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Abstract. Quantifying the impact of anthropogenic development on local populations is important for
conservation biology and wildlife management. However, these local populations are often subject to
demographic stochasticity because of their small population size. Traditional modeling efforts such as
population projection matrices do not consider this source of variation whereas individual-based models,
which include demographic stochasticity, are computationally intense and lack analytical tractability. One
compromise between approaches is branching process models because they accommodate demographic
stochasticity and are easily calculated. These models are known within some sub-fields of probability and
mathematical ecology but are not often applied in conservation biology and applied ecology. We applied
branching process models to quantitatively compare and prioritize species locally vulnerable to the
development of wind energy facilities. Specifically, we examined species vulnerability using branching
process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat
(short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and
an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all
of these species types, raising conservation concerns. We simulated different mortality rates from wind
farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and
eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-
lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a
much greater variability in baseline risk of extinction than the lower-offspring-producing species types.
Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this
threshold, the risk of extirpation for a local population may rapidly increase with only minimal increases in
wind mortality. Conservation biologists and wildlife managers may need to consider this mortality pattern
when issuing take permits and developing monitoring protocols for wind facilities. We also describe how
our branching process models may be generalized across a wider range of species for a larger assessment
project and then describe how our methods may be applied to other stressors in addition to wind.
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INTRODUCTION

Conservation biology and applied ecology
often make decisions about stressors that ad-
versely affect populations. These stressors may
affect populations that range from local to global
scale. Populations models are a tool to quantify
these risks and different models are appropriate
for different scales (Caswell 2001, Morris and
Doak 2002, Gotelli 2008). Two of the most
common approaches that are currently used
include matrix models and individual-based
models (IBMs). Matrix population models are
commonly used to model population-level dy-
namics through the study of aggregate groups or
stages of individuals (Cushing 1995, Caswell
2001). Simulation-heavy IBMs are increasingly
used to study how individuals influence popu-
lation-level dynamics by tracking and specifying
the actions and interactions of specific organisms
through time (Grimm et al. 1999, Grimm and
Railsback 2005). Both modeling approaches have
advantages and disadvantages. Population-level
models such as population projection matrices
have a long history of application, are relatively
easy to construct, program and parameterize,
and often have analytical solutions (Cushing
1995, Caswell 2001, Allen 2007). Theses models
work best when used with large, homogeneous
populations where individual variability tends to
not be important. An example with wind energy
development would be conducting a national- or
regional-level assessment such as Diffendorfer et
al. (2015). Conversely, IBMs focus on using rules
to describe individuals and then examine the
emergent properties of the system, including
population-level dynamics (Grimm et al. 1999,
Grimm and Railsback 2005). Developing IBMs
require more programming than either branch-
ing processes models or matrix models. The
resources needed to develop IBMs are not always
be available to conduct assessments for many
species. However, when examining the risk to a
single ecologically or economically important
species, an IBM may offer insight not found with
other approaches.

Branching process models (Caswell 2001), on
the other hand, use the analyticity of population-
level models and the individuality of IBMs to
approach the problem of assessing risk of
population extinction with recursive formulas
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from probability theory. This recursive formula
incorporates individual variability (Caswell 2001,
Haccou et al. 2005, Allen 2011, Meli et al. 2013)
and Caswell (2001) recommends that branching
process models be used to complement matrix
population models as means to include demo-
graphic stochasticity. Branching process models
are well known in probability theory (Haccou et
al. 2005) and some subdisciplines of mathemat-
ical biology, theoretical ecology, and epidemiol-
ogy (Allen 2011), but are rarely used in applied
ecology and conservation biology (Caswell 2001).
Branching process models align well with the
conservation needs of assessing the impacts of
stressors on wildlife at a local scale. One such
stressor is the development of wind energy
facilities.

