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PROBLEM STATEMENT

min  f(z)
s.t. g(x) <0
xre ACR"
i ) ()
Input-output L
T plackbox | ™
\ J

where f(x) is an algebraic or black-box cost function
g(x) is a set of algebraic or black-box constraints

A is a set of box constraints on x
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MOTIVATION

* Simulation optimization

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory
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CHALLENGES

SOURCE: Simulator

No algebraic model

SOURCE : Optimizer

Costly simulations

a7

hours
minutes

_/ seconds

A Gradient-based methods
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CHALLENGES

No algebraic model Complex process alternatives
Cost 1 1 reactor
$ 3 reactors

< D1

Reactor size

SOURCE : Optimizer © B sOURCE : Optimizer (4]

Costly simulations Scarcity of fully robust simulations
hours
| minutes
_/ seconds
A Gradient-based methods /A Derivative-free methods
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SOLUTION STRATEGY

Block 1: Model
Simulator generation

_____ —> 4 Y
|
| A~
D min f(x
i Block 2: Model A( ) -
! Simulator generation st g(z) <0
. 52 : recACR"
=== -~ J \_ J
Block 3: Model
Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate Add algebraic constraints
process blocks models with a functional design specs, heat/mass
form tailored for an balances, and logic
optimization framework constraints
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RECENT WORK IN CHEMICAL ENG

Modeling Methods Used

Kriging Neural nets Polynomial-based

fz)y= ) B

j=1,2,...
Full process = Palmer and Realff,
2002 )
= Davis and ' al., 2001 2002
lerapetritou, 2012
= Caballero and = Henao and
Grossmann, 2008 Maravelias, 2011
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USE SURROGATE MODELS

* To replace black-box objectives

— Generate surrogate o Surrogate
models for the model \
objective as a f(x)
whole or in-parts \

True ]
objective

* To replace black-box constraints

— Define the problem space

— Generate equality or inequality
constraints
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CHALLENGES

No algebraic model Complex process alternatives
Cost 1 1 reactor
$ 3 reactors

_ OF .
Reactor size

SOURCE : Optimizer © B sOURCE : Optimizer (4]

Costly simulations Scarcity of fully robust simulations
hours
| minutes
_/ seconds
A Gradient-based methods /A Derivative-free methods
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CHALLENGES

No algebraic model Complex process alternatives
Cost 1 1 reactor
$ 3 reactors

_ OF .
Reactor size

SOURCE : Optimizer © B sOURCE : Optimizer

v O

Costly simulations Scarcity of fully robust simulations
hours
| minutes
_/ seconds
A Gradient-based methods /A Derivative-free methods
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LEARNING PROBLEM STATEMENT

* Model building problem:

— Build a model of output variables z as a function of input variables x
over a specified interval

r € RP
< p < g

(o)

T2

Zd

)

—

Independent variables:

Operating conditions, inlet flow

properties, unit geometry

r

Process simulation
or experiment

—

(1)

z2

Rk

o/

2 e RE

2= f(z)

Dependent variables:
Efficiency, outlet flow conditions,
conversions, heat flow, etc.
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HOW TO BUILD THE SURROGATES

* We aim to build surrogate models that are

— Accurate
* We want to reflect the true nature of the simulation

— Simple
 Tailored for algebraic optimization

f(a?) :Z%exp (H;%H) + 6o+ B+ ..
i=1

~

f(z) =B1x+ Boa? + B33 + B4 €”

— Generated from a minimal data set
* Reduce experimental and simulation requirements
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ALAMO

Automated Learning of Algebraic Viodels for Optimization

( Start )

A\ 4

Initial sampling

v

(" Build surrogate

N\

\ 4

model

A 4

Update

set

training data

Adaptive
sampling

a

false

\ Black-box function

(_Stop )
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ALAMO

Automated Learning of Algebraic Viodels for Optimization

( Start )
|

| | /

N\

!

