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Abstract: We present tRackIT OS, open-source software for reliable VHF radio tracking of (small)
animals in their wildlife habitat. tRackIT OS is an operating system distribution for tRackIT sta-
tions that receive signals emitted by VHF tags mounted on animals and are built from low-cost
commodity-off-the-shelf hardware. tRackIT OS provides software components for VHF signal pro-
cessing, system monitoring, configuration management, and user access. In particular, it records,
stores, analyzes, and transmits detected VHF signals and their descriptive features, e.g., to cal-
culate bearings of signals emitted by VHF radio tags mounted on animals or to perform animal
activity classification. Furthermore, we provide results of an experimental evaluation carried out
in the Marburg Open Forest, the research and teaching forest of the University of Marburg, Ger-
many. All components of tRackIT OS are available under a GNU GPL 3.0 open source license at
https://github.com/nature40/tRackIT-OS.
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1 Introduction

In an increasingly densely populated and anthropogenically dominated environment, a sci-
entific analysis of the consequences of human-wildlife interaction is essential for devel-
oping evidence-based guidelines for conservation [KA20]. Understanding the impact of
altered habitats on the spatial distribution of species [Sa09], the effects of human infras-
tructures such as roads [Ho15, As19], and reasons for increased mortality of endangered
species [Le19] is crucial for preserving biodiversity in a crowded world. Movement data
of animals generated by recent technological advances support more detailed forms of
analysis and insights into the behavior and ecology of threatened species than ever be-
fore [Wy18, Ca10, Wa18].

Wildlife observations can be realized with a variety of technologies. For example, GPS
technology can be used to equip animals and record their movements independently of
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other communication infrastructures. However, size, weight, and battery life constraints
prevent the use of GPS for most European songbirds and bats.

Manual radio telemetry is another option for observing small animals. However, it is ex-
tremely labor-intensive, limited to a small number of individuals that can be tracked si-
multaneously [Co99], and results in spatial and temporal data with poor resolution, which
might not be sufficient for meaningful scientific analyses [Mo10].

Automated radio telemetry systems can minimize many of these disadvantages [Ka11,
We16]. In previous work, some of us presented a system based on commodity-off-the-shelf
(COTS) hardware for automatic radio tracking of small animals based on Very High Fre-
quency (VHF) tags [Go19] as part of the open source project radio-tracking.eu4. However,
three seasons of long-term stationary operating time of the system in the Marburg Open
Forest (i.e., the teaching and research forest of the University of Marburg, Germany) re-
vealed several deficits, such as the lack of failure handling, inadequate interfaces for data
transmission and health-state monitoring, and problems with time synchronization of re-
ceived signals between receivers of the same station and among different stations.

In this paper, we present tRackIT OS, an open-source operating system distribution for
reliable VHF radio tracking of small animals. tRackIT OS runs on a tRackIT station; its
basic hardware design is due to Gottwald et al. [Go19]. We developed tRackIT OS to provide
new software functionality according to our experiences in studying the movement ecology
of both diurnal and nocturnal wildlife with a network of 15 tRackIT stations in densely
forested terrain. In particular, we present:

• a novel approach for automated signal detection of VHF radio tracking tags,

• means to provide reliable operation of tRackIT stations under harsh conditions,

• efficient live data transmission for monitoring data and detected signals,

• a novel web-based user interface for intuitive configuration of tRackIT stations,

• a comparative evaluation of tRackIT OS compared to the state-of-the-art.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
discusses requirements, design decisions and implementation details, followed by exper-
imental results in Section 4. Section 5 concludes the paper and outlines areas of future
work.

2 Related Work
Ripperger et al. present a comprehensive overview of existing systems for localizing small
animals using different technologies [Ri20]. The most recent projects on automated VHF
4 https://radio-tracking.eu
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transmitter tracking are ARTS [Ka11], Atlas [We16], and Motus (also called SensorGnome)
[Ta17].

ARTS consisted of towers with a height of 40 meters and top-mounted antenna arrays
[Ka11], but the system was taken down in 2010 and replaced by camera traps and GPS
transmitters. ARTS was able to determine the position of a tagged individual by triangu-
lation with an spatial accuracy of 50 meters, but rotating through channels with different
frequencies reduces the time span in which each individual can be observed. tRackIT sup-
ports more detailed observations of movements using a higher number of stations at lower
cost and less effort in construction.

