantic Cod
migrate to the spawning site and form dense aggregations
within which reproductive males defend small territories
(Nordeide and Folstad 2000; Fudge and Rose 2009). This
aggregation behavior includes a courtship ritual in which
males produce repetitive grunt-like sounds to attract a
mate (Brawn 1961b; Finstad and Nordeide 2004). Sound
production is thought to play a role in mate choice, as
sound intensity and sound-producing muscle mass are cor-
related with male body size and mating success, respec-
tively (Brawn 1961a; Hutchings et al. 1999; Rowe and
Hutchings 2008). This combination of spawning site fide-
lity and use of acoustic communication during spawning
could make Atlantic Cod vulnerable to acoustic and phy-
sical disturbances from OWE development.

Successful spawning is critical to sustain and rebuild
populations, and experiments have shown that repeated
exposure of Atlantic Cod to anthropogenic noise can
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reduce the number of viable embryos produced by more
than 50% due to decreased egg production and fertiliza-
tion rates (Sierra-Flores et al. 2015). Furthermore, spawn-
ing disturbance associated with OWE development may
have interactive effects with other anthropogenic and nat-
ural stressors. In the United States, Atlantic Cod spawn-
ing components have experienced consistent declines due
to interacting pressures from overexploitation (Ames 2004;
Zemeckis et al. 2014c), loss of stock stability (Reich and
DeAlteris 2009), a mismatch between biological stock
structure and management (Kerr et al. 2014), environmen-
tal variability (Brander 2005; Friedland et al. 2013), and
range contraction due to climate change-induced thermal
habitat loss (Nye et al. 2009; Friedland et al. 2020). In
theory, a metapopulation structure should buffer against
fluctuations in spawning success of discrete components
while maintaining the overall stock complex (Stephenson
1999; Rose et al. 2011); however, attempts to rebuild the
Atlantic Cod stock have been unsuccessful (Lilly et al.
2008; Lindegren et al. 2013; Zemeckis et al. 2014a) and
much of the population structure has been lost (Ames
2004). In an attempt to improve the management and
recovery of the Atlantic Cod stock, recent research has
focused on expanding the understanding of connectivity
between subpopulations and their relative roles in main-
taining the stock. Atlantic Cod have historically been
managed as two U.S. stocks—the Gulf of Maine stock
and the Georges Bank stock, which includes the southern
New England subpopulation—but a recent synthesis has
identified five genetically distinct subpopulations (McBride
et al. 2021). Current understanding suggests that most of
the spawning stock biomass remains in the Gulf of Maine,
which consists of distinct winter- and spring-spawning sub-
populations. Southern New England supports its own dis-
tinct spawning group but also receives imports of eggs
and larvae from Gulf of Maine winter spawners (McBride
et al. 2021).

Studies of spatiotemporal spawning dynamics within
the Gulf of Maine, Georges Bank, and other global Atlan-
tic Cod stocks have identified that spawning generally
occurs over a multiple-month period, with peaks in grunt
activity at night near the new and full moons (Grabowski
et al. 2015; Zemeckis et al. 2019). Studies of winter
spawning aggregations throughout Massachusetts Bay
(western Gulf of Maine) have identified that within the
October–January spawning period, the seasonal timing of
peak grunt activity varies among individual aggregations,
with deeper sites exhibiting a peak later in the spawning
season (Zemeckis et al. 2019; Caiger et al. 2020). Com-
pared to the Gulf of Maine and Georges Bank, relatively
few data exist regarding the dynamics and structure of
cod in southern New England waters. To better under-
stand interactions with OWE development and to support
stock rebuilding, a broader understanding of the

spatiotemporal spawning dynamics of Atlantic Cod in
southern New England is needed.

To fill the knowledge gap regarding potential interac-
tions between Atlantic Cod and OWE development in
southern New England, we employed multiple passive
acoustic monitoring technologies to infer the spatiotem-
poral spawning dynamics of Atlantic Cod in and around
planned OWE lease areas. Due to the role of sound pro-
duction in cod spawning, passive acoustic monitoring
offers multiple advantages, including access to long-term
data from a noninvasive approach. The temporal
dynamics of spawning-associated grunt activity identified
near Cox Ledge in southern New England waters were
also compared to those identified in an analogous study of
the geographically separated winter-spawning subpopula-
tion in Massachusetts Bay within the western Gulf of
Maine. Given the lack of data on Atlantic Cod in south-
ern New England, the goal of this comparison was to
assess whether the observed dynamics were similar to
those of other spawning groups. Our comparison may
strengthen managers' ability to draw inferences about
potential interactions between Atlantic Cod spawning and
OWE from sparse data and may facilitate interpretation
of our results in the context of the broader stock complex.

STUDY AREA
Passive acoustic monitoring of Atlantic Cod spawning-

associated grunts was conducted in southern New England
waters, with survey effort concentrated between Block
Island and Martha's Vineyard and at depths between 30
and 50 m (Figure 1). The main bathymetric feature in the
study area is Cox Ledge, an area of complex rocky sub-
strate located southeast of Block Island. Cox Ledge is
used by commercial and recreational fishing fleets and is
included as essential fish habitat for all life stages of
Atlantic Cod (Lough 2004; DeCelles et al. 2017).