(" Build surrogate
model

\ 4

A 4

Update
training data
set

a

Adaptive
sampling

false

/

Black-box function

(_Stop )
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ALAMO

Automated Learning of Algebraic Viodels for Optimization

( Start )
[ Initial sampling q l
v
v
Update Adaptive
training data samblin
set p1ns

a

false

\ Current model
Black-box function

(_Stop )
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ALAMO

Automated Learning of Algebraic Viodels for Optimization

( sStart )
4 < N
Initial sampling q l
\,
'
4 . N
| Build surrogate
. model --
! |
Update
training data Model
sﬁt error
false l

Current model

/

Black-box function

(_Stop )
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ALAMO

Automated Learning of Algebraic Viodels for Optimization

( Start )
Initial sampling I 4 - 5 data points /
( l N
| Build surrogate
‘ \ model
[ Adaptive
sampling

\ Black-box function

false

(_Stop )

Carnegie Mellon University



ALAMO

Automated Learning of Algebraic Viodels for Optimization

( start )
[ Initial sampling 4 - 5 data points /
v
.
Update Adaptive
training data samblin
set p1ns

a

false

\ New model
Black-box function

(_Stop )
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ALAMO: ADAPTIVE SAMPLING

Identifying simple, accurate models

O e S———
( sStart )
[ Initial sampling ] q /
v
|
Update [ Adaptive ]
training data .
st sampling

false

: Current model

\ Black-box function

(_Stop )




MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
Neural nets [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]

>

Preferred f =~
region § _

Model accuracy

Linear response surface

>

Model complexity
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MODEL IDENTIFICATION

* @Goal: Identify the functional form and complexity of the
surrogate models
z = f(x)

*  Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(x)

I. Polynomial (ivd)a

1. Multinomial I @™
deD'CD

ITI. Exponential and loga- exp (”fy—d) , log (%d)
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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OVERFITTING AND TRUE ERROR

Step 1: Define a large set of potential basis functions

-

\ ¢—§

z(x) —\50 H b1ay +(ﬁ2272)+ B3r1xe + 34— —I—"[D’5—‘+ Bee™? +'ﬁ7e

*v’ ,].’ *-—’

Step 2: Model reductlon % »

QA A’

2(x ) 50 + Baxo + /35—1 + [Bre®?

Error

Ideal Model

< True error

— Empirical error

Complexity

< >
Underfitting Overfitting
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MODEL REDUCTION TECHNIQUES

* Qualitative tradeoffs of
model reduction methods

Best subset methods
* Enumerate all possible
subsets

Regularized regression techniques
* Penalize the least squares objective using the
magnitude of the regressors

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63]
Forward selection [Hamaker, 62]
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MODEL REDUCTION TECHNIQUES

* Qualitative tradeoffs of
model reduction methods

To solve large problems we

* Use optimization rather than enumeration - Best subset methods
« Decouple the model identification into * Enumerate all possible
1. Model size subsets

2. Term selection

Regularized regression techniques
* Penalize the least squares objective using the
magnitude of the regressors

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63]
Forward selection [Hamaker, 62]
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MODEL SIZING

Solve for the best
A one-term model

Goodness-of-fit —_—
measure o

Complexity or terms allowed in the model
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MODEL SIZING

A

Goodness-of-fit Solve for the best
measure two-term model

—

Complexity or terms allowed in the model
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Goodness-of-fit
measure

Some measure of
error that is sensitive
to overfitting
(AlCc)

Carnegie Mellon University

A

MODEL SIZING

Solve for the best
two-term model

Complexity or terms allowed in the model



MODEL SIZING

A

Goodness-of-fit
measure

6th term was not worth the
added complexity
Final model: 5 terms long

D—

Complexity or terms allowed in the model
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BASIS FUNCTION SELECTION

=1 JEB
S.t. Zyj =
jE€B
N .
—U(l—yj)SZXJ ZZ_ZJBJXJ <U(l-y;) JjeB
i=1 JEB
Bly; < By < By; jeB




BASIS FUNCTION SELECTION

Find the model with the

- B least error
S.t. Zyj =T
JjeEB
N .
—U(l—yj,)gz:)(,,J zZ—Zﬁij <U(l-y;) jeB
i=1 jeB
Bly; < B; < B%y; jeB




BASIS FUNCTION SELECTION

Carnegie Mellon University

We will solve this model for increasing T
until we determine a model /




BASIS FUNCTION SELECTION

N

=1 jeB
> vi=T
jeEB
N
1*% SZ ij ZZBJ ij Squyj) jeb
=1 jeB
Bngﬁggﬁ JGB
yj‘:{oal} JEB
yi =1 yj =0

Basis function used in the model \/ Basis function NOT used
B; is chosen to satisfy a least in the model
squares regression
(assumes loose bounds on f3;) Bj =0
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ALAMO: ADAPTIVE SAMPLING

Choosing new data points to sample

( sStart )
( - N
Initial sampling q /
\,
'
( . N
| Build surrogate
model --
! |
Update
training data Model
Sﬁt error
false 1
Current model

/

Black-box function




ERROR MAXIMIZATION SAMPLING

* @Goal: Search the problem space for areas of model
inconsistency or model mismatch

