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Executive summary 
The demand for predictive distribution models for marine species has grown dramatically 
in recent years for the purposes of conservation and marine spatial planning. The aim of 
this report is to summarise the environmental predictor variables regularly used in 
distribution models for marine megafauna species around the UK. It also identifies the 
variables that are most frequently retained in the final models, and which ones are 
removed during model selection. This report summarises the results for different marine 
taxa (seabirds, cetaceans, seals, basking sharks, and turtles). 

In addition to providing a breakdown of the environmental variables used in species 
distribution models, this report outlines the modelling techniques typically used.  

Some degree of caution should be taken when interpreting the analysis in this report as 
the ability to detect the effects of environmental variables is likely influenced by the 
modelling approaches taken and by the amount of species occurrence data available. 
Nevertheless, this report highlights a wide range of variables that can be targeted in future 
modelling studies of marine megafauna species with some degree of confidence based on 
the extent of their successful use to date.  
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1. Introduction 
Understanding the distribution of species is crucial for the effective planning and 
implementation of conservation protocols. There is a growing demand for predictive 
distribution models for marine species due to the continuing threats faced by marine 
biodiversity such as pollution (Thushari & Senevirathna, 2020), invasive species (Dias et 
al., 2019), fisheries bycatch (Žydelis et al., 2009), climate change (Hoegh-Guldberg & 
Bruno, 2010), and others. Where extensive distribution data is lacking for a species, 
distribution models can provide important insight into the species’ habitat preferences and 
potential conflict with anthropogenic threats. Species distribution models (SDMs) are 
empirical models that aim to predict the distribution of a species by combining data on its 
presence or abundance with environmental variables (Elith & Leathwick, 2009). The use of 
SDMs for marine species was relatively rare until the early 2000s (Elith & Leathwick, 
2009), largely due to the difficulties posed with studying marine ecosystems.  

One major challenge is the three-dimensional nature of the marine environment (Bentlage 
et al., 2013), which adds complexity to the modelling process. Typically, a combination of 
static (e.g. depth, seabed slope) and dynamic (e.g. sea surface temperature, chlorophyll a 
concentration) environmental variables are used in SDMs. These dynamic variables are 
usually derived from remote-sensing processes (e.g. Breen et al., 2017; McClellan et al., 
2014; Rogan et al., 2017), although most only represent the upper layers of the water 
column (Melo-Merino et al., 2020). Therefore, SDM accuracy is impeded for pelagic 
species that are found in mid-water habitats (Bentlage et al., 2013). In addition, the 
dynamism of the marine ecosystem presents a challenge as it can result in spatial or 
temporal lags between the environmental state and the species’ response (Redfern et al., 
2006). Consequently, the environmental predictors used in SDMs must be carefully 
selected to ensure they reflect the spatio-temporal scales in which animal-environment 
interactions take place (Scales et al., 2017). Also, in order to construct SDMs, data on the 
presence or abundance of the study species is required but detection of highly mobile 
marine megafauna is often difficult (Elith & Leathwick, 2009). This can be due to factors 
such as the weather conditions during boat or land-based surveys, the fact that some 
species travel vast distances, and that others spend prolonged periods of time below the 
surface of the water (Redfern et al., 2006). Studies using distribution modelling techniques 
in the marine ecosystem have been biased towards coastal and shallow waters where 
surveying is easier to conduct (Robinson et al., 2011).  

Modelling Techniques 
Many different modelling techniques have been developed to examine species 
distributions. The methods vary in terms of how they select environmental variables, 
measure the relative contribution of each variable, and the predictive power of the model 
(Elith et al., 2006). Correlative modelling is one of the common techniques employed. This 
method correlates measures of species occurrence (presence-only, presence-absence, or 
abundance) with environmental variables to predict distribution and habitat suitability (see 
review by Guisan & Zimmermann, 2000). Other modelling techniques used include ‘hybrid’ 
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models, which combine correlative and process-based models (Smolik et al., 2010), and 
mechanistic procedures, which include functional traits of the study species (e.g. 
morphology and physiology) and environmental data (Kearney & Porter, 2009). 
Mechanistic modelling, while providing a mechanistic understanding of underlying 
processes that are not explained through correlative methods (Kearney & Porter, 2009), 
are not frequently used in the marine ecosystem as they require large amounts of data 
(Elith & Leathwick, 2009). Instead, correlative models are most commonly featured in SDM 
studies as they are relatively simple to construct and don’t require much data (Robinson et 
al., 2011), which is a major advantage when researching understudied marine taxa. In a 
review conducted by Melo-Merino et al. (2020) on SDMs in marine environments, it was 
found that correlative techniques were used in 307 of the 328 studies featured. Marine 
species represented in these studies ranged from seagrass and planktonic organisms to 
megafauna species such as cetaceans and seabirds (Melo-Merino et al., 2020).  

