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PROBLEM STATEMENT 

Input-output 
black box 
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MOTIVATION 

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory 

• Simulation optimization 
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CHALLENGES 

X Gradient-based methods 

SOURCE: Simulator 1 

SOURCE : Optimizer 2 

No algebraic model 

Costly simulations 

seconds 
minutes 

hours 
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CHALLENGES 

X Gradient-based methods 

SOURCE: Simulator 1 

SOURCE : Optimizer 2 

No algebraic model 

Costly simulations 

seconds 
minutes 

hours 

X Derivative-free methods 

SOURCE : Simulator 3 

SOURCE : Optimizer 4 

Complex process alternatives 

Scarcity of fully robust simulations 

Cost 

$ 

1 reactor 
2 reactors 

3 reactors 

Reactor size 
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SOLUTION STRATEGY 

Block 1: 

Simulator 

Model 

generation 

Block 2: 

Simulator 

Model 

generation 

Block 3: 

Simulator 

Model 

generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 
design specs, heat/mass 

balances, and logic 
constraints 



Carnegie Mellon University 7 

RECENT WORK IN CHEMICAL ENG 

Full process 

Disaggregated 

Kriging Neural nets Polynomial-based 

 Michalopoulos et 
al., 2001 

 Palmer and Realff, 
2002 

 Huang et al., 2006  
 Davis and 

Ierapetritou, 2012 

 Caballero and 
Grossmann, 2008 

 Palmer and Realff, 
2002 

 Henao and 
Maravelias, 2011 

Modeling Methods Used 
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• To replace black-box objectives 

 

 

 

 

• To replace black-box constraints 

USE SURROGATE MODELS 

True 
objective 

Surrogate 
model 

 

– Define the problem space 

– Generate equality or inequality 
constraints 

 

 

– Generate surrogate 
models for the 
objective as a 
whole or in-parts 
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CHALLENGES 

X Gradient-based methods 

SOURCE: Simulator 1 

SOURCE : Optimizer 2 

No algebraic model 

Costly simulations 

seconds 
minutes 

hours 

X Derivative-free methods 

SOURCE : Simulator 3 

SOURCE : Optimizer 4 

Complex process alternatives 

Scarcity of fully robust simulations 

Cost 

$ 

1 reactor 
2 reactors 

3 reactors 

Reactor size 

 
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CHALLENGES 

X Gradient-based methods 

SOURCE: Simulator 1 

SOURCE : Optimizer 2 

No algebraic model 

Costly simulations 

seconds 
minutes 

hours 

X Derivative-free methods 

SOURCE : Simulator 3 

SOURCE : Optimizer 4 

Complex process alternatives 

Scarcity of fully robust simulations 

Cost 

$ 

1 reactor 
2 reactors 

3 reactors 

Reactor size 

  

 
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• Model building problem:  
– Build a model of output variables z as a function of input variables x 

over a specified interval 

 

 

 

 

 

 

 

 

LEARNING PROBLEM STATEMENT 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
 

Process simulation 
or experiment 
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• We aim to build surrogate models that are 

– Accurate 
• We want to reflect the true nature of the simulation 

 

– Simple 
• Tailored for algebraic optimization 

 

 

 

 
 

– Generated from a minimal data set 
• Reduce experimental and simulation requirements 

 

HOW TO BUILD THE SURROGATES 
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ALAMO 

Automated Learning of Algebraic Models for Optimization 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Black-box function 
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ALAMO 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Black-box function 
Training data 

Automated Learning of Algebraic Models for Optimization 
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ALAMO 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Automated Learning of Algebraic Models for Optimization 

Black-box function 
Training data 

Current model 
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ALAMO 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Model 
error 

Automated Learning of Algebraic Models for Optimization 

Black-box function 
Training data 

Current model 
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ALAMO 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Automated Learning of Algebraic Models for Optimization 

Black-box function 
Training data 

4 → 5 data points 
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ALAMO 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Automated Learning of Algebraic Models for Optimization 

Black-box function 
Training data 

4 → 5 data points 

New model 



ALAMO: ADAPTIVE SAMPLING 
Identifying simple, accurate models 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Black-box function 
Training data 

Current model 
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MODEL COMPLEXITY TRADEOFF 

Kriging [Krige, 63] 

Neural nets [McCulloch-Pitts, 43]  
Radial basis functions [Buhman, 00] 

Model complexity 

M
o

d
e

l a
cc

u
ra

cy
 

Linear response surface 

Preferred 
region  
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• Goal: Identify the functional form and complexity of the 
surrogate models 

 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 

 

 

 

 

 

MODEL IDENTIFICATION 



Carnegie Mellon University 22 

Step 1: Define a large set of potential basis functions 

 