* More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Surrogate model

x z(x)
N Black-box value

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]

— Derivative-free solvers work well in low-dimensional spaces
[Rios and Sahinidis, 12]
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ERROR MAXIMIZATION SAMPLING

Original system N Relative

* Information gained using error maximization sampling:

— New data point locations that will be used to better train the next
iteration’s surrogate model
— Conservative estimate of the true model error
* Defines a stopping criterion
» Estimates the final model error
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CHALLENGES

SOURCE: Simulator SOURCE : Simulator

No algebraic model

By

Complex process alternatives

Cost 1 1 reactor

$ 3 reactors

< D1

Reactor size

SOURCE : Optimizer

Costly simulations

a7

hours
minutes

_/ seconds

v ©

SOURCE : Optimizer

v O

Scarcity of fully robust simulations

A Gradient-based methods

A Derivative-free methods
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SYNOPSIS

* Leverage accurate, simple, efficiently build surrogate models
to expand the scope of MINLPs

Model i Sample Points Model i+1
i\ Surrogate / | B
model surrogate
model
Data Model
points error AN
Black-box 7 «New sample
functlon point
<°/~f
" Maximizatio® bUIld mode
Derivative-free Mixed-integer
optimization programming for
In low dimensions best simple model
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ACCURATE, SIMPLE, AND EFFICIENT

Computational experiments to validate ALAMO

* @Goal - Test the accuracy, efficiency, and model simplicity

* Modeling methods compared
— MIP - Proposed methodology
— LASSO - The lasso regularization
— OLR - Ordinary least-squares regression

* Sampling methods compared
— EMS - Proposed error maximization technique
— SLH - Single Latin hypercube (no feedback)

* Two test sets
— Test set A — Bases available to ALAMO

— Test set B — Functions with forms not available to ALAMO
O sSS————aaaaaaa|




COMPUTATIONAL EXPERIMENTS

Model accuracy

Fraction of problems solved

0 0.002 0.004 0.006 0.008 0.01
Normalized test error

Modeling methods

Our LASSO Least
method squares
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COMPUTATIONAL EXPERIMENTS

Model accuracy

80% of the runs
" 4 vyielded <0.1% error

Fraction of problems solved

0 0.002 0.004 0.006 0.008 0.01
Normalized test error

Modeling methods

Our LASSO Least
method squares
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COMPUTATIONAL EXPERIMENTS

Model accuracy

Fraction of problems solved

0 0.002 0.004 0.006 0.008 0.01
Normalized test error

Modeling methods

Our LASSO Least
method squares
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COMPUTATIONAL EXPERIMENTS

Model accuracy Modeling efficiency

1.0
T 5 f
s 208"
o (=]
(%) w
(%] "
OEJ g 0.6 - J_rr'—rr
e -
o o
o o
S 5 04 -
c c
2 S
L d
S C02 -
0.0 ‘ ‘ ‘ ‘ 0.0
0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40
Normalized test error Simulation runs
Modeling methods Sampling methods
Our Least Error = Single Latin
LASSO - :
method squares maximization | : hypercube
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COMPUTATIONAL EXPERIMENTS

Model accuracy Modeling efficiency

04 Il_r-H 70% of the runs
completed with
0.2 - J; <10 data points

T T T T 0-0 I I I
0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40

Normalized test error Simulation runs

Modeling methods Sampling methods

Our Least Error ! Single Latin :
LASSO . : :
method squares maximization | : hypercube :

Fraction of problems solved

Fraction of problems solved

0.0
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COMPUTATIONAL EXPERIMENTS

Model accuracy Modeling efficiency

1.0
T 5 f
s 208"
o (=]
(%) w
(%] "
OEJ g 0.6 - J_rr'—rr
e -
o o
o o
S 5 04 -
c c
2 S
L d
S C02 -
0.0 ‘ ‘ ‘ ‘ 0.0
0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40
Normalized test error Simulation runs
Modeling methods Sampling methods
Our Least Error = Single Latin
LASSO - :
method squares maximization | : hypercube
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MODEL SIZING RESULTS

No. of terms in the B No. of terms in
surrogate model the true function
Our method The LASSO
0.8 0.8 0.8
0.7 - ] r = —0.84 0.7 r=4.3 0.7
- 06 - g = 17 06 g = 49 0.6 -
g 0.5 - 0.5 - 0.5
Q
g_ 04 0.4 - 04 -
Y 03 03 - 03 -
Ll
0.2 - \ 02 - 02 -
0.1 0.1 - 0.1 - -
0 &k w 0 : T r T T T 0 i_