While outside the scope of this study, it is important to note that SDMs conducted for 
cetaceans using observation data should include a detectability function to account for 
perception bias of species occurrence. This can arise due to marine mammal behaviour 
and to observer bias caused by factors such as weather conditions. Despite being a 
common feature of cetacean SDM studies, detectability functions are not typically 
performed for distribution modelling of other marine taxa such as seabirds.  

Correlative Approaches 
Regression-based models are one of the most commonly used statistical techniques for 
modelling species distribution. There is an extensive range of regression techniques that 
vary in their assumptions of parameter distribution and the functional form of the 
relationships between variables; however, all methods work by modelling variation in 
measures of species occurrence (presence-only or presence-absence) or abundance 
(count data) with one or more environmental variables. Linear regression is the simplest 
form and the models produced by this method tend to be relatively easy to interpret and 
apply. Generalised Linear Models (GLMs; Nelder & Wedderburn, 1972) have been used 
for a long period of time to examine relationships between species occurrence/abundance 
and habitat variables. This type of model uses a link function to produce a linear 
relationship between the response and predictor variables. GLMs show great flexibility in 
how they handle different types of response variables, for example binary data (e.g. 
presence-absence) can be modelled using logistic regression, while count data can be 
modelled with a Poisson regression. GLMs assume that the relationship between the 
response and predictor variable is parametric, although this may not be the case for all 
relationships between species and their habitat. Generalised Additive Models (GAMs; 
Hastie & Tibshirani, 1986) are non-parametric extensions of GLMs that use a smoothing 
function instead of a linear function. Using GAMs to produce SDMs provides additional 
flexibility for the fitting of non-linear relationships that in many cases are more ecologically 
realistic than linearity; however, overfitting can be an issue with GAMs.  
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The focus of many SDM studies has shifted to predicting species distribution and a 
number of methods have been developed especially for predictions. These include the 
machine-learning methods of maximum entropy (maxent; Phillips et al., 2006), genetic 
algorithms (Stockwell & Peters, 1999), and classification and regression trees.  

Regardless of the technique employed, model selection is a crucial step in the modelling 
process. Early SDMs used statistical tests based on p-values to determine which 
explanatory variables to retain in the model. However, in more recent times, methods such 
as Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) have been 
developed. These model selection criteria evaluate several candidate models to determine 
the combination of variables that provides the best fit. In addition, interpretation of SDMs is 
easier if the variables are not correlated. Multicollinearity occurs when environmental 
variables are correlated and is often managed by removing one of the correlated variables 
from the model and retaining the explanatory variable that is hypothesised or known to be 
more ecologically relevant to the study species.  

This report provides an overview of the environmental predictor variables commonly used 
in SDM studies of marine megafauna species around the United Kingdom (UK) and 
indicates which variables should be considered for future modelling. Caution should be 
taken when interpreting the analysis in this report as the ability to detect effects is likely 
influenced by the modelling approaches taken and by the amount of species occurrence 
data available. 
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2. Methodology 
This report is based on the analysis of published results from research articles. Potential 
studies for inclusion in this analysis were found by searching all databases in Clarivate’s 
Web of Science using the following search criteria: 

Topic = (seabird* OR “marine mammal*” OR cetacean* OR pinniped* OR elasmobranch* 
OR turtle* OR shark* OR whale* OR dolphin* OR porpoise* OR seal*) AND (distribution 
OR abundance OR track* OR at-sea observation) AND (environmental variable* OR 
environmental predictor* OR spatial model*) AND (“Celtic Sea” OR “English Channel” OR 
“Irish Sea” OR “ North Sea” OR “North Atlantic”).  

Timespan = all years. 

Refined by: Subject Areas = (Environmental Sciences Ecology OR Zoology OR Marine 
Freshwater Biology OR Biodiversity Conservation OR Behavioral Sciences OR 
Oceanography OR Fisheries OR Evolutionary Biology).  

The search resulted in 1393 studies being identified for inclusion in the analysis. Despite 
the detailed search criteria, many of the papers found featured species not relevant to this 
report or the sampling occurred in water bodies outside of the area of interest. The 1393 
papers were subsequently manually examined and only studies that modelled the 
distribution of marine megafauna species using at least one environmental variable in 
water bodies surrounding the United Kingdom (Celtic Sea, English Channel, Irish Sea, 
North Sea, and North-East Atlantic Ocean) were retained for analysis. This yielded 44 
papers containing 144 distribution models (Appendix 1). Information on the study species, 
type of modelling technique used, variables included in the initial model, and variables 
retained in the final model following model selection, were extracted. Variables that were 
included in SDMs as offset terms or correction factors (usually a measure of survey effort) 
were not included in the analysis. Variables that were removed due to multicollinearity with 
another variable were considered to be part of the initial model, but not retained in the final 
distribution model. While interaction terms were not common in the studies featured in this 
analysis, where they occurred, the individual variables comprising the interaction were 
considered to have been included in the model.  
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3. Results 
All the models represented in this study were constructed using correlative methods 
(Table 1). Statistical modelling techniques were most common with GAMs (including 
Generalised Additive Mixed Models, GAMMs) accounting for 44% of the models 
represented in this study. GLMs (including Generalised Linear Mixed Models, GLMMs) 
accounted for a further 15%. Maxent was the most frequently used machine-learning 
method, with 37 of the 144 models using this method. 

