

Potential Environmental Effects of Ocean Thermal Energy Conversion

Notional OTEC Plant off Oahu

Oahu OTEC Site Properties

- Water depth = 1100-1300 meters
- Very steep slopes
 - Limited sediment thickness for anchoring
 - Potential for submarine slumps/slides
- Relatively benign wind/wave conditions
- Proximity to shore-based infrastructure

Context and Intensity

- OTEC plants are highly visible and likely will attract wide interest
- Effects may be "regionally" measurable, but of "national" or even "global" interest
- Information is limited
 - Effects are not well quantified
 - Observations are limited
 - Effect predictions may be hypothetical and abstract until pilot studies can be monitored
- Effects will be site- and configuration-specific
 - Ocean or shore plant location
 - Discharge location and depth

- Possible bottom habitat disturbance from cabling and anchoring
- Biological displacement and attraction from the physical presence of industrial activity
- Potential for water quality degradation from accidental industrial release of fuel, oils and lubricants during installation phase

Direct OTEC Biological Effects

- Potential for fish and other swimming animals (nekton) to be physically damaged on striking protective screens (impingement)
- Smaller drifting plants and animals (plankton) physically damaged on passing through heat exchange system (primary entrainment)
- Plankton and Nekton subject to temperature and pressure changes in discharge plumes (secondary entrainment)
- All organisms subject to
 - Operational noise
 - Antifouling and biocide toxicity
 - Accidental release of working fluid, petroleum products or lubricants

Direct OTEC Water Quality Effects

- Level of effects are unclear given limited studies conducted to date
- Changing ocean water chemistry in water discharge mixing zones
 - Nutrients and carbon dioxide concentrations increase
 - Carbon dioxide released to atmosphere
 - pH decrease
 - Oxygen concentrations decrease

Indirect OTEC Biological Effects

- Changes in water chemistry may stimulate ocean productivity
 - Increasing productivity in warm, sunlit tropical waters
 - Phytoplankton and multicellular algae primary production
 - Zooplankton secondary production (consumer and decomposer)
 - Changing biological diversity and distribution
 - Increasing plankton consumers
 - Decreasing specialized tropical ocean producers and consumers (e.g. coral)
 - Cyclic variation affected by decomposition and oxygen demand

Conclusions

- Substantial uncertainty in effects until measurements are made and performance of pilot plant monitored
- Experience base with other offshore platforms can be leveraged
- Primary unknowns are effects of water intake and exit streams