8 -4 0 4 8 12 16 20 24 28 32 36 8 4 0 4 8 12 16 20 24 28 32 36 8 4 0 4 8 12 16 20 24 28 32 36

Tsurroga,te _ Ttrue Tsurrogate _ Ttrue Tsurroga,te _ Ttrue

45 problems with 2-10 available bases, 5 repeats
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REMARKS

* Model building

— The ALAMO model building method shows the highest accuracy,
using the fewest data points, while giving the most simple models

* Experimental design

— The Error Maximization Sampling method used provides more
information per data point sampled resulting in more accurate
models with a given data set size

*  ALAMO availability

— Licensed through the National Energy Technology Laboratory
(Department of Energy Lab) to several industrial companies

Carnegie Mellon University



ILLUSTRATIVE EXAMPLE
Bubbling fluidized bed adsorber

Outlet gas Solid feed

|

~~—

.ﬁ

Cooling g
water

—

\

I 1

CO, rich CO, rich solid
gas outlet

* @Goal: Optimize a bubbling fluidized bed reactor by
— Minimizing the cost of electricity

— Maximizing CO2 removal




ILLUSTRATIVE EXAMPLE
Bubbling fluidized bed adsorber

~~——

—_—

Cooling g

water

<_\
.

CO, rich solid
outlet

* @Generate model of % CO2 removal:

TCOQ( ) )Zfl( ) )

*  Problem space:

<10 m

4 kmol
< 20 10% kmo

1m
4 kmol
1 - 104 ko

IAIA




ALGORITHM PROGRESS

Normalized model error

Normalized RMSE
o < < <
[\ (OS] S i

S
[
|

1 2 3 4 5
Iterations

Carnegie Mellon University

—o-Test
-o—Estimated
-o-Max found

6 7 Final

Iteration

Training points

1
2
3
4
5
6
7

Final

4
6
8
10
12
14
23
35




ALGORITHM PROGRESS

Normalized model error

0.7
-o—-Test
06 R -o—Estimated
' -e-Max found Iteration Training points
& 0.5 - 1 4
E 2 6
504 - Increased error d.ue 3 8
g to smarter adaptive 4 10
®© 03 - sampling 5 12
£ 6 14
202 - 7 23
Final 35
0.1 -
0

1 2 3 4 5 6 7 Final
Iterations
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ITERATION SNAPSHOTS

ALAMO Iteration 1 ALAMO Iteration 3 ALAMO Iteration 7
Training Points EMS Point Training Points EMS Point Training Points EMS Points
0.45 0.45 0.45
0.4 , 0.4 . 0.4 p
L 035 0.35 035 - o
@ 0.3 0.3 > 0.3 .."_.
- 025 0.25 0.25
Eo 02 - 02 - 02
015 4 o 015 - o 015 &
0.1 T T T 0.1 T T T 0.1 T T T
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Simulated rc02 Simulated rc02 Simulated rc°2

Tteration Terms (max 67) Model

1 2 (8.1-1077) FVL+0.14
3 3 0014 VF— (44F VL +11F L) 1070
7 12 —A2L 4 029 1015 YT + ST 4 (890)° — (29)" + (2L — 55 VFL+56VF +4112) 107
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FINAL ITERATION — MODEL BUILD

Building model for iter 7

125 0.05
--AlCc
175 - --RMSE 004
225 -
- 0.03 w
& ]
9 275 =
< o
- 0.02
325 -
375 - - 0.01
425 I I I I ] ——r———0—0-._ (.00
12345678910111213
Terms used
13t term is not
worth the added
complexity
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OPTIMAL PARETO CURVE

* Once a set surrogate models are built, many optimization
problem can be efficiently solved

BFB Pareto Curve

max 102

0.24 d/

0.23
v
<]
S 0.22 -

021

i Utopian point
O« min COE —
0.20 | | O

0.14 0.24 0.34
Fraction of CO, removed
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OPTIMAL PARETO CURVE

* Once a set surrogate models are built, many optimization
problem can be efficiently solved

BFB Pareto Curve

-e-Optimal pareto curve max <02
024 -
0.23 -
n
&8
Qo022 -
021 -
: - Utopilan point
min COE O/ p p
0.20 |

0.14 0.24 0.34
Fraction of CO, removed
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OPTIMAL PARETO CURVE

* Once a set surrogate models are built, many optimization
problem can be efficiently solved