Step 2: Model reduction 

 

OVERFITTING AND TRUE ERROR 

Complexity 

Er
ro

r 

Ideal Model 

Overfitting Underfitting 

True error 

Empirical error 
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• Qualitative tradeoffs of 
model reduction methods 

MODEL REDUCTION TECHNIQUES 

Backward elimination [Oosterhof, 63]  

Forward selection [Hamaker, 62] 

Stepwise regression [Efroymson, 60] 

Regularized regression techniques 
• Penalize the least squares objective using the 

magnitude of the regressors 

Best subset methods 
• Enumerate all possible 

subsets 
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• Qualitative tradeoffs of 
model reduction methods 

MODEL REDUCTION TECHNIQUES 

Backward elimination [Oosterhof, 63]  

Forward selection [Hamaker, 62] 

Stepwise regression [Efroymson, 60] 

Regularized regression techniques 
• Penalize the least squares objective using the 

magnitude of the regressors 

Best subset methods 
• Enumerate all possible 

subsets 

 

To solve large problems we 
• Use optimization rather than enumeration 
• Decouple the model identification into 

1. Model size 
2. Term selection 
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MODEL SIZING 

Complexity or terms allowed in the model 

Goodness-of-fit 
measure 

Solve for the best 
one-term model 
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MODEL SIZING 

Complexity or terms allowed in the model 

Goodness-of-fit 
measure 

Solve for the best 
two-term model 
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MODEL SIZING 

Complexity or terms allowed in the model 

Goodness-of-fit 
measure 

Some measure of 
error that is sensitive 

to overfitting 
(AICc) 

Solve for the best 
two-term model 
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MODEL SIZING 

Complexity or terms allowed in the model 

Goodness-of-fit 
measure 

6th term was not worth the 
added complexity 

Final model: 5 terms long 
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BASIS FUNCTION SELECTION 
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BASIS FUNCTION SELECTION 

Find the model with the 
least error 
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BASIS FUNCTION SELECTION 

We will solve this model for increasing T 

until we determine a model 
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BASIS FUNCTION SELECTION 



ALAMO: ADAPTIVE SAMPLING 
Choosing new data points to sample 

true 

Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Model 
error 

Black-box function 
Training data 

Current model 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 

 

 

 

 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

– Derivative-free solvers work well in low-dimensional spaces 
[Rios and Sahinidis, 12] 

 

ERROR MAXIMIZATION SAMPLING 

Surrogate model 

Black-box value 
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• Information gained using error maximization sampling: 
– New data point locations that will be used to better train the next 

iteration’s surrogate model 

– Conservative estimate of the true model error 

• Defines a stopping criterion 

• Estimates the final model error 

ERROR MAXIMIZATION SAMPLING 

Relative 
model error 

Original system 
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CHALLENGES 

X Gradient-based methods 

SOURCE: Simulator 1 

SOURCE : Optimizer 2 

No algebraic model 

Costly simulations 

seconds 
minutes 

hours 

X Derivative-free methods 

SOURCE : Simulator 3 

SOURCE : Optimizer 4 

Complex process alternatives 

Scarcity of fully robust simulations 

Cost 

$ 

1 reactor 
2 reactors 

3 reactors 

Reactor size 

  

  
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Mixed-integer 
programming for 

best simple model 

Derivative-free 
optimization 

In low dimensions 

• Leverage accurate, simple, efficiently build surrogate models 
to expand the scope of MINLPs 

SYNOPSIS 

Model 
error 

New 
surrogate 

model 

Black-box 
function 

Surrogate 
model 

Data 
points 

Model i Sample Points Model i+1 

New sample 
point 



• Goal - Test the accuracy, efficiency, and model simplicity 

• Modeling methods compared 
– MIP – Proposed methodology 

– LASSO – The lasso regularization 

– OLR – Ordinary least-squares regression 

• Sampling methods compared 
– EMS – Proposed error maximization technique 

– SLH – Single Latin hypercube (no feedback) 

• Two test sets 
– Test set A – Bases available to ALAMO 

– Test set B – Functions with forms not available to ALAMO 

ACCURATE, SIMPLE, AND EFFICIENT 
Computational experiments to validate ALAMO 
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Modeling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy 

Our 
method 

LASSO 
Least 

squares 
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Modeling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy 

80% of the runs 
yielded <0.1% error 

Our 
method 

LASSO 
Least 

squares 
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Modeling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy 

Our 
method 

LASSO 
Least 

squares 
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Modeling methods Sampling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy Modeling efficiency 

Error 
maximization 

Single Latin 
hypercube 

Our 
method 

LASSO 
Least 

squares 
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Modeling methods Sampling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy Modeling efficiency 

