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• Motivation/Process Model – Solid Sorbent Bubbling Fluidized 
Bed (BFB) Reactor CO2 Capture System

• Simulation Based Optimization Under Uncertainty (OUU)
• Framework for Optimization and Quantification of Uncertainty 

and Surrogates
• Case Study with BFB System

– Deterministic Optimization
– Uncertainty Quantification
– Optimization Under Uncertainty (OUU)

• Conclusions
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Bubbling Fluidized Bed CO2 Capture System Model

• Optimization
• Deterministic, use expected 

parameter value
• Stochastic, use parameter 

probability distributions
• Complex process model

• 120,000 variables
• 120,000 equations
• Want to work directly with 

process simulator
• Simulator cannot handle 

stochastic optimization
• Difficult to formulate and 

solve with traditional 
mathematical programming 
techniques

• Process model implemented in 
Aspen Custom Modeler (ACM) 

• Cost of Electricity (COE) as 
performance indicator

Motivation: Need to optimize a process, where there is significant uncertainty in model parameters



Optimization Under Uncertainty (OUU) –
Two Stage Stochastic Problem

Stage 1: Design

Manipulate Design Variables
Objective: ∑𝑖𝑖 𝑤𝑤𝑖𝑖 𝑐𝑐(𝒅𝒅, 𝒙𝒙𝑖𝑖, 𝝎𝝎𝒊𝒊)
𝑖𝑖 ∈ scenarios
d = design variables
xi = operating variables
ωi = uncertain parameters
wi = scenario weight
c = cost of electricity

Solved in FOQUS with DFO

Scenario 1
• Manipulate Operating Variable
• Objective: 𝑐𝑐(𝒅𝒅, 𝒙𝒙1,𝝎𝝎𝟏𝟏)
• Constraints applied here
• Solved in ACM (SQP)

Scenario i

Scenario N

Stage 2: Recourse

…
…

Tr
iv

ia
lly

 P
ar

al
le

liz
ab

le

4

Goal: Design a robust process for a range of uncertain parameters to reduce risk



• Goals of Scenario Selection
– Accurately represent uncertain parameter distribution
– Preserve correlations between parameters
– Reduce the number of samples required

• Method
1. Conduct sensitivity analysis
2. Select parameter bins based on sensitivity (higher sensitivity 

parameters get more bins)
3. Sample from the uncertain parameter multivariate distribution
4. Place samples into bins
5. Assign a scenario to all nonempty bins, and use median value of 

samples in that bin for scenario
6. Weight scenario based on number of samples in bin

Optimization Under Uncertainty – Scenario Selection
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Framework for Optimization, Quantification of Uncertainty, and Surrogates
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Turbine

• Job Queueing System
• Cluster/Cloud/Workstation
• Parallel execution of Simulations
• Parallel execution of FOQUS

SimSinter

• Standard interface for process 
simulators 

• .NET
• Graphical configuration tool

FOQUS

• Platform for Derivative Free 
Optimization (DFO) and Uncertainty 
Quantification 

• Flowsheet of Process Models
• Graphical Interface

Process Simulation

• Aspen Plus
• Aspen Custom Modeler (ACM)
• gPROMS
• Excel

Critical for UQ and 
OUU where a very 
large number of  
number of 
simulations is 
required
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Deterministic BFB Model Optimization
• Objective: minimize the cost of electricity (COE)
• Two types of decision variables

– Design variables cannot be changed in response to uncertainty:
• Adsorber/regenerator diameters and bed depths
• Adsorber/regenerator heat exchange tube diameters/spacing
• Areas of heat exchangers

– Operating variables can be changed in response to uncertainty
• Sorbent Flow
• Flow rates
• Temperatures

• Constraints:
– Capture at least 90% of CO2 generated
– No slug flow in BFB
– Limit on steam extraction from power plant
– Recycle greater than minimum fluidization velocity in regenerator

• Uncertain Parameters
– Set to expected values (deterministic problem)

• Optimized in ACM
– Starting point for UQ and OUU
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Decision Variables – Design (Stage 1)

Abs. Diameter (m)
L.B. = 10.0
U.B. = 15.0
Opt = 12.75

Abs. HX Tube Diameter (m)
L.B. = 0.0127
U.B. = 0.075
Opt = 0.471

Abs. Top Bed Depth (m)
L.B. = 0.75
U.B. = 2.00
Opt = 1.058

Abs. Mid Bed Depth (m)
L.B. = 0.75
U.B. = 2.00
Opt = 1.223

Abs. Bot. Bed Depth (m)
L.B. = 0.75
U.B. = 2.00
Opt = 0.75

Rgn. Diameter (m)
L.B. = 8.0
U.B. = 12.0
Opt = 9.649

Rgn. Top Bed Depth (m)
L.B. = 2.0
U.B. = 6.0
Opt = 3.572

Rgn. Bot. Bed Depth (m)
L.B. = 2.0
U.B. = 9.0
Opt = 4.947

6 Adsorber Trains
4 Regenerator Trains

Eliminated, always on bound:
Lower:
• Adsorber HX tube spacing
• Regenerator HX tube spacing 
Upper:
• Regenerator HX tube diameter