Alternative energy sources such as solar and
wind hold the potential to decrease greenhouse
gas emissions and other types of pollution when
compared to energy produced from fossil fuels
(Turner 1999). The United States (US) has placed
a high priority on increasing electricity genera-
tion from wind turbines (Obama, State of the
Union Address, 2013). The US capacity for wind
power production was 61,108 megawatts at the
end of 2013 (AWEA 2014), accounting for
approximately 4% of all US electricity generation
for 2013 (USEIA 2014).

Wind power production varies greatly across
the US both temporally and spatially. For
example, on 28 March 2014, the Electric Reliabil-
ity Council of Texas (ERCOT) reported that
10,296 megawatts were produced at 8:48pm,
accounting for 29% of the electricity on ERCOT’s
grid (http://www.ercot.com/news/press_releases/
show/26611). Conversely, many areas of the US
have little to no power generated from wind
energy (Diffendorfer et al. 2014). Despite the
benefits of decreased pollution, wind energy
development may incur environmental costs
such as wildlife mortality (Kunz et al. 20074,
Kuvlesky et al. 2007, Loss et al. 2013a).

Conservation planning efforts in locations
where wind energy development has occurred
or will occur requires an understanding and
prioritizing of vulnerable species. Different spe-
cies of wildlife appear to be more vulnerable to
wind energy development and understanding
this vulnerability is critical to successful conser-
vation and management of wildlife (Kunz et al.
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Fig. 1. A graphical illustration of the branching
structure in the model (Eq. 2), where the probability of
population extinction by time ¢ is the sum of the
probabilities of various reproductive outcomes, p;,
multiplied by the probability that every of the
individuals reproduced elicits a population that goes
extinct by time t — 1,¢/_,. For overlapping generations
one can think of survival from one time-period to the

next as an organism reproducing itself.

2007a, Arnett et al. 2010).

Species may be vulnerable because of both
collision risk (e.g., some species suffer dispro-
portionate mortality) and their life history (e.g.,
some species may be more vulnerable to
increased mortality rates). Species producing
many offspring and having short lifespans
should be less vulnerable than species produc-
ing few offspring and having long lifespans.
This risk needs to be understood for hundreds
of species of both birds and bats across the
United States.

Wind energy development may have a local-
ized effect on wildlife populations. These small
populations are subject to demographic stochas-
ticity, a central attribute modeled by branching
process models (Caswell 2001, Allen 2011). The
size of local populations affected by wind energy
can range from just a few individuals for
organisms with a large home range such as
eagles to hundreds or possibly even a thousand
individuals for colonial species such as bats or
birds. Based upon these considerations, we used
branching process to model four generic life
history strategies to examine extinction probabil-
ities caused by vulnerabilities to wind energy
development. These four species types included
(1) a cave bat (e.g.,, Myotis spp.), (2) a tree bat
(e.g., Lasiurus spp.), (3) a grassland song bird
(e.g., Passeriformes), and (4) an eagle (e.g.,
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Accipitridae). We also compared branching pro-
cess models to population projection matrices to
facilitate a comparison between the two methods.

MATERIALS AND METHODS

Branching process models

Branching process models are individual-
based models for the growth or decline of
populations (Haccou et al. 2005) that, instead of
using simulations to track populations in time,
use a generating function f. This function is
similar to those used in population-level models,
and hence the overlap and relationship between
the two modeling approaches.

In the simplest case of a population with one
stage, we denote with X, the size of the
population at time ¢. Unlike many population-
level models, X, is only allowed to take on integer
values. We are initially concerned with the
probability of population extinction by time t,
given the population initially starts with one
individual. Mathematically, this is denoted as

e, = P(X, = 0|Xo = 1). (1)

If the probabilities of life events (e.g.,
survival, growth and reproduction) for an
individual are independent, ¢; is given recur-
sively by

e =po+pie—i +P2€,2,1 +P3€?,1 +...=f(e-)
(2)

where e,_; is the probability of extinction in ¢ —
1 time-steps, and p; is the probability of an
individual producing i individuals (including
possibly itself) during a given time period (Fig.
1). For example, if survival happens before
reproduction and individuals produce one
offspring with probability p and zero with
probability 1 — p, then py =1 — s (the individual
dies), p1 = s(1 — p) (the individual survives but
does not reproduce) and p, = sp (the individual
survives and reproduces). The term p;el | can
be thought of as the probability of going from
one individual to i individuals in one time-step,
only to have the populations elicited by each of
the offspring all go extinct in t — 1 subsequent
time steps. Summing up all of these possibil-
ities yields the probability of extinction in ¢
time-steps or fewer (see Fig. 1).