BFB Pareto Curve

Simulated data -e-Optimal pareto curve max 02
0.24 -
0.23 -
w L}
S
O 0.22
) L
0.21 - '
» Utopi int
. - Oplall poOI1I1l
min COE O/ plait p
0.20 ‘

0.14 0.24 0.34
Fraction of CO, removed
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OPTIMAL PARETO CURVE

* Once a set surrogate models are built, many optimization
problem can be efficiently solved

BFB Pareto Curve

Test data © Training Data -e-Optimal pareto curve

|
0.24 |

0.23

COE, $
<
N

0.21 -

0.20

0.14 0.24 0.34
Fraction of CO, removed
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FINAL REMARKS

* Expanding the scope of MINLPs

— Using low-complexity surrogate models to strike a nin 5((:)) -
balance between optimal decision-making and veAcRe
model fidelity

* Surrogate model identification \\
— Simple, accurate model identification — MILP A
formulation i »
* Error Maximization
— More information found per each simulated data 'bv/' f_(}v/' '\,v/'
S N

point

* Surrogates used to replace black-boxes

— Efficiently solve numerous and/or complex
optimization problems
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BEST SUBSET METHOD

* @Generalized best subset problem:

min (S, )
st. SCB

where ®(S, ) is a goodness of fit measure for the subset of
basis function, &, and regression coefficients, .
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BEST SUBSET METHOD

* Surrogate subset model:

2z) =) B X;(x)

JES

*  Mixed-integer surrogate subset model:

jeB y; =0 j¢&S§

* @Generalized best subset problem mixed-integer formulation:

min  ®(5,y)
Very tough By
to solve st. y; ={0,1}
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MIXED-INTEGER AICC

* Corrected Akaike information criterion (AICc) [Hurvich and Tsai,
93]

2
N
2|S1(S]+1)
1
AIC(S, ) = Nlog (wZ (Zijesﬁjxij) ) AT N e

1=1

* Substituting the mixed integer surrogate form into AlCc:

= 2 2355 (505 +1
AICc(B,y;) = N log (&Z(Zz Z yJJBj)Xij) )+22jyj+ J 3( j I )

jEB N_ijj_l

1=1

JEB

2
AICc(B,y;) = Nlog (N Z (Zz Z yyﬂj)Xij) ) + 21+ f_(TT+_1i
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MIXED-INTEGER PROBLEM

N
1
én%n AICce(B,T,y) = N log (N ;

s.t. Zyj =T

JjEB

2
(zi (y;8;) X ) ) + 2T + ?\Cfr_(TT—l__li
jeB

yj':{oal} jEB




MIXED-INTEGER PROBLEM

* Further reformulation
— Replace bilinear terms with big-M constraints

yiB;  — By < B; < By,

— Decouple objective into two problems
a) model sizing

A
p
General: min ®(5,7T,y) = min {min (P, (B, y)|T] + @T(T)}
BTy T By
N J

~
b) basis and coefficient selection

AICc(B,T):  AICcs,(B,y)lr = Nlog| %>
1

N
— JeB

(Zi > (W;B) Xz'j)

2

2T (T + 1)

Al ) =2T
Cer(T) +N—T—1

— Inner minimization objective reformulation
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NESTED MIXED-INTEGER PROBLEM

2
2T (T + 1)
EB(yy'Bj)Xij) ) MR v —

N
min Nlog | + [
Te{l,...,.T+} S (N Z ( i
2
N
a B Z (Z’ N Zﬁij:j)

JEB
/Blyj S Bj S Buyj J € B
y; ={0,1} jEB

a) Model sizing
b) Basis and coefficient selection
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PROBLEM SIMPLIFICATIONS

* Outer problem
— The outer problem is parameterized by T and a local minima is found

a

Goodness-of-fit Best two- 6th term was not worth the
measure . term model added complexity
(AICc) ~__ Final model: 5 terms long

Tern:ls alllo;/ve(.j in. th;e rr;od;I
* Inner problem
— Stationarity condition used to solve for continuous variables

N 2 N
%Z (Zi_ZBJX'ij) OCZXij (Zi_ZBinj) =0, €8
i=1

1=1 JjeS jeS

— Linear objective used to solved for integer variables

N
Objective: Z Zi — ZﬁjXﬁj
JjES

i=1
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FINAL BEST SUBSET MODEL

min SE = Z
doy=T

jeB

Z’L Zﬂj Zj

JjEB

N
U(l—y;) §Z j(Z_Z/@J ) Ul —y;) jeB

jeB
Bly; < B < By jeb
ij{O,l} jEB
Bj € (85, B jEB

* This model is solved for increasing values of T until the AICc worsens
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