Flue Gas Cooler Area (m2)
L.B. = 10,000
U.B. = 17,000
Opt = 15,651

Lean Side Area (m2)
L.B. = 60,000
U.B. = 140,000
Opt = 79,270

Rich Side Area (m2)
L.B. = 60,000
U.B. = 140,000
Opt = 81,676
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Decision Variables – Operating (Stage 2)
6 Adsorber Trains
4 Regenerator Trains

Rgn. Recycle (kmol/hr)
1 train
L.B. = 400
U.B. = 3,000
Opt = 1,284

Solids Circulation (kg/hr)
Total (All trains)
L.B. = 4,500,000
U.B. = 12,000,000
Opt = 7,413,651

Flue Gas Cooling Water 
(kmol/hr), 1 train
L.B. = 100,000
U.B. = 180,000
Opt = 133,984

Solids HX Approach 1 (K)
L.B. = 7.0
U.B. = 22.0
Opt = 7.0

Solids HX Approach 2 (K)
L.B. = 7.0
U.B. = 22.0
Opt = 7.99



• Objective, variables, and constraints are the same as the 
deterministic problem

• Uncertain Parameters: Overall heat transfer coefficients
• Error estimated error to be +/- 26%, based on literature
• Assumed adsorber and regenerator heat transfer coefficient are 

independent
• 9 scenarios
• Uniform probability

Case Study – Heat Transfer
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Case Study Heat Transfer — COE Results

11
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Scenarios and Weights
Difference in COE from deterministic optimal 

solution $/MWhr
Deterministic 

Design
Stochastic 

Design

Worst Scenario 1.54 1.23

Nominal Scenario 0.00 0.04

Best Scenario -0.53 -0.44

Significant Design Parameter Changed: Regenerator Diameter +0.35 m to provide 850 m2 (7.5%) 
additional heat transfer surface area



Kinetic Parameter Distributions
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• Solid Sorbent is mesoporous silica particle with 
polymer amine in pores

• Kinetic parameter probability distribution defined by 
31,999 samples
o Bayesian calibration and TGA data
o Parameters are correlated
o Bicarbonate reaction (2) was found insignificant

• Reduced to 284 scenarios for OUU

Rxn 1:

Rxn 2:

Rxn 3:

A: pre-exponential factor
E: Activation energy
dH: Enthalpy change
dS: Entropy change
nv: Active site density

Parameters:



OUU Kinetic Parameters – Preliminary Results
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Difference in COE from deterministic optimal 
solution $/MWhr

Deterministic Design Stochastic Design

Scenarios With Largest COE

65.83 62.12

9.68 8.39

4.44 3.99

1.80 1.63

1.42 1.30

0.50 0.44

Nominal Case

0 0.03

Best Scenario

-0.5 -0.5



• Accomplishments
– Developed effective tools for working directly with process simulations

• Derivative Free Optimization (DFO)
• Uncertainty Quantification
• Optimization Under Uncertainty

– Demonstrated tools with a practical OUU case study
• Future Work

– Improve the numerical reliability of the BFB process model
– Complete a comprehensive case study including more sources of 

uncertainty
– Quantify the value of optimization under uncertainty

Accomplishments/Future Work
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CCSI’s Flexible Bubbling Fluidized Bed (BFB) Model
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1-D, two-phase, pressure-driven and non-isothermal models
• Based on hydrodynamic correlations
• Supports complex reaction kinetics
• Compatible with CCSI UQ tools
• Implemented in both ACM and gPROMS

Lee, A. and Miller, D.C., A One-Dimensional (1-D) Three Region Model for a Bubbling Fluidised-Bed 
Adsorber, I&ECR, 2013, 52(1), 469-484

• Flexible configurations
– Dynamic or steady-state
– Adsorber or regenerator
– Under/overflow
– Integrated heat exchanger
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FOQUS (Framework for Optimization and Quantification of 
Uncertainty and Sensitivity
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FOQUS Graphical Interface
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Kinetic Parameter Distributions
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Kinetic Parameter Distributions
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Uncertainty Quantification Results (UQ)
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Design Variables (11): fixed at their deterministically optimal values
Operating Variables (5): Either fixed at deterministic optimum or optimized
Uncertain Variables (9): kinetic parameters drawn from inferred distribution
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