The function f is often called the probability
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generating function for the probability distri-
bution py, p1, p2, ..., which all sum to 1. Since
eg = 0 (the population is not extinct initially),
one can compute e, simply by iterating (2)
forward in time, using e; = f(0), ex = fle1) =
f(f0)), etc., to see that

e =f'(0) (3)

where f() is the function f composed with itself
t times (Caswell 2001, Haccou et al. 2005,
Bacaér and Dads 2014). Since 0 < e; < ¢; <
...< 1, we know that ¢; has a limit ¢*, which is
the asymptotic probability of population ex-
tinction, starting with one member. This limit
can be found by solving the fixed point
equation

e =f(e*). (4)

It follows that ¢* =1 (the population is sure to
go extinct in the long run) if A=£(1) <1 (where A
is the expected population growth rate), while e*
< 1 (there is a positive probability that the
population with persist) if A.=£(1) > 1, where f'(*)
is the first derivative of the function f. It is not
difficult to show that

A=pi+2p+3p3+ ..., (5)

which is the expected growth rate of the
population.

For species types with n discrete stages the
process of creating the probability generating
function for the (multitype) branching process
is analogous to the process above, with an
increase in dimension and complexity due to
the fact that individuals can change stages and
create new individuals throughout the range of
stages. In this multi-stage case extinction
probability is modeled with an n-dimensional
vector ¢ where the ith element of ¢ is the
probability of the entire population going
extinct by time-step t given that it started with
1 individual in stage i. The probability gener-
ating function f in this case is a non-linear
vector-valued function, which can be best
summarized using matrix notation. The order
and structure of the matrices for a given model
will depend on what one assumes for the order
of the various life history events. If one
assumes, as we do in this paper, that the order
of life history events is survival, followed by
growth, followed by reproduction and recruit-
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ment into the newborn stage, then one can see
that € is given recursively by

é=(—S)1+ (STE! \PE._J), (6)

where 1 is a vector of n ones, I is the n X n
identity matrix

1 0 0
0 1 0
I=1. . .
0 0 1

S is the n X n survival matrix

S1 0 0

0 S2 ... 0
S=1. . . - |

0O 0 ... s,

where s; is the probability of survival by an
individual of stage i in a given time-step, T is
the n X n transition matrix

W tip ... Mlnp
fhy In bon

T = . )
i I Ihn

where t;; is the probability of transitioning from
stage i to stage j (conditioned on survival) in a
given time-step, E? | is the n X n time-varying
matrix

€141 0 N 0
O €241 P 0
d ;
E = : : :
0 0 Cnit—1

denoting the distribution of individuals after
they stage transition, P is the n X N reproduc-
tion matrix

P11 P12 PIN

P21 P22 P2N
P= . . .

Pnl Pn2 PnN

where p;; is the probability of an individual in
stage i producing j newborns (conditioned on
survival) in a given time-step (where N can be
theoretically unbounded), E; ; the N X n time-
varying matrix
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tracking the extinction probability of populations
elicited by the various possible reproductive
events, and | the juvenile distribution vector

T=1ljo il (7)
where j; is the probability that a newborn ends
up in stage i during their first time-step (the
superscript T denotes matrix/vector transposi-
tion).