To assess potential interactions between Atlantic Cod
spawning and OWE, the study intentionally sampled mul-
tiple lease areas planned for development within the
Rhode Island–Massachusetts Wind Energy Area, includ-
ing the South Fork Wind Farm and portions of the Revo-
lution Wind Farm and Sunrise Wind Farm (Figure 2).
The South Fork Wind Farm spans 55.4 km2 on Cox
Ledge, with cable connections extending along the seafloor
to New York. To date, the South Fork Wind Farm is the
only project in the sampling area that has received full
approval to begin construction, planned for late 2022, and
will consist of up to 12 turbines and one substation
(BOEM and NMFS 2021). The Revolution Wind Farm
spans 334.8 km2 on Cox Ledge and the surrounding
region, with cables extending to Rhode Island. Construc-
tion of less than 100 turbines is anticipated to begin in
2023 (Revolution Wind 2021). The Sunrise Wind Farm
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spans 351.4 km2 south of Cox Ledge, with cables extend-
ing to New York. Construction of 59–122 turbines is pro-
posed to begin in 2024 (Sunrise Wind 2021).

METHODS
Data collection.— Passive acoustic monitoring data

were collected from fixed-station recording instruments
(2013–2015 and 2020–2022) and mobile autonomous
underwater gliders (2019–2022; Table 1; Figure 2). Fixed-
station data facilitated the interpretation of temporal pat-
terns, while glider-based surveys offered broad spatial cov-
erage. The sampling locations were selected to ensure
sampling within and around the wind lease areas as well
as at putative spawning sites that were identified from his-
torical data in the region and fishery-dependent data.

From 2013 to 2015, fixed-station data in southern New
England were collected by the Northeast Large Pelagic
Survey Collaborative (consisting of the New England
Aquarium, the Cornell University Bioacoustics Research
Program, the University of Rhode Island, and the Center
for Coastal Studies) to document ambient noise conditions
and the occurrence of marine mammals in the context of
eventual OWE development (Kraus et al. 2016). However,
the recording equipment used was also capable of record-
ing the presence of cod grunts. During the sampling per-
iod, five marine autonomous recording units (MARUs)
were successfully deployed throughout the Rhode Island–
Massachusetts Wind Energy Area (Figure 1B). The
MARUs recorded continuously at a 2-kHz sampling rate
with a 10–800-Hz band-pass filter to reduce electrical
interference and prevent aliasing. The gain and sensitivity,

FIGURE 1. Maps of the study area and sampling effort: (A) regional context for comparison between Massachusetts Bay (black box) and southern
New England (SNE; blue box) waters of the western North Atlantic Ocean, with text labels indicating the locations of general Atlantic Cod spawning
regions in the Gulf of Maine (GoM), Georges Bank (GB), and SNE; (B) the SNE study area, including the full Rhode Island–Massachusetts Wind
Energy Area and the locations of fixed-station receivers A–F (MV = Martha's Vineyard; BI = Block Island); (C) programmed glider track used during
the 2019–2020 sampling effort; and (D) programmed glider tracks used during the 2020–2021 sampling effort. To improve spatiotemporal coverage,
the glider alternated between the blue and purple tracks throughout the 2020–2021 deployment.
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respectively, were 23.5 dB referenced to (re) 1 μPa and−
168 dB re 1 V/μPa (±3 dB between 10 and 1,000 Hz). Iden-
tical MARUs have been used previously in other regions
to characterize the spawning-associated grunt activity of
cod (Hernandez et al. 2013; Zemeckis et al. 2019; Caiger
et al. 2020).

From 2020 to 2022, fixed-station sound data were
recorded continuously during the presumed spawning sea-
son at two sites using SoundTrap ST500 recorders (Ocean
Instruments, Warkworth, New Zealand) at a sampling
rate of 48 kHz. These sites were selected as putative cod
spawning sites based on analysis of the 2013–2015 fixed-
station data as well as the telemetry and glider data

recorded during 2019–2020. Specifically, telemetry data
from the 2019–2020 glider deployment identified the pre-
sence of multiple tagged cod at both sites, and analysis of
the 2013–2015 data provided evidence of a local spawning
aggregation at site A (Figure 1B). The hydrophone at site
A had a gain of 1.8 dB and a sensitivity of −177 dB re 1
μPa/V. The hydrophone at site B had a gain of 1.9 dB and
a sensitivity of −177.4 dB re 1 μPa/V.

