IOWA STATE UNIVERSITY

Passive Ultrasonic Deterrents to Reduce Bat Mortality in Wind Farms

Anupam Sharma

Aerospace Engineering Iowa State University

The information contained in this document is proprietary and shall not be shared with anyone without express permission from Iowa State.

Overview

Idea/Technology:

- Blade-mounted ultrasonic deterrent driven by blade-relative flow

Technology Impact:

- Mitigate bat mortality at wind farms with little-to-no reduction in energy capture
- Cost savings by replacing/supplementing operational mitigation with the proposed deterrent

Current status:

- Deterrent tested to generate ultrasound spectrum in labs
- Passive operation looks promising ... design optimization pending
- Impact on bats ... not yet investigated

Concept and technical merit

- Adaptation of dog (Galton's) whistle
- Working principle:
 Flow instability coupled with a resonator → high-intensity sound
- Multiple resonators for broad spectral coverage (20 50 kHz)
- Blade-relative air flow for passive operation
 - no moving parts \rightarrow less possibility of mechanical failure
- Blade-mounted ultrasonic deterrents need to radiate smaller distance (~5-10 m);
 - Nacelle/tower-mounting requires coverage of the entire rotor disk (50-100 m)

resonance

Nacelle v/s blade-mounted ultrasonic deterrents

Hub + tower mounted deterrents

- Blade tips far from deterrent → high source power required
- High-frequencies decay rapidly → full blade coverage nearly impossible
- Adverse impact of ultrasound on other wildlife

Blade-mounted deterrents

- Deterrents place where required
- Travel distance~10 m → lowamplitude at the source

Design

Whistle design, fabrication & testing

- Initial whistle design idea: aerodynamic whistle using Helmholtz/cavity + pipe resonance
- 3D printing (for fabrication) works well
- Experiments with high-pressure air supply (initial testing)

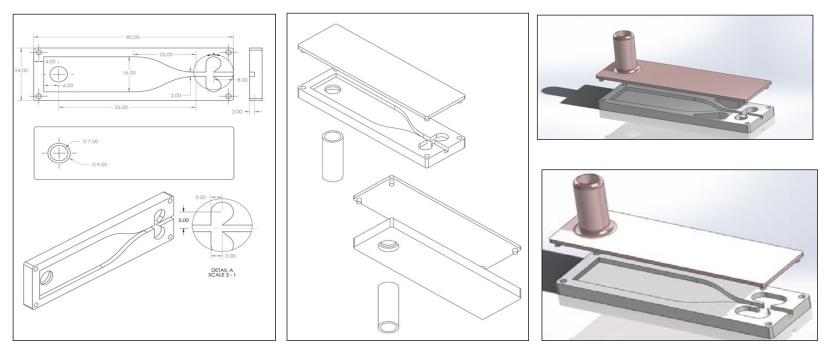


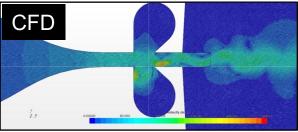
Figure: A CAD design of a conceptual ultrasonic tone generator

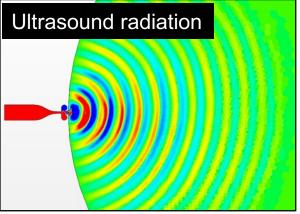
Research approach/methods & tasks

Approach

- Adapt Galton's (dog) whistle
- Working principle: fluid flow instability + resonance → high-intensity (ultra)sound
- Mount on rotor blades with an inlet/diffuser assembly that guides flow into the whistle \rightarrow passive operation

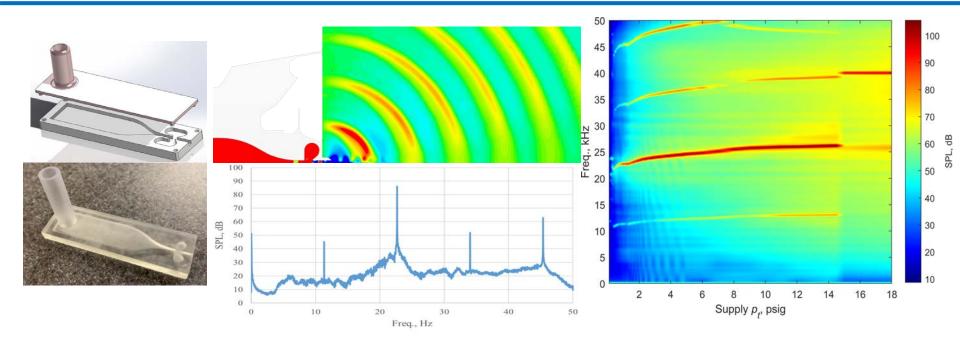
Research tasks/activities


- Demonstrate capability to generate ultrasound using the whistle concept
- Optimize design for high-intensity ultrasound generation
- Verify passive operation numerically & experimentally
- Quantify adverse aero performance impact using section model tests