Table 1. The number of times and the percentage of the total number of models each modelling technique 
was featured in the selected studies. GAM = Generalised Additive Model; GAMM = Generalised Additive 
Mixed Model; Maxent = Maximum Entropy; GLM = Generalised Linear Model; GLMM = Generalised Linear 
Mixed Model; GEE = Generalised Estimating Equations; ENFA = Ecological Niche Factor Analysis; EENM = 
Ensemble Ecological Niche Model (the model indicated below integrated GLM, Multiple Adaptive Regression 
Splines, and Generalised Boosting Model approaches); GARP = Genetic Algorithm for Rule Set Production; 
PCA = Principal Component Analysis 

Model Type No. of models % of Total 

GAM (including GAMM) 63 43.75 

Maxent 37 25.69 

GLM (including GLMM) 22 15.28 

Classification Tree 9 6.25 

GEE 7 4.86 

ENFA 2 1.39 

EENM 1 0.69 

GARP 1 0.69 

PCA 1 0.69 

Spearman’s Rank Correlation 1 0.69 
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In total, 64 different predictor variables were included in the 144 models, and these were 
categorised into 8 groups (Table 2). The static predictor variables of depth (n=129) and 
seabed slope (n=94) were featured most often in the initial models prior to selection (Table 
2). Depth was retained in 89 models (69%) and slope in 56 (60%). Sea surface 
temperature was the most used dynamic variable (Table 2), initially occurring in 90 models 
with a retention rate of 68%. Geographic coordinates, distance to bathymetric contours, 
and salinity, despite featuring in many models (47, 40, and 43 respectively), were retained 
less than 50% of the time (Table 2).  

Table 2. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) SDMs and the retention rate expressed as a percentage. The environmental 
predictor variables have been divided into 8 groups, and within each group the variables are sorted 
according to the number of initial models they featured in.  

Variable No. of initial models No. of final models Retained % 

Atmospheric Variables 

Wind Speed 2 2 100 

Wind Direction 1 0 0 

Sea Level Pressure 1 0 0 

Biochemical/Chemical Variables 

Chlorophyll a Concentration 64 43 67.2 

Salinity 43 21 48.8 

Surface Fluorescence 1 0 0 

Ecological Variables 

Prey Abundance/Distribution 48 28 58.3 

Primary Productivity 4 0 0 

Presence of Other Species 1 1 100 

Geographic Variables 

Distance to Coast 70 50 71.4 

Geographic Coordinates 47 22 46.8 

Distance to Bathymetric Contour 40 18 45 
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Variable No. of initial models No. of final models Retained % 

Distance to Colony/Nest 25 24 96 

Distance to Haul-out Site 7 7 100 

Survey Site 4 4 100 

Distance to Oceanographic Front 4 3 75 

Distance to Intertidal Zone 3 3 100 

Distance to Estuary 1 1 100 

Distance to Prey 1 1 100 

Seabed Topographic Variables 

Depth 129 89 69 

Slope 94 56 59.6 

Seabed Sediment 30 22 73.3 

Rugosity 18 8 44.4 

Aspect 13 7 53.8 

Seabed Hardness 6 6 100 

Hydrodynamic Variables 

Sea Surface Temperature 90 61 67.8 

Current Speed 25 15 60 

Mixed Layer Depth 17 10 58.8 

Spring-Neap Tide Cycle 13 8 61.5 

Sea Surface Height 12 8 66.7 

Tidal State 10 3 30 

Tidal Power 8 5 62.5 
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Variable No. of initial models No. of final models Retained % 

Sea State 7 5 71.4 

Turbulence 6 6 100 

Presence/Frequency of 
Oceanographic Front 6 4 66.7 

Change in Tide Height 4 3 75 

Oceanographic Front Gradient 
Density 4 3 75 

Current Direction 4 1 25 

Tidal Stratification 3 2 66.7 

Spring Tidal Amplitude 3 0 0 

Current Level 2 0 0 

Swell 2 0 0 

Current Magnitude 1 1 100 

Oceanographic Front Persistence 1 1 100 

Tide Height 1 1 100 

Water Clarity 1 1 100 

Water Mass 1 1 100 

Side of Oceanographic Front 1 0 0 

Temporal Variables 

Year 21 14 66.7 

Day 15 11 73.3 

Month 8 7 87.5 

Time of Day 8 5 62.5 

Hour 7 4 57.1 
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Variable No. of initial models No. of final models Retained % 