The glider-based recorder was a digital acoustic moni-
toring instrument (Baumgartner et al. 2013) mounted to a
Slocum mobile autonomous glider (Teledyne Webb
Research, North Falmouth, Massachusetts; Rudnick et al.
2004). The digital acoustic monitoring instrument
recorded at a 2-kHz sampling rate. The glider was pro-
grammed to follow a grid consisting of 12 north–south
transects that were separated by 5 km. However, due to
currents and oceanographic conditions, the glider deviated
somewhat from this path. The programmed glider track
was updated between deployments to improve spatial–
temporal replication of the survey area. In 2019, the glider
swam the grid from east to west and then reversed and
traveled from west to east, covering a 2,400-km2 area
from December 21, 2019, to March 22, 2020 (Figure 1C).
In 2020 and 2021, the glider swam the same 12 transects
except that the southern extent was limited to the 50-m
isobath (Figure 1D). Additionally, the glider swam from
east to west and then flew back to start, passing directly
over fixed-station sites A and B on the way, and repeated

FIGURE 2. Locations of observed Atlantic Cod grunts during the glider survey in southern New England waters in all years. The realized glider
track during the 2020–2021 deployment, the locations of fixed-station recorders, and relevant lease areas within the Rhode Island–Massachusetts Wind
Energy Area are also plotted for spatial reference.

TABLE 1. Passive acoustic monitoring sites (see Figure 1) and deploy-
ment details for fixed-station receivers in southern New England waters
of the western North Atlantic Ocean.

Site
Latitude
(°N)

Longitude
(°W)

Effort
(d)

Years
sampled

Depth
(m)

A 41.1421 71.1038 156 2013–2015 33
A 41.1413 71.1013 202 2020–2022 32
B 41.0406 71.2195 202 2020–2022 41
C 40.9978 71.1683 73 2013–2014 51
D 40.9955 70.8642 73 2013–2014 50
E 40.7436 70.4607 26 2013 52
F 40.5993 70.5617 26 2013 59

SPAWNING DYNAMICS OF ATLANTIC COD 5 of 15

 19425120, 2023, 2, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/m

cf2.10226 by B
attelle M

em
orial Institute, W

iley O
nline L

ibrary on [05/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the east-to-west circuit shifted 3 min east, covering an
1,800-km2 area in total. The glider surveyed from Novem-
ber 11, 2020, to February 25, 2021, and from November
5, 2021, to February 7, 2022.

Atlantic Cod grunt detection.—All passive acoustic data
were analyzed with a cod grunt detector (Urazghildiiev
and Van Parijs 2016) that was executed in MATLAB and
then manually validated in Raven version 1.5 (KLY-CCB
2014). The detector's performance was evaluated during
development using data from a 24-h period at 19
MARUs. The probability of cod grunt detection ranged
from 0.42 to 1.00, and the probability of false detection
ranged from 0.0083 to 0.16 (Urazghildiiev and Van Parijs
2016). For the 2013–2015 data, sites A, C, and D were
analyzed from October 1, 2013, to January 31, 2014, dur-
ing the presumed spawning season based on fishery-
dependent observations and maturity data from previous
field studies (McBride et al. 2021). Because sites E and F
were outside the focal region of the current study, they
were analyzed during a shorter period of the presumed
spawning season: from November 15 to December 10,
2013. During the 2013–2014 season, multiple cod grunts
on consecutive days were only observed at site A; there-
fore, only site A was analyzed the following year from
October 1, 2014, to January 1, 2015. Site A was also ana-
lyzed every Monday from February 18, 2013, to February
12, 2014, to confirm the bounds of the spawning season.
All 2019–2022 fixed-station and glider data were analyzed
for the full deployment.

After evaluation by the cod detector, all possible grunt
detections were validated in Raven. For thorough review,
all detections were visualized from 10 to 400 Hz in a 5 ×
5 grid spectrogram and context spectrogram. The grid
spectrogram was generated with a 256-point fast Fourier
transform, 75% overlap, and a 1-s time-pad. The context
spectrogram was generated with a 1,024-point fast Four-
ier transform, 75% overlap, and a 10-s time-pad. Positive
cod detections were identified through auditory and
visual confirmation only when (1) at least two harmonics
were visible with the characteristic frequency down-sweep
and (2) the fundamental frequency was between 40 and
80Hz. The presence of grunts and the total number of
grunts detected (i.e., grunt rate) were summarized by
hour.

Statistical analysis.—Generalized linear mixed model-
ing was used to evaluate the temporal correlations
between spawning-associated grunt activity of Atlantic
Cod and multiple natural environmental cycles. Grunt
activity was summarized as the presence of cod grunts
each hour (hereafter, “grunt presence”) and the number of
grunts per hour (hereafter, “grunt rate”). Grunt rate is
inferred to indicate increased spawning activity, as experi-
mental results indicated that higher grunt rates occur dur-
ing the peak spawning period and are associated with

increased egg production (Rowe and Hutchings 2006).
Statistical methods were analogous to those used by Cai-
ger et al. (2020) to characterize spawning activity of
winter-spawning cod in Massachusetts Bay, thus facilitat-
ing a comparison between the two regions. To prevent
spurious correlations and facilitate comparisons, the cri-
teria for data inclusion were grunt observations (1) on at
least 10 d and (2) during at least 2% of hours in the
spawning season, as used in previous passive acoustic
monitoring of Atlantic Cod grunt activity (Zemeckis et al.
2019; Caiger et al. 2020). Grunt presence and grunt rate
were summarized by hour, and their temporal correlations
were evaluated separately. Grunt presence was modeled
with a binomial distribution, while grunt rate was modeled
with a zero-inflated negative binomial distribution.