For a two-stage model where all newborns are
placed in the first stage, and individuals can
grow from the first stage to the second with
probability ¢ and one can have at most one
newborn each time-step (but both stages can
reproduce), the model (6) can be written as

el =1—1s
+5((1 — g)er—1(pio +priei—1)
+gex1(p2o + preis—1)) (8)

e, =1 =55+ s2e2,-1(p20 + p21€1,-1),

where
_ S 0
$= ( 0 S2)
_(1-g &
(5" 1)
d [ €1 0
Eei= < 0 62;;—1)
p— <P10 P >
P20 P21
. 1 1
E_ =
-l <€1;r—1 €21 )
and ] =[1 0]~

To find the expected growth rate of the
population modeled by (6) one takes the trans-
pose of the Jacobian (n-dimensional derivative)
matrix for f evaluated at the vector 1 of ones and
then finds the leading eigenvalue. Provided that
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the population model is primitive (there is a
positive probability that each stage can contrib-
ute to each stage in a finite number of time-steps)
this leading eigenvalue is the growth rate A of the
population (Caswell 2001, Allen 2011). Addition-
ally, the matrix for which we take the leading
eigenvalue ends up being what one would use
for the projection matrices of the population if we
ignored stochasticity. As with the one-dimen-
sional model, if < 1 the entire population is
predicted to go extinct with probability 1,
regardless of initial population distribution, and
if A > 1 there exists a vector é* that is a fixed
point for the model (6), where the ith element of
é* is the long-term probability of population
extinction given the population started with one
individual in stage i.

In this paper we are concerned with the
probability of population extinction starting from
various initial populations sizes, not just initial
populations with one individual. We investigat-
ed extinction probabilities across a range of initial
population sizes based upon targets for popula-
tion management. These sizes are described in
the next section. If we assume that individuals
and their offspring are independent, then we can
find the probability of total population extinction
by time t, g, starting with an initial population
distribution Xo = [x1,0, X2,0, - - -, xn,O]T by using

o X10 X0  Xno
g=ep, ey, ey 9)

Representative species types

To investigate how the effects of wind turbine
mortality might impact species with different life
histories, we studied 4 species types: A short-
lived, high fecundity species (grassland song
bird); a long-lived, slow maturation species
(eagle); a long-lived, low fecundity species (cave
bat); and a short-lived, moderate fecundity
species (tree bat). We only modeled females from
each species because males are less important
from a population-level perspective (Caswell
2001). Additional details about these species are
provided in the following paragraphs and Fig. 2.

We compared different aspects of the branch-
ing process model in addition to life history
strategy. We explored the importance of popula-
tion size on the risk of local extinction from
demographic stochasticity by comparing differ-
ent population sizes. We examined population
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Fig. 2. Branching process model inputs. Each column is a different species and each row is a different life stage.

sizes of 30 individuals because it is often viewed
as a minimum viable population size for short-
term survival (Morris and Doak 2002), 100
individuals because it would be the population
size found in many different colonial species of
summer maternity roosts for bats, and 1,000
individuals because some colonial species such
as cave bats may live in groups this large (Kunz
and Fenton 2006). We used the stable-stage
distribution for each species as our initial
population condition. The stable-stage distribu-
tion was calculated using the popbio Package for
R (Stubben and Milligan 2007, R Core Team
2013).

We examined the risk of extinction at 10 years,
30 years, and 100 years based upon current
policy and management. Ten years was chosen
because many field ecology studies are only
conducted for short time periods (Pickett 1989).
Thirty years was chosen because the USFWS may
issue take permits for a 30-year period as is
currently being done for the Golden Eagle
(USFWS 2013) and Indiana bat (Erickson et al.
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2014). “Take” is defined to include “harass,
harm, pursue, hunt, shoot, wound, kill trap,
capture, or collect, or to attempt to engage in any
such conduct” under the Endangered Species Act
of 1973. When issuing permits for incidental take
from wind energy, the USFWS focuses on
mortality and we focused on lethal take within
this manuscript. Additionally, both 10 and 30
years are part of the extinction risk criteria used
by the International Union for Conservation of
Nature (http://www.iucnredlist.org/). One hun-
dred years was chosen to examine the dynamics
over a longer time period and allow the solution
to reach convergence.