Season 2 2 100 

Day Length 1 1 100 

Time to High Tide 1 1 100 

Other Variables 

Anthropogenic Noise/Activity 9 5 55.6 

Survey Effort 3 3 100 

Survey Method 3 2 66.7 

Observer ID 2 1 50 

Backscattering Strength 1 1 100 

Glare 1 1 100 

Observer Visibility 1 1 100 

Vertical Shear 1 1 100 

Seabirds 
Forty-five of the models represented seabird species and these models contained 28 
different predictor variables (Table 3). Depth was the most frequently used variable (n=39) 
and was retained in 25 models. Prey abundance/distribution was the next most common, 
occurring in 32 initial models and, following model selection, was retained in 21 (66%). 
Geographic variables featured frequently in the seabird models. Distance to the colony 
and coast were found to be extremely important variables for predicting seabird 
distribution. Both featured in 25 models with distance to the colony being retained 96% of 
the time, and distance to the coast was present in 22 final models (88%). In contrast, 
some geographic variables were not found to be useful predictors of seabird distribution. 
Distance to bathymetric contours (e.g. 200 metre isobath) was used in 8 models but was 
not retained in any. Geographic coordinates were only retained in 20% of the 25 models it 
was featured in.  

The biochemical/chemical variables of chlorophyll a concentration and salinity were 
identified as influential environmental predictors of seabird distribution. In addition, while 
not occurring regularly in the initial models, the variables sea surface height (n=7), current 
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speed (n=6), seabed hardness (n=6) and turbulence (n=6) were selected in the final 
models 100% of the time. 

Table 3. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) seabird SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Depth 39 25 64.1 

Prey Abundance/Distribution 32 21 65.6 

Sea Surface Temperature 31 20 64.5 

Distance to Colony/Nest 25 24 96 

Distance to Coast 25 22 88 

Geographic Coordinates 25 5 20 

Slope 11 10 90 

Chlorophyll a Concentration 11 9 81.8 

Salinity 9 8 88.9 

Rugosity 8 6 75 

Distance to Bathymetric Contour 8 0 0 

Sea Surface Height 7 7 100 

Current Speed 6 6 100 

Seabed Hardness 6 6 100 

Turbulence 6 6 100 

Seabed Sediment 4 2 50 

Distance to Intertidal Zone 3 3 100 

Tidal Power 3 1 33.3 

Tidal State 3 0 0 

Day 2 2 100 
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Variable No. of initial models No. of final models Retained % 

Hour 2 2 100 

Aspect 1 1 100 

Month 1 1 100 

Presence/Frequency of 
Oceanographic Front 1 1 100 

Water Clarity 1 1 100 

Water Mass 1 1 100 

Year 1 1 100 

Primary Productivity 1 0 0 

Dolphins and Porpoises 
Dolphins and porpoises featured in 55 of the 144 models included in this study. Forty-five 
predictor variables were used (Table 4). Topographic variables were repeatedly used in 
the models exploring dolphin/porpoise distribution (Table 4). Depth (n=50) and slope 
(n=49) were the two most commonly used predictors. Following model selection, depth 
was included in 66% of the final models, but slope only appeared in 49%. Seabed 
sediment (n=12) and aspect (n=10) also regularly occurred in the initial models and had a 
retention rate of 67% and 60%, respectively. Out of the variables that featured in 10 or 
more models, geographic coordinates had the highest retention rate (79%), and salinity 
had the lowest (30%). 

Table 4. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) dolphin and porpoise SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Depth 50 33 66 

Slope 49 24 49 

Sea Surface Temperature 35 22 62.9 

Distance to Coast 30 20 66.7 

Chlorophyll a concentration 29 17 58.6 
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Variable No. of initial models No. of final models Retained % 

Salinity 23 7 30.4 

Distance to Bathymetric Contour 20 11 55 

Geographic Coordinates 14 11 78.6 

Mixed Layer Depth 12 8 66.7 

Seabed Sediment 12 8 66.7 

Year 11 6 54.5 

Day 10 7 70 

Aspect 10 6 60 

Current Speed 9 6 66.7 

Prey Abundance/Distribution 8 0 0 

Spring-Neap Tide Cycle 7 4 57.1 

Time of Day 7 4 57.1 

Sea State 6 5 83.3 

Anthropogenic Noise/Activity 6 4 66.7 

Tidal State 6 2 33.3 

Survey Site 4 4 100 

Current Direction 4 1 25 

Hour 4 1 25 

Distance to Oceanographic Front 3 2 66.7 

Oceanographic Front Gradient 
Density 3 2 66.7 

Tidal Stratification 3 2 66.7 

Spring Tide Amplitude 3 0 0 
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Variable No. of initial models No. of final models Retained % 