The Atlas project achieves great spatial accuracy by using the time difference of arrival
(TOA) method for direction estimates as seen from the receiver, while costs for the de-
veloped tags are low [We16]. However, implementation of the receiving stations is quite
expensive, a fact that probably explains why the system is only deployed in three areas in
the Netherlands, England, and Northern Israel. tRackIT achieves comparable results with
stations built from commodity off the shelf hardware at a lower price point.

Motus5 is a globally operating network of VHF receiver stations hosted by different collab-
orators and supporting researchers [Ta17]. Despite its open source character, an implemen-
tation of Motus at US$ 3000 for a single SensorGnome6 receiver with three 9-element Yagi
antennas, and US$ 7500 for a Lotek SRX800 receiver station with four 9-element Yagi an-
tennas is costly [LN18], leading to a trade-off between spatial resolution and coverage. By
default, the implemented radio receiver listens at a single center frequency and can detect
pulses from tags in a narrow band of ±24 kHz around its center frequency. This limits the
number of distinguishable frequencies, i.e., the number of detectable individuals, substan-
tially. Motus has delivered great insights into the ecology of different species in more than
120 research projects [Ta17], but investigating fine-grained spatial movements by triangu-
lation is not supported by the system. The wide frequency band that can be used by tRackIT
supports both fine-grained temporal resolutions and observations of many individuals.

3 tRackIT OS

A tRackIT system consists of (a) VHF radio tags mounted on animals, (b) tRackIT stations
for receiving signals emitted by VHF tags, (c) tRackIT OS running on tRackIT stations
for detecting and matching signals received on multiple antennas, (d) tRackIT servers for
collecting and presenting data transmitted from tRackIT stations, and (e) tRackIT analytics
modules for deriving ecological knowledge from the collected data.

In this section, we present design and implementation issues of tRackIT OS, the operating
system distribution for tRackIT stations.
5 Motus Wildlife Tracking System: https://motus.org
6 SensorGnome Project: https://sensorgnome.org
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3.1 Requirements

Our experiences from three seasons of field work have indicated that automatic telemetry
can only be a useful substitute of its manual counterpart if certain requirements are met:

1. Low entry barrier. To make automatic radio telemetry accessible to the widest pos-
sible user community, both hardware and software as well as data processing and
analysis must be conveniently accessible, easy to use, and inexpensive.

2. Reliability. The used equipment must reliably record signals originating from VHF
transmitters and minimize the amount of interference. Any component failures
caused by adverse conditions, such as unstable power supplies, fluctuating tempera-
tures, and hardware-based failures should be detected and handled automatically.

3. Data availability. In many application areas, like mortality studies [He20], fast data
availability is highly important. Thus, direct data transmission from the field with
the shortest possible delay between recording and transmission is desirable.

3.2 tRackIT Station

To deploy an operational installation in the field, a tRackIT station is equipped with direc-
tional antennas in the four cardinal directions, a solar panel, and a battery box. The basic
hardware design is due to Gottwald et al. [Go19]. We have slightly adapted the hardware
by including an active USB hub, a better LTE modem, and a LoRa (Long Range Wireless
Radio Frequency Technology7) expansion board (LoRa HAT), as shown in Figure 1.

The ’brain’ of a tRackIT station is a Raspberry Pi 3 Model B that consists of a quad-core
1.2 GHz ARM-Cortex-A53 and 1 GB of RAM. It offers various input/output options, in-
cluding Wi-Fi and 4 USB ports. The system is powered through a 5V USB port and is
capable of powering connected USB devices. The four directional antennas are connected
to four software-defined radios (SDR) (Nooelec NESDR SMArt v4) for signal analysis.
Since these SDRs require more power than provided by the Raspberry Pi, an active 4-port
USB hub (Anker 4-port Ultra Slim USB 3.0 Data Hub, A7518) is used to connect the de-
vices. An LTE modem (Huawei E3372H) and a local prepaid data plan is used to establish
a mobile Internet connection. The battery box provides a 12 V source that is converted us-
ing a step down converter rated for 2× 2.4 A at 5 V. For tRackIT stations relying on LoRa
for data publishing, a Dragino SX127X GPS HAT8 is used. For receiving and forwarding
tRackIT stations, the Dragino PG1301 LoRa Concentrator is used9. The basic hardware of
a tRackIT station costs a total of about 200 €, consisting of 35 € for the Raspberry Pi 3B+,
7 Semtech: https://www.semtech.com/lora/
8 Dragino SX127X: https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
9 Dragino PG1301: https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
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Fig. 1: The hardware components of a tRackIT station.