Error 
maximization 

Single Latin 
hypercube 

70% of the runs 
completed with 
≤10 data points 

Our 
method 

LASSO 
Least 

squares 
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Modeling methods Sampling methods 

COMPUTATIONAL EXPERIMENTS 

Model accuracy Modeling efficiency 

Error 
maximization 

Single Latin 
hypercube 

Our 
method 

LASSO 
Least 

squares 
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MODEL SIZING RESULTS 

The LASSO Our method Least squares 

Fr
e

q
u

e
n

cy
 

45 problems with 2-10 available bases,  5 repeats 
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• Model building 
– The ALAMO model building method shows the highest accuracy, 

using the fewest data points, while giving the most simple models 

• Experimental design 
– The Error Maximization Sampling method used provides more 

information per data point sampled resulting in more accurate 
models with a given data set size 

• ALAMO availability 
– Licensed through the National Energy Technology Laboratory  

(Department of Energy Lab) to several industrial companies 
 

REMARKS 



• Goal:  Optimize a bubbling fluidized bed reactor by 
– Minimizing the cost of electricity 

– Maximizing CO2 removal 

 

ILLUSTRATIVE EXAMPLE 
Bubbling fluidized bed adsorber 

CO2 rich solid 
outlet 

Outlet gas Solid feed 

CO2 rich 
gas 

Cooling 
water 



Cooling 
water 

• Generate model of % CO2 removal: 

 

• Problem space: 

ILLUSTRATIVE EXAMPLE 
Bubbling fluidized bed adsorber 

CO2 rich solid 
outlet 
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ALGORITHM PROGRESS 
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ALGORITHM PROGRESS 

Increased error due 
to smarter adaptive 

sampling 
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ITERATION SNAPSHOTS 
M

o
d

e
le

d
 r

C
O

2
 

Simulated rCO2 Simulated rCO2 Simulated rCO2 
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FINAL ITERATION – MODEL BUILD 

13th term is not 
worth the added 

complexity 
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• Once a set surrogate models are built, many optimization 
problem can be efficiently solved 

OPTIMAL PARETO CURVE 
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• Once a set surrogate models are built, many optimization 
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OPTIMAL PARETO CURVE 
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• Once a set surrogate models are built, many optimization 
problem can be efficiently solved 

OPTIMAL PARETO CURVE 
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• Once a set surrogate models are built, many optimization 
problem can be efficiently solved 

OPTIMAL PARETO CURVE 
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• Expanding the scope of MINLPs 
– Using low-complexity surrogate models to strike a 

balance between optimal decision-making and 
model fidelity 

• Surrogate model identification 
– Simple, accurate model identification – MILP 

formulation 

• Error Maximization 
– More information found per each simulated data 

point 

• Surrogates used to replace black-boxes 
– Efficiently solve numerous and/or complex 

optimization problems 

 

 

FINAL REMARKS 
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BEST SUBSET METHOD 

5
8 

• Generalized best subset problem: 

 

 

 

 

 

 

 



Carnegie Mellon University 59 

BEST SUBSET METHOD 

5
9 

• Surrogate subset model: 

 

 

• Mixed-integer surrogate subset model: 

 

 

• Generalized best subset problem mixed-integer formulation: 

 

 

 

 

 

 

 

 

Very tough 
to solve 
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MIXED-INTEGER AICC 

6
0 

• Corrected Akaike information criterion (AICc) [Hurvich and Tsai, 

93] 

 

 

• Substituting the mixed integer surrogate form into AICc: 
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MIXED-INTEGER PROBLEM 

6
1 
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• Further reformulation 
– Replace bilinear terms with big-M constraints 

 
 

– Decouple objective into two problems 
 
 

 
 
 
 
 

 
 

– Inner minimization objective reformulation 
 
 
 
 
 
 
 
 
 

MIXED-INTEGER PROBLEM 

6
2 

b) basis and coefficient selection  

a) model sizing 
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NESTED MIXED-INTEGER PROBLEM 

6
3 

a) Model sizing 
b) Basis and coefficient selection  
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• Outer problem 
– The outer problem is parameterized by T and a local minima is found 

 

 

 

• Inner problem 
– Stationarity condition used to solve for continuous variables 

 

 
– Linear objective used to solved for integer variables 

 

 

PROBLEM SIMPLIFICATIONS 

6th term was not worth the 
added complexity 

Final model: 5 terms long 

Terms allowed in the model 

Goodness-of-fit 
measure 

(AICc) 

Best two-
term model 
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FINAL BEST SUBSET MODEL 

6
5 

 

 

 

 

 

 

 

 

 

 

 

• This model is solved for increasing values of T until the AICc worsens 