The global models for grunt presence and grunt rate
included the effect of multiple natural cycles (annual, sea-
sonal, diel, and lunar) that have been identified as asso-
ciated with the timing of cod grunt activity in other
spawning stock components (Zemeckis et al. 2019). The
spawning season year spanned October–January and was
treated as a factor variable. Day of year and the diel,
lunar, and semi-lunar cycles were treated as circular vari-
ables to facilitate the modeling of both the timing and
magnitude of their effects (Zar 1999; Caiger et al. 2020).
As such, each variable was converted to radians and its
effect consisted of a sine and cosine term in the model. To
reduce the effect of serial autocorrelation among the resi-
duals, the effect of week was included as a random effect
in the model.

The remaining candidate models for grunt presence
and grunt rate consisted of the top models (difference in
Akaike's information criterion corrected for small sample
size [ΔAICc]≤ 5) identified for each process in the Mas-
sachusetts Bay study (Caiger et al. 2020). Because the
southern New England data set consisted of only one
site, the candidate models for southern New England
could not include the effects of site, depth, or the inter-
action between site and day of year. In addition, the
random effect of week was dropped from the zero-
inflated component of the grunt rate model but was
retained in the conditional component. All models were
evaluated using an information criterion-based model
selection procedure with AICc. The effect of each nat-
ural cycle was calculated using estimated marginal
means. To facilitate comparison of the temporal correla-
tions between regions, the confidence interval (α = 0.05)
was estimated for the marginal mean of each variable
for both Massachusetts Bay and southern New England.
All statistical analyses were conducted in R version
4.0.3 (R Core Team 2020), the models were built using
the glmmTMB package (Brooks et al. 2017), and esti-
mated marginal means were calculated using the
emmeans package (Lenth 2021).
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RESULTS
For the 2013–2015 fixed-station data, three out of five

sites had at least one cod grunt detection. Only site A had
repetitive detections, inferred as an active spawning aggre-
gation (Figure 1). In total, 1,035 grunts were observed at
site A across the 2013–2014 and 2014–2015 spawning sea-
sons; one grunt was observed at site C on December 13,
2013; and one grunt was observed at site D on December
25, 2013. No grunts were observed at site E or site F.
Sites C–F were not evaluated during the 2014–2015
spawning season due to the lack of repetitive grunts dur-
ing the 2013–2014 spawning season.

For the 2020–2022 data, six grunts were observed at
the two fixed-station sites sampled. At site A, one grunt
was observed on November 19, 2020, and one grunt was
observed on December 22, 2021. At site B, one grunt was
observed each day on November 29, December 1, and
December 15, 2020, as well as on January 4, 2021. The
2020–2022 deployments at site A were intended to resam-
ple the aggregation that was observed in the 2013–2015
data; however, due to oceanographic conditions at the
time of deployment, the recorder locations at site A unin-
tentionally differed by approximately 228 m, with the
2020–2022 site located 113° to the southeast. The low
number of grunts observed from 2020 to 2022 did not
meet the threshold for data inclusion, so all further tem-
poral analysis only includes the 2013–2015 data.

The glider-based survey observed a total of 31 cod
grunts across three deployments, with one grunt observed
on January 19, 2020 (2019–2020 deployment); 12 grunts
observed between November 15, 2020, and January 8,
2021 (2020–2021 deployment); and 18 grunts observed
between November 6, 2021, and January 4, 2022 (2021–
2022 deployment). Grunts were observed at all times of
day, but 9 of the 12 grunts during the 2020–2021 spawn-
ing season were observed at night. During the 2021–2022
spawning season, 16 grunts were observed within a 45-min
period on December 9. Across all deployments, three
grunts were observed within or adjacent to the wind lease
areas, while the remaining grunts were concentrated in the
western half of the study area in water between 25 and 50
m deep (Figure 2).

The analysis of 1 d/week at site A from February 2013
to February 2014 did not identify any cod grunts outside
of the October–January period, suggesting that analysis
during this period was sufficient to capture spawning-
associated grunt activity. For the 2013–2015 spawning
season data at site A, grunt activity was concentrated in
November and December, with only 36 grunts (3.5% of
the total observed) detected in October and January. More
grunts were observed during 2013–2014 compared to
2014–2015. In 2013–2014, the maximum number of grunts
per day was 125 on November 26, 2013, while in 2014–
2015, the maximum was 60 grunts on December 24, 2014

(Figure 3). During months when the maximum grunt
activity was observed, grunts were detected at all times of
day; otherwise, the observed grunt rate per hour was high-
est during the day (Figure 4A,B). During 2013–2014,
observed grunt activity appeared to be associated with the
lunar cycle, with most grunts occurring between the full
moon and waning moon (Figure 4C). In 2014–2015, grunt
activity was more variable, with the greatest number of
grunts observed between the new moon and full moon
(Figure 4D).