4 × 35 € for the Nooelec SDRs, 15 € for the active USB hub, and 10 € for the power supply
unit. The optional communication modules cost 50 € in the case of the Huawei LTE mo-
dem and/or 35 € (LoRa HAT) / 110 € (LoRa Concentrator) for the LoRa publish / receive
upgrade.

3.3 tRackIT OS Components

The operating system (OS) plays a crucial role in the reliable autonomous operation of the
presented hardware. We developed a custom distribution of the Raspberry Pi OS, called
tRackIT OS. The primary task of tRackIT OS is to execute a signal detection module, called
pyradiotracking, in a reliable manner. The secondary task is to interface with users (a) in-
teractively while setting up the station, and (b) continuously during autonomous operation
for extended monitoring. tRackIT OS is built using PIMOD [Hö20b], which allows config-
uration of single-board computer system images in a reproducible manner. The resources
required to build tRackIT OS as well as the OS image itself are released under a GPL 3.0
license10.

In Figure 2, the main software components of tRackIT OS are presented. Station-initiated
communication is handled using the Message Queuing Telemetry Transport (MQTT) pro-
tocol, with mosquitto as an MQTT client and server implementation [Li17] for message
distribution. It is configured such that incoming messages are forwarded to remote MQTT
brokers for further processing. These brokers are also responsible for detecting and resol-
ving connection failures.

10 tRackIT OS, available online https://github.com/Nature40/tRackIT-OS
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Fig. 2: Overview of the main software components of a tRackIT OS distribution.

The core software component for signal detection is called pyradiotracking. The component
reads samples from all four SDRs, as well as detects, filters, and matches signals of VHF
tags. Detected signals are saved to local storage, displayed via a custom web user interface,
and published to a local message bus that is responsible for data distribution. Section 3.4
discusses the implementation details of pyradiotracking.

For system monitoring, we implemented a custom tool called pymqttutil in the Python pro-
gramming language. It is released under a GPL 3.0 license11. The tool executes config-
urable Python statements in a fixed schedule and publishes the corresponding results via
MQTT. It is configured such that relevant system metrics are published in a 5 minute inter-
val, i.e., temperature, system uptime, system load, memory usage, CPU frequency, network
addresses, storage utilization, and cellular data usage.

All services are managed by systemd. The WebUI sysdweb12 for systemd is configured to
allow easy log access and service control for (mobile) users. The Caddy web server is used
to provide convenient access to the local storage, pyradiotracking and sysdweb. Finally,
OpenSSH provides direct system access for local and remote users. To allow secure remote
access, wireguard is used as a virtual private network (VPN).

11 pymqttutil, available online: https://github.com/Nature40/pymqttutil
12 sysdweb, available online: https://github.com/Nature40/sysdweb
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3.4 Signal Detection

The signal detection algorithm is implemented in the pyradiotracking Python package,
which is released under a GPL 3.0 license13. In Figure 3, the stages of signal processing are
presented in a block diagram. First, spectrograms of the incoming IQ samples are created,
which are used to detect signals. The detected signals are then filtered for shadow signals
of lower power in neighboring frequencies and sent to a central signal queue. The detected
signals of multiple antennas are matched and written to a local file, published to the MQTT
message bus, and visualized in the local dashboard.

rtl-sdr

pyradiotracking

Antenna Signal

SignalAnalyzer

IQ samples

process_samples

extract_signals

spectogramfilter_shadows

signals

SignalAnalyzer
…

SignalAnalyzer

ProcessConnector

MQTTConsumer

CSVConsumer

SignalQueue

SignalMatcher
match

signalmatched 
signal

Dashboard
Configuration PaneSignal Visualization

(matched) signals

Fig. 3: Signal analysis stages implemented in pyradiotracking.

To illustrate how the different stages work, data of the length of one second is used as an
example. An SDR is configured such that a center frequency of 150.150 MHz, a sample
rate of 300 kHz, and a fixed gain of 49.6 dB are used. A test tag with the frequency of
150.172 MHz and a signal duration of 40 ms was placed near to the receiving antenna. In
Figures 4, 5, and 6, three stages of signal processing are visualized.