For all species types, we assumed no density
effects (e.g., density dependency or Allee effects),
independence between individuals, and a posi-
tive growth rate. These assumptions would be
suited to a small, source population that is
growing. While not realistic assumptions, the
assumptions allows us to compare which species
types (life history strategy) may be more vulner-
able relative to other species. We were also
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interested in examining relative vulnerability, not
absolute risk. Fewer model inputs also allow the
model to be used with many different species if
this framework were to be applied for a wide
variety of locations and species. We assumed
mortality affects all life stages other than the first-
year life stage.

The distribution of female offspring produced
and surviving one year was selected based upon
values found in the literature. Survival rates were
adjusted to give growth rates A commensurate
with an increasing population (A = 1.09). These
rates of increase would be high for a wild
population, but recovering species such as the
Bald Eagle (USFWS; http://www.fws.gov/
Midwest/eagle/population/chtofprs.html) and
Whooping Crane (Allen 2007) have demonstrat-
ed exponential growth. These A values were
calculated using the leading eigenvalue of the
population projection matrix for each species
type. We also calculated generation time using
the popbio Package for R (Stubben and Milligan
2007, R Core Team 2013).

Cave bats.—We modeled our long-lived, low
fecundity species type after cave bats. Cave bats
are found throughout the United States and we
chose to focus on Myotis spp. found in the eastern
United States (i.e., those east of the 100th
Meridian). Example Myotis bats include the
Indiana Bat (M. sodalis) and Little Brown Bat
(M. lucifugus). The Indiana Bat was in the first
group listed under the Endangered Species Act
of 1973 (32 FR4001, March 11, 1967) whereas the
Little Brown Bat was the most common bat in the
eastern United States until the arrival of White-
nose Syndrome (Froschauer et al. 2011). Myotis
bats produce only one pup per year. Cave bats
reproduce during their first-year, but younger
individuals are less likely to produce a pup and
are less likely to survive (Thogmartin et al. 2013,
Erickson et al. 2014). Assuming an even sex
distribution, this implies a maximum production
of 0.5 female pups per year. Based upon these
considerations, we used a two-stage population
model with an annual survival rate of 0.747 for
first-year cave bats and 0.855 for adults. The first
year breeders produced 0.16 female bats per year
that survived until the next year and the adults
produced 0.36 (Thogmartin et al. 2013). This has
a generation time of 6.71 years.

Tree bats.— We based our short-lived, moderate
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fecundity species on tree bats, primarily the
Hoary Bat (Lasiurus cinereus). This species is
found throughout North and South America. The
Hawaiian subspecies was one of the first species
listed under the Endangered Species Act of 1973
(35 FR16047, October 13, 1970), but elsewhere the
species is common and has an ICUN Conserva-
tion Status of least concern (http://www.
iucnredlist.org/details/11345/0). This species is
the most commonly killed bat species at wind
turbines in United States although uncertainty
exists as to why (Cryan and Barclay 2009, Cryan
et al. 2014). This mortality may occur because the
species is highly abundant or may occur because
the species is attracted to wind turbines owing to
its mating strategy (Cryan and Barclay 2009).
First-year tree bats had an annual survival of 0.25
and adults had an annual survival of 0.65. The
distribution of births were assumed to come from
a binomial distribution with a maximum of 6
surviving female offspring and an average of 0.75
females produced per first year reproducing
female and 1.25 per adult (Koehler and Barclay
2000, Kunz and Fenton 2006, Hallam and
Federico 2009, Altringham 2011). This matrix
has a generation time of 4.09 years.