Generalized linear mixed modeling of the 2013–2015
data when an inferred spawning aggregation was observed
elucidated clear temporal patterns in grunt activity. Mod-
eling of grunt presence identified the global model as pro-
viding the best fit for the southern New England data
(Table 2). The candidate model without the semi-lunar
cycle as a predictor yielded the second-best fit and was
nearly indistinguishable from the global model. Grunt pre-
sence was estimated to be most likely during mid-day
between the full moon and waning moon (Figure 5). The
asymmetrical lunar pattern suggests an effect of the semi-
lunar cycle, with a second, smaller increase in grunt prob-
ability between the new moon and waxing moon. Season-
ally, the highest probability of grunt occurrence was on
December 5 (Figure 6A).

Overall, the temporal correlations of grunt presence
with multiple natural cycles were similar to those in Mas-
sachusetts Bay, although the magnitude of the correlations
tended to be stronger at the southern New England site.
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FIGURE 3. Seasonal and interannual variability in the total number of
observed Atlantic Cod grunts per day at site A in southern New England
waters during the 2013–2015 sampling periods (bars) and the predicted
number of grunts per day (blue line) under the global model for grunt
rate.
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Specifically, data from both regions identified similar sup-
port for multiple models with varying lunar terms
included, but the Massachusetts Bay data suggested a
much weaker effect of the diel and lunar cycles on grunt
presence (Figure 5). Both regions followed a similar seaso-
nal pattern, with grunt activity concentrated in November
and December, though the peak in grunt presence in Mas-
sachusetts Bay had a significant interaction with site and
was estimated to occur on November 20 overall—approxi-
mately 2 weeks earlier than the peak at the southern New
England site (Figure 6A).

The temporal correlations with grunt rate in southern
New England were also best explained by the global
model, where both the grunt rate terms and the zero-
inflated terms included all candidate predictor variables
(Table 2; Figure 3). Due to the high proportion of zeroes
in the grunt rate data set, inclusion of the zero-inflated
negative binomial substantially improved model fit over a
negative binomial distribution alone. The highest grunt
rate was estimated to occur at noon near the full moon

(Figure 7B,D). Similar to grunt presence, the asymmetrical
lunar pattern indicated an effect of both the lunar and
semi-lunar cycles, with the highest grunt rates estimated to
occur just after the full and new moons and lower grunt
rates estimated to occur near the waxing and waning
moons. Seasonally, the maximum grunt rate was estimated
to occur on November 26, about 1 week before the peak
in grunt presence (Figure 6B).

The grunt rate model that was best supported by the
Massachusetts Bay data included the same temporal corre-
lations as the grunt rate model for southern New England
but did not include the semi-lunar cycle as a zero-inflated
term. Although the overall grunt rate was higher in Mas-
sachusetts Bay and the two regions exhibited different diel
correlations (Figure 7A,B), the correlations with lunar
cycle were very similar between the two regions (Figure
7C,D). Similarly, the seasonal trend followed the same
pattern, but the peak grunt rate in Massachusetts Bay was
estimated to occur on December 5, approximately 2 weeks
later than that in southern New England waters (Figure
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6B). However, there was significant spatial heterogeneity
in the seasonal profile of cod spawning activity in Massa-
chusetts Bay, and the present results for Atlantic Cod in
southern New England are well within this range.

DISCUSSION
The use of multiple passive acoustic monitoring strate-

gies to assess the spatiotemporal spawning dynamics of
Atlantic Cod in southern New England recorded the pre-
sence of occasional cod grunts throughout the study area
and successfully captured the dynamics of a spawning
aggregation during two consecutive years. Analysis of
spawning-associated grunt dynamics identified that peak
grunt activity occurred during the day and near the full
moon in late November to early December. While there
were fine-scale differences between the temporal patterns
of grunt activity observed in southern New England versus
Massachusetts Bay, the broadscale seasonality was very
similar. Over the sampling period, the number of grunts
detected at the inferred spawning aggregation at site A

decreased and the aggregation was not detected during the
2020 or 2021 sampling period; however, the glider results
suggested that spawning Atlantic Cod were still present
throughout the region. Overall, evidence from the fixed-
station and glider data in southern New England suggests
that Atlantic Cod spawning overlaps with wind lease areas
in the region.

Some temporal dynamics of inferred spawning identi-
fied in the southern New England study area aligned with
those in Massachusetts Bay. For example, the peak
spawning season for winter Atlantic Cod in Massachusetts
Bay consistently occurred between November and Decem-
ber, with intermittent grunts extending into October and
January at certain sites. Studies have reported correlations
between grunt activity and lunar cycles, with grunt pre-
sence associated with the lunar cycle and grunt rate asso-
ciated with both the lunar and semi-lunar cycles
(Zemeckis et al. 2014a; Grabowski et al. 2015). Although
the southern New England data revealed an association
between grunt presence and both the lunar and semi-lunar
cycles, the probability of grunt presence was much higher

TABLE 2. Candidate models for temporal correlations of Atlantic Cod grunt activity in southern New England waters of the western North Atlantic
Ocean. The model with the best fit (in bold) for grunt presence or grunt rate was used for all comparisons with Massachusetts Bay (AICc = Akaike's
information criterion corrected for small sample size; ΔAICc = difference in AICc between the given model and the best-performing model). Included
predictor variables are year (Y), hour of the day (H), lunar cycle (L1), semi-lunar cycle (L2), day of the year (J), and week of the year (rW).

