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PROBLEM STATEMENT 

2 

 
 
 
 
 
 
 
 
 

Challenges: 
‒ Lack of an algebraic model 
‒ Computationally costly simulations 
‒ Often noisy function evaluations 
‒ Scarcity of fully robust simulations 

Process 
simulation 
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SIMULATION-BASED METHODS 

3 

Estimated gradient based 
‒ Finite element, perturbation analysis, 

etc. 

Derivative-free optimization (DFO) 

‒ Local/global 

‒ Stochastic/deterministic 

What is modeled? 
‒ Objective, objective + constraints, 

disaggregated system 

Type of model 
‒ Linear/nonlinear 

‒ Simple/Complex 

‒ Algebraic/black-box 

Optimizer 
‒ Derivative/derivative-free 

 

Simulator Optimizer Simulator Modeler Optimizer 

Indirect methods 

 

Direct methods 
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RECENT WORK IN CHEMICAL ENG 
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Simulator Modeler Optimizer 

Indirect methods 

 

Full process 

Disaggregated 

Kriging Neural nets Other 

 Michalopoulos, et. 
Al., 2001 

 Palmer and Realff, 
2002 

 Huang, et. al., 2006  
 Davis and 

Ierapetriton, 2012 

 Caballero and 
Grossmann, 2008 

 Palmer and Realff, 
2002 

 Henao and 
Maravelias, 2011 
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PROCESS DISAGGREGATION 

Surrogate models of 
blocks 

Disaggregated blocks of 
process unit(s) 

Simulation 

f1(x) f3(x) f2(x) 

Algebraic constraints Mass balances Design specs 

Nonlinear program Algebraic model for optimization 
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Build a model of output variables z as a function of input 
variables x over a specified interval 

 

 

 

 
 

 
 

 

MODELING PROBLEM STATEMENT 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
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Process simulation 
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Model questions: 
‒ What is the functional form of the model?   

‒ How complex of a model is needed?  

‒ Will this be tractable in an algebraic optimization framework? 

 

Sampling questions: 
‒ How many sample points are needed to define an accurate model?  

‒ Where should these points be sampled? 
 

Desired model traits: 
 Accurate 

 Tractable in algebraic optimization:  Simple functional forms 

 Generated from a minimal data set 

MODELING PROBLEM STATEMENT 
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ALGORITHMIC FLOWSHEET 

true 

Stop 

Update training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive sampling 

Model 
converged? 
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Goal: To generate an initial set of input variables to evenly 
sample the problem space 

 

 

 

 
 

Latin hypercube design of experiments - Space-filling design 

 

 

DESIGN OF EXPERIMENTS 
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After running the design of experiments, we will evaluate 
the black-box function to determine each zi 
 

 

 

 

 

 

 

INITIAL SAMPLING 

Initial 
training 
set 
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Process simulation 
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ALGORITHMIC FLOWSHEET 

true 

Stop 

Update training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive sampling 

Model 
converged? 
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Goal: Identify the functional form and complexity of the 
surrogate models 
 

Functional form:  
‒ General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 

 

 

 

 

 

MODEL IDENTIFICATION 
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OVERFITTING AND TRUE ERROR 
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Empirical error:  
‒ Error between the model and the sampled data points 

True error: 
‒ Error between the model and the true function 

 

Complexity 

Er
ro

r 

Ideal Model 

Overfitting Underfitting 
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SURROGATE MODEL 
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Surrogate model can have the form 

 

 

Low-complexity desired surrogate form 

 

 

 

     is chosen to 
‒ Reduce overfitting  

‒ Achieve surrogate simplicity for a tractable final optimization model 
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BEST SUBSET METHOD 
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Generalized best subset problem: 

 

 

 

 

 

Goodness of fit: 

‒ Corrected Akaike Information Criterion (AICc) 
• Gives an estimate of the difference between a model and the 

true function 

 

 

 

 

Accuracy    +    Complexity 
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FINAL BEST SUBSET MODEL 
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This model is solved for increasing values of T until the AICc 
worsens 
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ALGORITHMIC FLOWSHEET 

true 

Stop 

Update training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 
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Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

 

More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

 
‒ Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

ADAPTIVE SAMPLING 

Surrogate model 

19 
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ADAPTIVE SAMPLING 
Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

 

More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

 

Black-box function 
Data points 
Surrogate model 
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ADAPTIVE SAMPLING 
Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

 

More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

 

Surrogate model 

Black-box function 
Data points True 

minimum 

Current 
surrogate 
optimum 
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ADAPTIVE SAMPLING 
Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

 

More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

Black-box function 
Data points 
Surrogate model 

New sample point 
after interrogating 

the surrogate 

Model 
error 
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ADAPTIVE SAMPLING 
Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

 

More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

 

Black-box function 
Data points 
New surrogate model 
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ERROR MAXIMIZATION SAMPLING 
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Information gained using error maximization sampling: 
1. New data point locations that will be used to better train the next 

iteration’s surrogate model 

 

2. Conservative estimate of the true model error 
• Defines a stopping criterion 

• Estimates the final model error 
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COMPUTATIONAL TESTING 
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Surrogate generation methods have been implemented into a 
package:  

ALAMO 
(Automated Learning of Algebraic Models for Optimization) 

 
Modeling methods compared 
‒ MIP – Proposed methodology 
‒ EBS – Exhaustive best subset method  