Month 2 2 100 

Season 2 2 100 

Presence/Frequency of 
Oceanographic Front 2 1 50 

Survey Method 2 1 50 

Tidal Power 2 1 50 

Current Level 2 0 0 

Change in Tide Height 1 1 100 

Day Length 1 1 100 

Distance to Estuary 1 1 100 

Distance to Prey 1 1 100 

Presence of Other Species 1 1 100 

Tide Height 1 1 100 

Wind Speed 1 1 100 

Sea Level Pressure 1 0 0 

Side of Oceanographic Front 1 0 0 

Surface Fluorescence 1 0 0 

Swell 1 0 0 

Wind Direction 1 0 0 

Whales 
Whale species featured in 24 models and 33 predictor variables were used (Table 5). 
There were several similarities to the dolphin/porpoise results. Once again, depth (n=23) 
and slope (n=22) were the most used variables with retention rates of 78% and 55%, 
respectively. Geographic coordinates also appeared to be important as it was kept in 75% 
of the 8 models in which its inclusion was examined.  
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Sea surface temperature was utilised in 15 models and was retained in the final model 11 
times. Chlorophyll a concentration was also found to be important, occurring in 10 final 
models. 

Table 5. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) whale SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Depth 23 18 78.3 

Slope 22 12 54.5 

Sea Surface Temperature 15 11 73.3 

Chlorophyll a concentration 15 10 66.7 

Geographic Coordinates 8 6 75 

Year 7 5 71.4 

Distance to Bathymetric Contour 7 4 57.1 

Distance to Coast 7 2 28.6 

Current Speed 7 1 14.3 

Rugosity 10 2 20 

Spring-Neap Tide Cycle 6 4 66.7 

Month 5 4 80 

Seabed Sediment 5 4 80 

Mixed Layer Depth 5 2 40 

Salinity 5 1 20 

Sea Surface Height 4 1 25 

Survey Effort 3 3 100 

Change in Tide Height 3 2 66.7 

Prey Abundance/Distribution 3 2 66.7 
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Variable No. of initial models No. of final models Retained % 

Primary Productivity 3 0 0 

Anthropogenic Noise/Activity 2 1 50 

Day 2 1 50 

Aspect 2 0 0 

Glare 1 1 100 

Hour 1 1 100 

Presence/Frequency of 
Oceanographic Front 1 1 100 

Tidal Power 1 1 100 

Time of Day 1 1 100 

Observer Visibility 1 1 100 

Wind Speed 1 1 100 

Observer ID 1 0 0 

Sea State 1 0 0 

Swell 1 0 0 

Seals 
Twelve of the 144 models focused on seal distribution. Twenty predictor variables 
featured, but only 6 were used more than once (Table 6). Depth (n=10), seabed sediment 
(n=8), distance to haul-out site (n=7), and slope (n=6) all appear to be important variables 
for the prediction of seal distribution. 

Table 6. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) seal SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Depth 10 8 80 

Seabed Sediment 8 7 87.5 
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Variable No. of initial models No. of final models Retained % 

Distance to Haul-out Site 7 7 100 

Slope 6 6 100 

Current Speed 3 2 66.7 

Distance to Coast 3 2 66.7 

Backscattering Strength 1 1 100 

Current Magnitude 1 1 100 

Day 1 1 100 

Observer ID 1 1 100 

Salinity 1 1 100 

Tidal Power 1 1 100 

Tidal State 1 1 100 

Time to High Tide 1 1 100 

Vertical Shear 1 1 100 

Year 1 1 100 

Anthropogenic Noise/Activity 1 0 0 

Chlorophyll a Concentration 1 0 0 

Sea Surface Height 1 0 0 

Sea Surface Temperature 1 0 0 

Basking Sharks 
Basking sharks were the subject of 7 SDMs. Sixteen predictor variables were used (Table 
7), and despite the small quantity of models, it appears that some of these variables are 
important predictors of basking shark distribution. Sea surface temperature was retained in 
all 7 final models and chlorophyll a concentration was present in 6 final models. Depth, 
and to a less extent seabed slope, seem to influence basking shark distribution. In 
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addition, prey abundance/distribution, distance to bathymetric contours, distance to the 
coast, salinity, and measures of oceanographic front activity show evidence of being 
influential predictor variables.  

Table 7. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) basking shark SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Sea Surface Temperature 7 7 100 

Chlorophyll a Concentration 7 6 85.7 

Depth 6 5 83.3 

Slope 5 3 60 

Prey Abundance/Distribution 4 4 100 

Distance to Bathymetric Contour 4 3 75 

Distance to Coast 4 3 75 

Salinity 4 3 75 

Presence/Frequency of 
Oceanographic Front 2 1 50 

Distance to Oceanographic Front 1 1 100 

Oceanographic Front Gradient 
Density 1 1 100 

Oceanographic Front Persistence 1 1 100 

Seabed Sediment 1 1 100 

Survey Method 1 1 100 

Tidal Power 1 1 100 

Year 1 1 100 

Marine Turtles 
Only one SDM was constructed for a marine turtle species. Eight variables were included 
in the initial model but only 6 were retained in the final version – chlorophyll a 
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concentration, distance to the coast, prey abundance/distribution, salinity, sea surface 
temperature, and slope (Table 8).  