Model terms Zero-inflated terms df AICc ΔAICc

Grunt presence
Y+H+ L1+ L2+ J+ rW 11 1,398.8 0.00
Y+H+L1+ J+ rW 9 1,402.8 4.00
Y+H+L2+ J+ rW 9 1,445.6 46.75
Y+H+ J+ rW 7 1,452.3 53.51

Grunt rate
Y+H+ L1+ L2+ J+ rW Y+H+ L1+ L2+ J 22 2,271.9 0.00
Y+H+L1+L2+ J+ rW Y +H+L1+ J 20 2,351.8 79.92
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FIGURE 5. Estimated marginal mean effect of (A) diel and (B) lunar cycles on Atlantic Cod grunt presence at fixed stations, compared between
Massachusetts Bay (Mass Bay) and southern New England (SNE) waters. The shaded regions represent the 95% confidence interval of the estimates.
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between the full moon and waning moon than between
the new moon and waxing moon, suggesting that the
semi-lunar cycle has a smaller effect on grunt presence
relative to the lunar cycle. Conversely, the grunt rate in
the Massachusetts Bay and southern New England data
revealed a stronger effect of the semi-lunar cycle, with
peaks near the full and new moons. The timing of spawn-
ing is thought to occur when oceanographic and ecologi-
cal conditions are best suited to the success of the released
eggs and subsequent larvae (Cushing 1990). These consis-
tent correlations with the semi-lunar cycle may be indica-
tive of larval transport to favorable habitats or retention
and settlement of larvae during times of unique oceano-
graphic conditions (Lough et al. 2006).

In the scope of identifying the peak spawning period,
both regions were consistent, with peaks in grunt presence
and grunt rate estimated to occur within a 3-week period
from late November to early December. Within the spawn-
ing season, however, the peak grunt rate occurred before
peak grunt presence in southern New England, while the
opposite was true in Massachusetts Bay. This slight differ-
ence in grunt trend throughout the spawning season may
indicate aggregation-level differences between spawning
components or interannual variation in lunar cycle timing
within the month rather than reflecting a regional differ-
ence. For example, the magnitude of grunt activity at the
southern New England aggregation in 2013 was much
higher than the magnitude of activity in the subsequent
spawning season. Additionally, the peak in grunt activity
was observed in November during 2013 and in December
during 2014. This variation between the 2 years sampled
likely explains the different relationship between maximum
predicted grunt presence and grunt rate. In contrast to the
single aggregation sampled in southern New England, the
Massachusetts Bay data set captured spawning dynamics
over a much broader area and period by sampling 16 sites
across 10 years. Both the comparison study and additional
studies of Atlantic Cod temporal grunt dynamics in Massa-
chusetts Bay have identified a significant interaction
between site and seasonal peak grunt rate, with the peak in
grunt activity occurring later at deeper sites (Zemeckis et al.
2019; Caiger et al. 2020). This significant interaction sug-
gests that individual spawning aggregations within a subpo-
pulation may exhibit their own unique temporal
correlations that maximize the success of spawning in their
specific oceanographic conditions. Lastly, grunt activity in
Massachusetts Bay was not summarized in January and a
few sites had increasing observed grunts throughout the
month of December, suggesting that there may have been
grunts missed during January. This difference in sampling
period may also contribute to the difference in grunt pat-
terns within the spawning season.

One difference between the two regions was that grunt
presence had a stronger association with the diel and lunar

cycles in southern New England than in Massachusetts
Bay. Due to the large difference in the number of aggrega-
tions sampled between the two studies, it is difficult to dis-
cern whether this pattern is a regional difference or
indicative of aggregation-level differences. Because the
Massachusetts Bay results summarize the average tem-
poral dynamics across all sites, it could be expected that
the estimated marginal means for Massachusetts Bay
would report a weaker association with a specific natural
cycle. As previously mentioned, the timing of peak grunt
activity is known to vary among aggregations within a
subpopulation, so it is plausible that discrete aggregations
have unique correlations with other natural cycles as well.
It is also useful to note that while the strength of temporal
associations with grunt rate was similar between the
regions, the magnitude of grunt rate was higher for Mas-
sachusetts Bay, likely due to greater abundances.