Grassland songbird. —We modeled a short-lived,
high-fecundity species after the Horned Lark
(Eremorphila alpestris). The Horned Lark is an
abundant and wide-ranging species of barren
land, scrubby grasslands, and shrublands (Bea-
son 1995). It is also one of the most common
species discovered during bird mortality surveys
at wind turbines (Loss et al. 20134). Although still
relatively common and abundant, sharp declines
have been noted over most of this species’ North
American range (Sauer et al. 2013). Additionally,
the Streaked Horned Lark, a subspecies endemic
to Oregon, USA, was listed as a threatened
species in 2013 (78 FR61505, October 3, 2013)
Horned Lark reproduce annually typically be-
ginning the first year after hatching (Beason
1995). From a study of a stable population of a
subspecies of Horned Lark, survival was esti-
mated at 0.20 the first year and 0.65 thereafter
and the number of female offspring per female
successfully fledging per year was 1.75 (Camfield
et al. 2010). To simulate an increasing population
(A=1.09), we increased the first year survival rate
to 0.22 and estimated the average annual number
of female offspring as 2.0. This produces a matrix
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Table 1. Parameter distributions used branching processes model.

Parameter Symbol Distribution Representative species type
Survival s beta all
Offspring produced P binomial cave bat, tree bat, and eagle
Mean offspring produced NA beta cave bat, tree bat, and eagle
Offspring produced 4 poisson grassland songbird
Mean offspring produced NA normal grassland songbird

with a generation time of 4.38 years, which is
similar to reported generation times for this
species (BirdLife International 2014b).
Eagle.—We modeled a low fecundity, long-
lived species after the golden eagle (Aquila
chrysaetos) and the bald eagle (Haliaeetus leucoce-
phalus). The Bald and Golden Eagle Protection
Act of 1940 (16 U.S.C. 668-668d) prevents the
incidental take of eagles without permitting.
Eagle mortalities have been documented at wind
energy facilities (Smallwood and Thelander 2008,
Loss et al. 20134). In 2014 the United States Fish
and Wildlife Service revised the regulations for
the take of eagles to allow permits for up to 30
years (78 FR73704, April 13, 2013). Neither
species is considered to be at immediate risk of
extinction (BirdLife International 20144), howev-
er wind turbines have the potential to impact
local populations where the probability of
collisions are unusually high (Smallwood and
Thelander 2008). Both species are wide ranging
across North America and have similar life-
history characteristics. Bald and Golden Eagles
do not reproduce until at least age 4 and in dense
populations, reproduction may not occur until
age 6 or 7 (Buehler 2000, Kochert et al. 2002).
Both species have estimated generation lengths
of approximately 17 years (BirdLife International
20144). Probabilities of survival from fledging to
adulthood in bald eagles has been measured to
vary from 0.3 to 0.6 (Buehler 2000), with similar
numbers reported for golden eagles (Harmata
2002). For both species, breeding pairs normally
attempt one clutch per year of 1-3 eggs (Buehler
2000, Kochert et al. 2002). For this analysis, we
constructed an eagle model with the following
mean survival parameters for each age stage:
0.68, 0.7, 0.8, 0.9, 0.955. Assuming that a lower
proportion of 4-year-old eagles attempt breeding
and are likely less successful than older birds, we
set the mean number of female offspring pro-
duced per female at 0.135. We set the mean
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fecundity for eagles 5 years or greater at 0.525
female offspring/female.

Numerical methods and uncertainty quantification

All simulations were conducted using R (R
Core Team 2013) and our source code is included
as a Supplement. We examined the risk of
extinction by decreasing the probability of
survival by a value p, pe[0, 1]. For example, the
probability of survival for stage 2 would become
so(1 — p). We first examined the effect of
population size on the cave bat species and
compared the results to a population projection
matrix. We compared the 4 different life history
types using simulations of 30, 100, and 1,000
individuals. We used the stable age distribution
used for the initial population distribution. We
calculated the probability of extinction after 10,
30, and 100 years. Note that extinction probabil-
ity was a state variable within our model rather
than an emergent property (Eq. 1). Parameter
uncertainty was incorporated into the model by
replacing parameters with distributions (Table 1).
Survival parameters were drawn from a beta
distribution. The probability parameter in the
binomial distribution (used to model births for
the cave bat, tree bat, and eagle) was drawn from
a beta distribution (i.e., statistically the beta
distribution was a hyperparameter for the
binomial distribution or mathematically the beta
distribution was mapped to the binomial distri-
bution). A normal distribution was used for the
hyperparameter for Poisson birth distribution
(used to model the grassland songbird births).
The normal distribution had sufficiently small
standard deviation so that all draws were
positive. Parameters for the beta distributions
were scaled by a factor of a 1,000 times the mean
(e.g., if the survival probability was 0.6, the beta
distribution would be B(a.=600, § =400)). We ran
5,000 simulations to quantify uncertainty.
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Fig. 3. Probability of extinction from demographic stochasticity (y-axis) for different populations sizes
(columns) at different times (rows) under different levels of take (x-axis) for different representative species (line
and shaded region colors). The branching process model considers females only and assumes each individual is
independent. The eagle population included uncertainty, but was not great enough to appear on the figure.