Methods for design & optimization

- *Experiments:* using pressurized air in anechoic chamber
- *CFD simulations*: 2-D for design & optimization, 3D for analysis

Exp: anechoic room

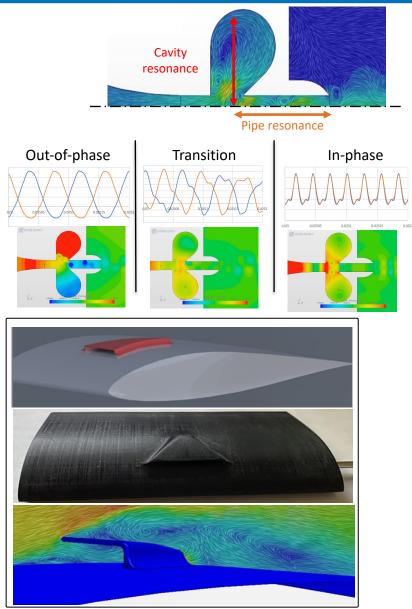


Experimental setup

- Lab air → filters → pressure & flow measurement → to the whistle Flow M ≪ 1 → gauge pressure ≈ p_t
- Farfield sound measurements on a circular arc
- **B&K 4939 mic + signal conditioning (B&K 2690)** \rightarrow 0 < f < 50 kHz
- Directivity:
 - Azimuthal variation small
 - Polar: peak at $30^{\circ} \rightarrow$ single points measurements for further evaluation

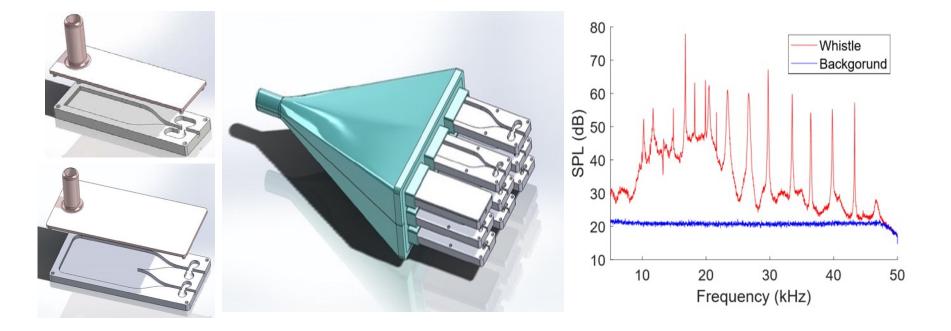
Numerical and experimental results

- Peak $f \sim 22 25$ kHz \rightarrow successful ultrasound generation
- Plot sound spectra variation with p_t as a "spectrogram"
- Two distinct operating regimes observed:
 - **1.** Low- p_t regime: $p_t < 14.5$ psig; $f \sim 22 25$ kHz; $f \uparrow$ slightly as $p_t \uparrow$; subharmonic observed
 - **2.** *High-p*_t *regime:* $p_t > 14.5$ psig; $f \sim 40$ kHz; subharmonic at 25 kHz; f no variation with p_t


Sound generation & passive operation

Identified sound generation mechanisms \rightarrow optimization

- Cavity resonance enhanced by pipe resonance
- Whistle operates in 3 modes:
 - out-of-phase (low pressure)
 - Transition (med pressure)
 - In-phase (high pressure)
- Enables design of cavity & pipe dimensions


Passive operation

- Initial/preliminary intake designs
- Designed & prototyped
- Prelim analysis and experiments
 - Adverse impact on aero perf negligible (wind tunnel tests)
 - CFD simulations consistent with exp
- Passive ultrasound generation demonstrated numerically

Spectral coverage

- Different bat species use different frequencies for echolocation
- ISU deterrent can be tailored to produce tones in the desired frequency range
- Adding multiple resonators in one whistle and/or adding multiple whistles to cover a broad spectral range

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Wind Energy Technology Office Award Number DE-EE0008731