Of the natural cycles explored, the diel cycle was the
most inconsistent between the two regions, as peak grunt
activity occurred at night in Massachusetts Bay and during
the day in southern New England. Many field (Zemeckis
et al. 2019; Caiger et al. 2020) and laboratory (Brawn
1961b; Kjesbu 1989; Hutchings et al. 1999) studies have
reported cod spawning and grunt activity increasing at
night, especially for winter-spawning cod stocks. Despite
this, passive acoustic monitoring of the spring-spawning
subpopulation in Massachusetts Bay also identified an
increase in grunt activity during the day (Hernandez et al.
2013). Similar to the present study in southern New Eng-
land, that study consisted of a single MARU. Because cod
grunts are relatively quiet compared to other marine sound
sources, successful detection of a cod grunt requires the fish
to be very close to the receiver. The only documented source
level for Atlantic Cod grunts is 127 dB re 1 μPa at 1 m, and
estimates of their communication radii under a variety of
background and anthropogenic noise conditions ranged
from 1.3 to 21.6 m (Nordeide and Kjellsby 1999; Stanley
et al. 2017). Moreover, Atlantic Cod are known to exhibit
diel movements whereby individuals aggregate in one loca-
tion during the day and travel to surrounding areas or shift
their position within the aggregation to defend a territory at
night (Dean et al. 2014). Hernandez et al. (2013) suggested
that one explanation for the discrepancy in grunt activity
was that the receiver could have been located near the day-
time aggregation site and diel movements caused individual
cod to move outside of the detection radius of the receiver
at night, leading to an apparent lack of grunt activity. Simi-
lar behavioral migrations and receiver locations could
explain the uncommon diel association observed in south-
ern New England.

Following identification of a spawning aggregation at site
A in 2013–2015, the goal of resampling that site in 2020 and
2021 was to evaluate whether temporal grunt dynamics were
stable over time. However, only one grunt was detected at
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site A in 2020 and 2021. Given the 5-year gap in sampling, it
is possible that the populations declined below detectable
levels of abundance or were no longer detectable by passive
acoustic monitoring due to a shift in aggregation location,
accidental changes in sampling location, or the use of differ-
ent recorder types. The U.S. Atlantic Cod stocks have been
classified as overfished since 2010 (Zemeckis et al. 2014c).
Additionally, because the southern New England spawning
components are situated at the southern extreme of the spe-
cies' range, they are the most vulnerable to climate impacts,
including thermal habitat loss, loss of prey biomass, and
increased species interactions (Fogarty et al. 2008; Nye et al.
2009; Friedland et al. 2013). As such, the spawning aggrega-
tion observed in 2013–2015 reflects the dynamics of a smaller
baseline population. Successful formation of a spawning
aggregation in some species is density dependent, such that
the aggregation does not form at low abundances (Domeier
2012). The small number of observed grunts in 2019–2022
may be indicative of a highly disorganized spawning popula-
tion in which the aggregation behavior has been further dis-
rupted. The high site fidelity of Atlantic Cod poses challenges
for aggregation recovery following disruption. For example,
the onset of a gill-net fishery in Massachusetts Bay fully dis-
rupted an aggregation of spawning cod, causing most indivi-
duals to leave the aggregation site and not return (Dean et al.
2012). Despite this, results from a recent review of extirpated
fish spawning aggregations suggest that recovery of the
aggregation is possible if given enough time following strict
enforcement of spatial protection or temporal moratoria on
fishing (Chollett et al. 2020). In the absence of management
protections for spawning cod, the combination of historically
low population sizes, high spawning site fidelity, and increas-
ing climate impacts makes the recolonization of an extirpated
spawning aggregation unlikely for Atlantic Cod in the
region.

Beyond the possibility that the aggregation was no
longer present, the lack of observed grunts may be due to
limitations of passive acoustic monitoring for Atlantic
Cod. Spawning aggregations of Atlantic Cod are typically
spatially consistent between years, with variation generally
less than 1 km. Despite this, because cod grunts are rela-
tively quiet, even shifts on the order of 100 m could cause
grunts to occur outside the detection radius of the hydro-
phone. Similarly, due to the gap in sampling from 2015 to
2020, the aggregation was monitored with two different
recorder types for which the geographic position varied by
228m. The realized recording radius of passive acoustic
monitoring can be difficult to assess, and whether an
acoustic signal is detected depends on multiple factors,
including the source level of the signal, the distance from
the receiver, and the ambient background noise. As such,
it is quite possible that the shift in sampling location or a
change in cod detector performance on different acoustic
data sources was responsible for the lack of detections in

2020–2022. To that end, the lack of detections is not
necessarily indicative of a true absence of spawning cod in
the vicinity of the historical spawning site.