Table 8. The number of times each environmental predictor variable was used in the initial and final 
(following model selection) marine turtle SDMs and the retention rate expressed as a percentage. 

Variable No. of initial models No. of final models Retained % 

Chlorophyll a Concentration 1 1 100 

Distance to Coast 1 1 100 

Prey Abundance/Distribution 1 1 100 

Salinity 1 1 100 

Sea Surface Temperature 1 1 100 

Slope 1 1 100 

Depth 1 0 0 

Distance to Bathymetric Contour 1 0 0 
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4. Discussion 
This report provides an overview of the commonly used environmental predictor variables 
in SDM studies of marine megafauna species around the UK and an indication of which 
variables should be considered for different marine taxa. Interpretation of this overview 
should be done with caution because the ability to detect effects is likely influenced by the 
modelling approaches taken and by the amount of species occurrence data available.  

Modelling methods and occurrence data 
The correlative techniques of statistical and machine-learning modelling dominate the 
literature on species distribution modelling of marine megafauna around the UK. None of 
the studies featured in this report employed the alternative hybrid (Smolik et al., 2010) or 
mechanistic (Kearney & Porter, 2009) SDM methods. A major limitation on the distribution 
modelling of many species in the marine environment is the lack of data on their 
occurrence and insufficient knowledge of their ecology (Bentlage et al., 2013). This has 
restricted the type of modelling that has been conducted and the species for which SDMs 
could be generated. In recent times, data collection on the movements and behaviour of 
marine megafauna has greatly improved through the enhancement and refinement of 
existing approaches, and the development of new methods (e.g. Nowacek et al., 2016). 
Technological advances have also increased the range of species for which accurate 
occurrence data can be gathered. For example, Global Positioning System (GPS) devices 
that weigh less than 1g are now available and can be deployed on the smallest seabird 
species breeding in the UK, the ~28g European Storm-petrel Hydrobates pelagicus 
(Bolton, 2020). As a result of new and improved data collection methods, there are now 
large data repositories containing extensive data on species occurrence (e.g. Movebank, 
MegaMove). Improved species occurrence data will enhance modelling procedures and 
will allow researchers to construct better predictive distribution models for marine species 
under future climate conditions or planned anthropogenic activity (e.g. offshore wind farm 
developments). 

Environmental variables 
An extensive list of environmental variables has been used to model the distribution of 
marine species. Melo-Merino et al. (2020) conducted a review on the use of SDMs on all 
marine taxa in the world’s oceans and identified the inclusion of 173 different variables; 
Tremblay et al. (2009), focusing just on seabird species, reported the use of 101 
environmental explanatory variables; and this study detected 64 different variables that 
have been used for the modelling of marine megafauna distributions around the UK. 
Environmental data have become readily accessible through global databases such as 
those provided by the National Oceanic and Atmospheric Administration (NOAA) and the 
General Bathymetric Chart of the Oceans (GEBCO). With all this data available, it can be 
tempting for modellers to construct SDMs by including many potential environmental 
predictor variables and trust that model selection will identify which ones influence the 
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study species’ distribution (Elith & Leathwick, 2009); however, the inclusion of too many 
environmental parameters in the model can result in overfitting (Peterson et al., 2007). 
Consequently, there is a strong argument for the inclusion of only environmental variables 
that are believed to be ecologically relevant to the study species (Elith & Leathwick, 2009).  

Despite the vast amount of environmental data that is available for modelling studies, the 
environmental variables used in marine SDMs are typically restricted to sea surface 
variables (e.g. sea surface temperature, sea surface salinity) which are often derived from 
remote-sensing at high spatial resolutions or from modelled data, and measurements from 
the seabed (e.g. depth, seabed sediment type). Only a small proportion of the 
environmental data used in SDMs represent the mid-layers of the water column (e.g. 
mixed layer depth). The lack of environmental data within the water column can impact the 
accuracy of SDMs, especially for marine mammals that spend time both at the surface and 
underwater.  

Marine megafauna species 

Seabirds 

Distance to the colony and the coast were found to be prominent predictors of seabird 
distribution. This is not surprising as the majority of seabird studies conducted in the UK 
are during the breeding season, as this is the only time in the year when many seabird 
species are present on land and so are accessible for monitoring and research. Breeding 
seabirds are central place foragers, and their distribution is constrained by the requirement 
to return to the nest at regular intervals to care for their chicks (Quillfeldt et al., 2010). 
During the breeding season, seabirds need to support the energetic demands of their 
offspring, while maintaining their own body condition (Burke & Montevecchi, 2009), and as 
a result, the distribution and abundance of prey can strongly influence seabird distribution. 
Prey resources for megafauna species in the marine environment are often associated 
with bathymetric features such as shelf edges (Cox et al., 2018) and this likely provides 
the ecological explanation for the importance of topographic variables such as slope and 
rugosity, and of chlorophyll a concentration (proxy for primary productivity), in the seabird 
SDMs. It is expected that outside the breeding season, the importance of some predictor 
variables will diminish, while others will increase in predictive power. 