REsuLTs

The risk of extinction relative to declines in
survival followed a general sigmoid curve for all
life history traits (Fig. 3). All four representative
species had overlapping vulnerabilities. In gen-
eral, the eagle and cave bats, with the longest
generation times, were the most vulnerable
species. These two species types also had the
least amount of uncertainty with their curves and
their distribution is barely visible in Fig. 3. The
tree bats and grasslands songbird both had
similar and often overlapping curves though
these differed with regard to their variability and
uncertainty. The grassland songbird had a wider
distribution that covered a ~30% points decrease
in survival whereas the widest tree bat distribu-
tion only spanned ~20% points.

Both initial population size and magnitude of
loss from wind at a given time changed the
extinction curves (Fig. 3). Regardless of life
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history, populations became more extinction
prone (i.e., the curve’s inflection point shifted
left) as initial population sizes became smaller
and time increased. The transition between low
probability of extinction and high probability of
extinction (i.e., the steepness or slope of the
curve) increased as both population size and time
increased. Both the changes in slope and inflec-
tion point occurred across all species types,
although the changes in the slope and inflection
points were more pronounced for the grassland
songbirds and tree bats than the cave bats and
the eagles. Another trend emerged from the
model where increasing population size de-
creased the risk of extinction from demographic
stochasticity. Overall, these model behaviors
agree with our expectation for the system.

The probability of extinction decreased as
population size increased until the branching
process model converged to the matrix model
(Fig. 4). The branching process model also
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produced a probability of extinction whereas the
matrix model produced a binary threshold for
extinction, which was expected given underlying
assumptions and construction of both models.
This convergence occurred around 200-300
individuals and is in agreement with previous
research on demographic stochasticity (Mel-
bourne and Hastings 2008). The branching
process model indicated a risk of extinction at
lower mortality levels than the matrix model,
with small populations (16) having a non-trivial
risk of extinction even without a decrease in
survivorship. This difference became less impor-
tant for larger populations and would be less
important ecologically given uncertainty in pa-
rameter estimates.

DiscussioN

We found that representative species differed
not only in their vulnerability to wind energy, but
also varied with respect to the amount of
variability and uncertainty associated with the
vulnerability. The eagles and cave bats were
more vulnerable than tree bats and grassland
songbirds over shorter time periods, but some
overlap in vulnerabilities occurred by year 100.
However, the variability of vulnerability was
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greatest for the grassland songbird. This was due
to the wide range of possible offspring produc-
tion. This range of variability may result in local
extinctions due to chance alone, even without
wind energy development. In reality, this risk
would likely be mitigated by metapopulation
dynamics or diffusion and dispersion processes
played out over a larger landscape. Conversely,
the eagle had almost no variability in its
vulnerability because of its delay between birth
and reproduction.

The sharp rate at which extinction was
predicted for both the eagle and tree bat raises
concerns. A population may appear to be healthy
until mortality increases slightly beyond a critical
threshold, shifting the trajectory toward a sud-
den decline. This represents the possibility for a
critical transition (Scheffer 2009) after which a
local population may either be extirpated or
become a sink. Either of these outcomes may
impact regional or range-wide dynamics for the
species (Runge et al. 2006). For local populations,
a critical transition may be masked by demo-
graphic stochasticity and variability within the
system.