This study intentionally leveraged multiple passive
monitoring technologies to provide a broad spatiotem-
poral sample of Atlantic Cod grunt activity in southern
New England. Each methodology used includes a trade-
off between spatial and temporal coverage, and the multi-
method approach and adaptive sampling between years
were intended to balance these trade-offs and improve
sampling coverage. For example, during the 2020–2022
glider deployments, the glider was programmed to travel
directly over the two fixed-station sites. During these
deployments, a grunt was observed on November 16,
2020, and another was observed on November 6, 2021, in
the vicinity of the historical aggregation at site A. Given
that the detection date was near the onset of increased
grunt activity in 2013, if the aggregation was still present
in large numbers and actively spawning, we would expect
to have observed more grunts in this area. Overall, the
sparse data observed by the glider and fixed-station sites
in 2019–2021 as well as deviations of the glider from the
planned path make it difficult to conclude whether the
lack of grunts is a result of insufficient sampling locations
and timing or reflects true absences. Future research with
a denser array of fixed-station receivers or a finer-scale gli-
der survey could reduce uncertainty regarding whether the
patterns observed in the present study (i.e., diminished
activity at historical spawning sites in 2020, the lack of
grunts in the eastern portion of the study area, and the
unique diel trend) are a result of gaps in the sampling cov-
erage or true ecological patterns.

Between previous studies of Atlantic Cod spawning
dynamics and population structure in the western North
Atlantic Ocean (Zemeckis et al. 2014a; McBride et al.
2021), annual trawl surveys for groundfish by the North-
east Fisheries Science Center (Lough 2004), and local eco-
logical knowledge of fishers (DeCelles et al. 2017), it is
known that southern New England waters—specifically
Cox Ledge—host critical habitats for Atlantic Cod eggs,
larvae, and spawning adults. However, little was known
of the specific location and timing of spawning in the
region. During the present study, passive acoustic moni-
toring in 2013–2015 revealed the dynamics of a spawning
aggregation near Cox Ledge and within wind lease areas.
Moreover, comparison with Massachusetts Bay winter-
spawning Atlantic Cod confirmed that the dynamics
observed in southern New England are largely the same
as those in other regions, with the peak spawning period
in November and December. As a result, spatial and tem-
poral interactions between OWE construction and Atlantic
Cod in southern New England are likely. Despite the lim-
ited number of cod grunts observed during the 2019–2022
sampling periods, the results of the regional comparison
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reduce uncertainty regarding the likelihood of temporal
overlap between current construction timelines and cod
spawning.

Among the many possible interactions between OWE
development and fisheries, fine-scale habitat effects and
broadscale acoustic effects are the greatest concerns for
Atlantic Cod spawning aggregations. Due to the high site
fidelity of Atlantic Cod spawning aggregations, the status of
the stock as overfished, and the southern range contraction
due to climate change, if a turbine foundation or under-
ground cable is located at the aggregation site, the spawning
aggregation would be disrupted and may fail to relocate to
an undisturbed area (de Jong et al. 2020). On a broader scale,
the acoustic disturbance from pile driving overlaps in fre-
quency with cod grunt activity (Popper and Hawkins 2019),
increasing the risk of auditory masking and the disruption of
cod behavior over a scale of tens of kilometers (Hammar
et al. 2014; Mooney et al. 2020). There have been recent
advances in technologies to minimize the acoustic impacts
from pile driving (i.e., bubble curtains); however, temporal
restrictions on disruptive activities are among the most suc-
cessful measures for mitigating disturbance to and facilitating
recovery of aggregation-spawning fishes during vulnerable
periods (Erisman et al. 2017; Chollett et al. 2020; Mooney
et al. 2020). Although these measures have had limited suc-
cess for rebuilding Atlantic Cod stocks after overfishing has
occurred (Clarke et al. 2015), temporal restrictions on fishing
have had numerous successes for other fish populations (Bur-
ton et al. 2005; Nemeth 2005; Hamilton et al. 2011). Under
the Marine Mammal Protection Act, current construction
plans for OWE in the region only restrict pile driving from
January to April to mitigate disturbance for North Atlantic
right whales Eubalaena glacialis (BOEM and NMFS 2021).
Although some Atlantic Cod spawning does occur in Janu-
ary, the results presented here show that the vast majority of
inferred spawning activity occurs in November and Decem-
ber, leaving cod vulnerable to disturbance from pile driving
and other construction activity.

At large population sizes, Atlantic Cod spawning
aggregations have been recorded producing a loud, persis-
tent rumbling that is frequently referred to as a “fish
chorus” (Brawn 1961b; Nordeide and Kjellsby 1999). The
lack of persistent cod grunts throughout the region and
the relatively small number of grunts at an inferred aggre-
gation are likely a result of low abundances in the region
and limitations of passive acoustic monitoring for Atlantic
Cod. The quiet nature of a cod grunt requires a recorder
to be in very close proximity to the individual, while the
aggregating behavior among small populations makes it
challenging to sample in the right place at the right time.
Despite these limitations, the use of multiple passive
acoustic monitoring technologies offers spatial and tem-
poral data from a noninvasive method that is specific to
spawning individuals and does not require physical

capture and dissection (Van Parijs et al. 2009; Rowell
et al. 2015; Zemeckis et al. 2019). Moreover, while many
vessel-based surveys are not able to operate during the
construction and operation of a wind farm, passive acous-
tic monitoring remains a viable survey option. This advan-
tage results in baseline data that can be compared to data
collected both during and after construction, thus facilitat-
ing long-term assessment of interactions between OWE
and fishery resources.
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