Cetaceans: whales, dolphins, and porpoises 

Topographic variables appear to be key predictors of the distribution of cetaceans around 
the UK. The influence of topography is probably a result of its impact on prey distribution 
and concentration (Naud et al., 2013). Sea surface temperature was also identified as an 
important environmental variable for cetacean SDMs. This is likely due to the fact that sea 
surface temperature is known to influence the distribution of sandeels Ammodytes 
tobinaus, an important prey item of cetaceans, around the UK (van der Kooij et al., 2008). 
In contrast to other marine megafauna taxa, geographic coordinates were regularly 
retained in the final models of dolphin, porpoise, and whale distribution. Latitude and 
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longitude can be included in SDMs to act as a proxy for other variables such as distance 
from the coast, water masses, and bathymetric regions. However, they sometimes act, 
intentionally or inadvertently, as proxies for unmeasured environmental variables (Redfern 
et al., 2006), and other unidentified factors influencing the distribution of cetacean species 
around the UK are likely. Despite these generalisations, the influence of environmental 
variables is highly likely to vary significantly among cetacean species due to factors such 
as body size and foraging strategies, and especially whether the species is oceanic or 
coastal.  

Seals 

A small number of models in this study featured grey and/or harbour seals (n=12). Like 
cetaceans, topographic variables had a notable influence on their distribution. Once again, 
this relationship is likely due to the impact topography has on the distribution of prey 
species. Distance to the haul-out site was retained in each of the models it was featured 
in. This affiliation was expected as hauling-out (temporarily moving onto land) is a 
common behaviour in pinnipeds and is performed for many reasons, including breeding 
and moulting. Outside of the breeding and moulting periods, grey seals still spend over 
40% of their time on or near a haul-out site (McConnell et al., 1999). Despite only being 
included in one model, measures of tide (e.g. tidal power, tidal state, time to high tide) 
showed evidence of being good predictors of seal distribution and should be examined 
further in future analyses.  

Basking sharks and turtles 

Only a few SDM studies were found in the literature search for basking sharks (n=7) and 
turtle species (n=1). More distribution modelling is required to test which environmental 
variables are important for these marine megafauna species in UK waters. For basking 
sharks, the dynamic variables of sea surface temperature, chlorophyll a concentration, and 
salinity were found to influence the distribution during the summer months in this highly 
migratory species. As a planktivorous species, the relationship with primary productivity 
(i.e. chlorophyll a concentration) was expected. Variables of oceanographic front activity 
should be looked at in future modelling studies as the initial evidence suggests they may 
have a bearing on basking shark distribution.  
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5. Final remarks  
This report summarises published research on the distribution of marine megafauna 
species in UK waters and has highlighted the range of predictor variables commonly used 
in species distribution models. The importance of variables is dependent on phylogeny, or 
more accurately, on the species’ position in the food chain, their mode of foraging, and the 
type of prey consumed, the availability of which will vary considerably over space and time 
and at different scales. Effect size was not within the scope of this report and could have 
an impact on cost-benefit analyses of including variables in future monitoring. 
Nevertheless, as the demand grows for predictive modelling of marine species for 
conservation and marine spatial planning, this report highlights a wide range of variables 
that can be targeted for each marine megafauna taxa with some degree of confidence 
based on their utility to date. 
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Appendix 2. Species featured in the SDMs 

Species Scientific Name Reference(s) 

Atlantic Puffin Fratercula arctica Johnston et al. (2015); Waggitt et al. (2016) 

Atlantic White-sided 
Dolphin 

Lagenorhynchus 
acutus Breen et al. (2016); MacLeod et al. (2007); 

Auk spp. Alcidae McClellan et al. (2014) 

Balaenoptera spp. Balaenoptera Baines et al. (2017) 

Basking Shark Cetorhinus maximus Austin et al. (2019); McClellan et al. (2014); 
Miller et al. (2015); Paxton et al. (2015) 

Beaked Whale spp. Ziphiidae Rogan et al. (2017) 

Black Guillemot Cepphus grylle Waggitt et al. (2016) 

Black-legged Kittiwake Rissa tridactyla Johnston et al. (2015) 

Bottlenose Dolphin Tursiops truncates Arso Civil et al. (2019); Bailey & Thompson 
(2009); Breen et al. (2016); Pirotta et al. (2014) 

Common Dolphin Delphinus delphis Breen et al. (2017); MacLeod et al. (2007); 
MacLeod et al. (2008b); Robbins et al. (2020) 

Common Guillemot Uria aalge 
Johnston et al. (2015); Waggitt et al. (2016); 
Warwick-Evans et al. (2016); Wright & Begg 
(1997) 

Dolphin spp. Delphinidae 
Cox et al. (2017); Hastie et al. (2005); 
McClellan et al. (2014); Thompson et al. 
(2015); Todd et al. (2020) 

European Shag Phalacrocorax 
aristotelis 

Grémillet et al. (2020); Waggitt et al. (2016); 
Warwick-Evans et al. (2016) 

Fin Whale Balaenoptera 
physalus Breen et al. (2016); Ramesh et al. (2021) 

Great Black-backed 
Gull Larus marinus Johnston et al. (2015); Warwick-Evans et al. 