• Note: due to high CPU times this was only tested on smaller problems 

‒ LASSO – The lasso regularization 
‒ OLR – Ordinary least-squares regression 

 

Sampling methods compared 
‒ DFO – Proposed error maximization technique 
‒ SLH – Single latin hypercube (no feedback) 
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DESCRIPTION – TEST SET A 
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Two and three input black-box functions randomly chosen 
basis functions available to the algorithms with varying 
complexity from 2 to 10 terms 

 

Basis functions allowed: 
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RESULTS – TEST SET A 
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Model accuracy Function evaluations 

45 test problems, repeated 5 times, tested against 1000 independent data points 
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 MODEL COMPLEXITY – TEST SET A 
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DESCRIPTION – TEST SET B 
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Two input black-box functions with basis functions 
unavailable to the algorithms with 
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RESULTS – TEST SET B 
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Model accuracy Function evaluations 

12 test problems, repeated 5 times, tested against 1000 independent data points 
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TEST CASE: CUMENE PRODUCTION 

Generate Models: 

Over the Range: 

Benzene 
Propylene 

Cumene 

31 

Cumene production simulation is form the Aspen Plus® Library 
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Maximum error found at each iteration may increase 
‒ Due to the derivative-free solver is given more information at each iteration 

GENERATING THE SURROGATES 
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Initial data set: 3  points 
Final data set:  23 points 
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PROCESS OPTIMIZATION 

Benzene 
Propylene 

Cumene 
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CARBON CAPTURE OPTIMIZATION 
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Problem statement: 
Capture 90% of CO2 from a 350MW power plant’s post combustion flue 
gas with minimal increase in the cost of electricity 
 

 
 
 
 
Design considerations: 
‒ Capture technology 

• Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, 
etc. 

‒ Number of reactors 
‒ Reactor configuration and geometry 
‒ Operating conditions 

 

350 MW 
Coal fired power 

plant 

CO2 rich 
flue gas 

CO2 poor 
flue gas 

A
ds

or
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r 

R
eg
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SUPERSTRUCTURE OPTIMIZATION 
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Flue gas from 
power plant 

a1 

a2 

a3 

a4 

d1 

d2 

d3 

d4 

Solid sorbent 
stream 

Cleaned gas 

Other 
capture 
trains 

Cooling water 
Steam 
Work 

Solid sorbent 
CO2 Capture 
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Model outputs (13 total) 
Geometry required (2) 

Operating condition required (1) 

Gas mole fractions (2) 

Solid compositions (2) 

Flow rates (2) 

Outlet temperatures (3) 

Design constraint (1) 

BUBBLING FLUIDIZED BED 

Model inputs (14 total) 
‒ Geometry (3) 

‒ Operating conditions (4) 

‒ Gas mole fractions (2) 

‒ Solid compositions (2) 

‒ Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 
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ADAPTIVE SAMPLING 

yes 

true 
false 
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Iterations
FGas_out Gas_In_P THX_out Tgas_out Tsorb_out
dt gamma_out lp vtr xH2O_ads_out
xHCO3_ads_out zCO2_gas_out zH2O_gas_out

Progression of mean error through the 
algorithm 

Initial data set: 
137 pts 

Final data set: 
261  
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EXAMPLE MODELS 
Solid feed 

CO2 rich gas 

Cooling 
water 
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SUPERSTRUCTURE OPTIMIZATION 
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SUPERSTRUCTURE OPTIMIZATION 
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Flue gas from 
power plant 

a1 
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a1 

Flue gas from 
power plant 

PRELIMINARY RESULTS 

41 

a2 

d1 

Solid sorbent 
stream 

Cleaned gas 

Other 
capture 
trains 

Regen. 
gas 

Cooling water 
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Work 



Carnegie Mellon University 

The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 

 Tractable in an optimization framework (low-complexity models) 

 Generated from a minimal number of function evaluations 
 

Surrogate models can then be incorporated within a 
optimization framework flexible objective functions and 
additional constraints 

 

CONCLUSIONS 

Automated Learning of Algebraic Models for Optimization 

ALAMO 

42 
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MODEL REDUCTION TECHNIQUES 
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Qualitative tradeoffs of model 
reduction methods 

Backward elimination [Oosterhof, 63]  
Forward selection [Hamaker, 62] 

Stepwise regression [Efroymson, 60] 

Regularized regression techniques 
• Penalize the least squares objective using the 

magnitude of the regressors 

Best subset methods 
• Enumerate all possible 

subsets 
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BEST SUBSET METHOD 
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Surrogate subset model: 

 

 

 

Mixed-integer surrogate subset model: 

 

 

 

Generalized best subset problem mixed-integer formulation: 
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Further reformulation 
‒ Replace bilinear terms with big-M constraints 

 

 

‒ Decouple objective into two problems 

 

 

 

 

‒ Inner minimization objective reformulation 

 

 

 

 

 

 

MIXED-INTEGER PROBLEM 

45 

b) basis and coefficient selection  

a) model sizing 
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PROBLEM SIMPLIFICATIONS 
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‒ Inner problem 

• Stationarity condition used to solve for continuous variables 

 

 

 

 

• Linear objective used to solved for integer variables 

-5

-4

-3

-2

-1

0

0 2 4 6

AICc

     T 

Solution 

Simplifications: 
‒ Outer problem 

• The outer problem is parameterized 
by T and a local minima is found 
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