Our findings inform wind energy monitoring.
Currently, many different approaches are being
used to monitor mortality at wind energy
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facilities, although standardized methods have
been developed (Kunz et al. 20074, b, Kuvlesky et
al. 2007, Huso 2013, Loss et al. 2013a). Increases
in mortality rates caused by wind energy
development may be difficult to detect due to
natural variability and stochasticity. This “noise”
may obscure wind energy mortality because the
trend would be lost within the background
variability. To statistically observe the mortality
trends through this background noise, more
sampling effort (e.g., more sampling sites, sam-
pling time) would be required to robustly detect
the impact of wind energy development. Future
research incorporating branching processes
could help to optimize sampling design.

Wind energy development is one of many
factors causing avian and bat fatality (Loss et al.
2013a). All development is potentially threaten-
ing to wildlife (Sovacool 2009, Loss et al. 2012).
Other major mortality sources, at least for birds,
include free-ranging domestic cats (Coleman and
Temple 1993, Loss et al. 2013b), vehicle traffic
(Loss et al. 2014b), power lines (Loss et al. 2014c),
and buildings (Klem Jr et al. 2004, Loss et al.
2014a). Bats face additional threats including
white-nose syndrome (Frick et al. 2010, Thog-
martin et al. 2012), and hibernaculum vandalism
(Crimmins et al. 2014). Both avian and chirop-
teran taxa also face broad threats from climate
change, habitat loss, and land use changes.
Branching process models may provide insight
into the impact these stressors may cause on local
populations. However, these assessments would
need to focus on different parameter estimates.
For example, cats might decrease first-year
songbird survival more if they prey on nests
and fledglings whereas turbine collisions would
be more likely to affect older individuals that
migrate.

We used branching process models to examine
potential vulnerability for abstract, generic spe-
cies types. Branching process models could also
be applied to actual site assessments for partic-
ular species of interest. Annual survivorship
rates, calculated with mark-recapture methods
for instance (Krebs 1999, Kéry and Schaub 2012),
and local population sizes could be used with
our approach to inform site-specific risk. Alter-
natively, multiple datasets could be used to
parameterize the model (Kéry and Schaub 2012)
in an integrated-modeling approach (Abadi et al.
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2010).

Despite, or possibly in light of, these theoret-
ical underpinnings, known limitations of branch-
ing process models exist. Our model assumed
independence for each individual. Similarly, we
did not consider the effects of density depen-
dence. Addressing this assumption as part of the
branching process model would also address the
assumption of individual independence. This
approach would require incorporating a density
term similar to how one might incorporate
density in a population projection matrix model
by including a density function such as Ricker
function or logistic growth function. Incorporat-
ing density dependence would also require
individual cohorts be tracked through time,
something our current formulation does not do.
Our approach was also limited because we do
not usually know mortality rates from a wind
energy facility, only observed counts. For exam-
ple, we often know how many birds or bats
carcasses were found at a turbine but do not
know what fraction this would be of the total
population, nor how many individuals were
killed but not observed because they were
outside of the search radius, obscured by ground
vegetation, or removed by scavengers. We also
ignored the spatial structure of our system. Even
with these limitations, branching process models
may be useful for high-level screenings when
other, more parameter-intense methods may not
be feasible due to limited resources or other
considerations.

Branching process models have a well devel-
oped theoretical underpinning both in the prob-
ability literature and biological literature but
have yet to be applied to conservation settings
(Karlson and Taylor 1992, Haccou and Iwasa
1996, Caswell 2001, Allen 2011). We have
demonstrated how branching process models
may be applied to wind energy risk assessment.
Branching process models may also be used for
other types of assessments ranging from ecotox-
icology to population vulnerability analysis
(Caswell 2001, Morris and Doak 2002, Forbes et
al. 2008). Branching processes models would be
well suited for laboratory ecotoxicology studies
because of the independence of the individuals
and a desire to estimate a risk of extinction.
Population vulnerability and viability analysis
would benefit from branching processes models
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as well if demographic stochasticity is important
but the processes of an IBM are not required.
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