(2016) 



Page 35 of 42 | Natural England Commissioned Report NECR447 

Species Scientific Name Reference(s) 

Grey Seal Halichoerus grypus 
Aarts et al. (2008); Bailey & Thompson (2009); 
Huon et al. (2015); Lieber et al. (2018); 
MacLeod et al. (2007); 

Harbour Porpoise Phocoena phocoena 

Bailey & Thompson (2009); Breen et al. 
(2017); Brookes et al. (2013); Cox et al. 
(2017); de Boer et al. (2014); Embling et al. 
(2010); Gilles et al. (2016); Hammond et al. 
(2013); Isojunno et al. (2012); MacLeod et al. 
(2007); MacLeod et al. (2008a); McClellan et 
al. (2014); Todd et al. (2020); Williamson et al. 
(2016) 

Harbour Seal Phoca vitulina 
Bailey & Thompson (2009); Bailey et al. 
(2014); Hastie et al. (2018); Jones et al. 
(2017); Lieber et al. (2018) 

Herring Gull Larus argentatus Warwick-Evans et al. (2016) 

Leatherback Turtle Dermoxhelys coriacea McClellan et al. (2014) 

Lesser Black-backed 
Gull Larus fuscus Johnston et al. (2015); Warwick-Evans et al. 

(2016) 

Little Auk Alle alle Johnston et al. (2015) 

Little Tern Sternula albifrons Perrow et al. (2015) 

Long-finned Pilot 
Whale Globicephala melas Breen et al. (2016); MacLeod et al. (2007); 

Rogan et al. (2017) 

Manx Shearwater Puffinus puffinus Kane et al. (2020) 

Minke Whale Balaenoptera 
acutorostrata 

Anderwald et al. (2012); Breen et al. (2016); 
Hammond et al. (2013); Macleod et al. (2004); 
MacLeod et al. (2007); Paxton et al. (2014); 
Robinson et al. (2009) 

Northern Fulmar Fulmarus glacialis Johnston et al. (2015) 

Northern Gannet Morus bassanus Johnston et al. (2015); McClellan et al. (2014); 
Skov et al. (2008) 

Razorbill Alca torda Johnston et al. (2015); Warwick-Evans et al. 
(2016) 
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Species Scientific Name Reference(s) 

Risso’s Dolphin Grampus griseus Breen et al. (2016); de Boer et al. (2014); 
Paxton et al. (2014) 

Sperm Whale Physeter 
macrocephalus Breen et al. (2016); Rogan et al. (2017) 

White-beaked Dolphin Lagenorhynchus 
albirostris 

Breen et al. (2016); MacLeod et al. (2007); 
MacLeod et al. (2008b); Paxton et al. (2014) 
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Appendix 3. Composition of environmental predictor 
variables featured in this report that consist of more 
than one term identified in the literature. 

Variable Description 

Anthropogenic Noise/Activity 

Boat speed, number of shipping tonal detections, playback 
status, presence/absence of construction activity, remote ship 
noise, seismic ship noise, shipping noise level, survey vessel 
noise, water noise level 

Change in Tide Height Mean difference between high and low water at nearest harbour, 
rate of change in tide 

Current Speed Current speed, mean relative variance in velocity, peak flow, 
spatial variation of current speed, vertical current speed 

Distance to Bathymetric 
Contour Distance to 200m isobath, distance to 2000m isobath 

Rugosity Seafloor rugosity, seabed roughness, contour index (defined as a 
measure of variability in the seabed), standard deviation of depth 

Salinity Sea surface salinity, sea bottom salinity 

Sea Surface Height Sea surface height, water elevation 

Spring-Neap Tide Cycle Days before/after neap tide, position in spring-neap cycle 

Tidal Stratification Tidal stratification, mean stratification, tidal mixing 

Time of Day Daytime, night-time, time after sunrise, time of day, time to sunset 
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EENM – Ensemble Ecological Niche Model 

ENFA – Ecological Niche Factor Analysis 

GAM – Generalised Additive Model 

GAMM – Generalised Additive Mixed Model 

GARP – Genetic Algorithm for Rule Set Production 

GLM – Generalised Linear Model 

GLMM – Generalised Linear Mixed Model 

PCA – Principal Component Analysis 

SDM – Species Distribution Model 
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