Figure 4 shows the raw IQ samples received by the SDR. Following the example configu-
ration described above, there are 300,000 samples, hence 600 kilobyte of data collected in
one second. In the time interval of 𝑡0 = 0.45 𝑠 to 𝑡1 = 0.49 𝑠, the IQ samples contain high
values, which appear as a rectangle in the visualization. This rather sharp rectangle indi-
cates that the gain value is set too high and the signal is clipping. When setting up stations
for regular operation, the gain value must be chosen such that a good compromise of gain
and clipping is achieved.

13 pyradiotracking, available online: https://github.com/Nature40/pyradiotracking
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Fig. 4: IQ samples of one second, as received by RTL-SDR.
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Fig. 5: Power spectral density (PSD) of samples computed via Short-time Fourier
Transform (STFT).

To detect single signals from the received data, a spectrogram is computed and processed
further. This is achieved by applying consecutive Short-time Fourier Transforms (STFT)
[Al77] to the data. Figure 5 shows the spectrogram computed from the previously presented
example data. The STFTs are computed with 256 samples per Fast Fourier Transform (FFT)
and no overlapping samples. The Hamming window function is applied to smoothen discon-
tinuities at the start and the end of the processed FFT. In this configuration, the bandwidth
of 300 kHz is divided into 256 bands and a frequency resolution of 1,171 kHz, to achieve
a time resolution of 1.0 𝑠/1, 171 = 0.853𝑚𝑠.

In Figure 6, signal detection on individual frequencies is visualized. The signal power
(dBW) in the logarithmic scale is plotted for four example frequencies near the test sender’s
frequency, and the signal emitted by the test sender can be observed in three of those. The
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Fig. 6: Power spectral densities (PSDs) of selected frequencies, minimal signal power
threshold, and signal power sampling points.

gray dashed horizontal line indicates the configured signal power threshold of -60 dBW.
The gray dotted vertical lines show scan points used for initial signal detection. The blue
arrow marks the total detected signal length. Signal detection is achieved by (a) iterating
through all frequencies and (b) iterating through time using scan points placed according
to the minimal detectable signal duration of 8 ms in our example. The signal-to-noise ratio
(SNR) is calculated using the ratio of the current power and the average signal power of this
frequency. If signal power and SNR at the scan points are above the configured thresholds,
a potential signal is detected. The scan is then continued by evaluating the thresholds for
all neighboring values until the thresholds are undershot, indicated by the blue arrows. If
the duration of the detected signal is within the set limits, further complementary features
are computed and added to a list for further processing.

After all signals of a spectrogram are extracted, shadow filtering is performed. We define
a shadow signal as a signal that matches another signal in duration and time, but has a
lower detected power. In the example of Figure 6, the signals detected at 150.170 MHz and
150.172 MHz would be shadow signals of the 150.171 MHz signal. The shadow signals
are removed and the detected primary signals are added and written to disk, published via
MQTT and sent to pyradiotracking’s main process for signal matching and data presenta-
tion.

To improve reliability, a direct control component is introduced. The librtlsdr library
used to retrieve data from an SDR works in such a way that as soon as requested data
is available, a callback method is called. If the system load is too high and the callback
method takes longer than the acquisition of the next samples, individual samples are omit-
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ted. Hardware and library-specific errors may lead to no callbacks at all. The first problem is
monitored by comparing the actual received samples with the expected number of samples
using the system clock. In this way, dropped samples can be detected, even accumulated
over longer periods of time. The second problem is solved by (re-)setting a periodic alarm,
comparable to a dead man’s switch. If the callback method is not called in time, an alarm is
triggered. This terminates the analysis process, which is then restarted by pyradiotracking’s
main process.

3.5 Signal Matching

The detected and filtered signals of multiple antennas are consumed by the signal matcher,
which works as follows. In a list, all currently active signal groups are held. When a new
signal is detected, it is compared to each of the active signal groups in time, duration, and
frequency. The SDR devices used in the project do not work synchronously and use individ-
ual quartz crystals as their clock sources, hence time and frequency mismatches are likely
to happen. If all parameters of an active signal group are within the configured thresholds,
the signal is added to the corresponding group. If no corresponding group is found, a new
active signal group with this signal is created and added to the list. After a certain timeout,
the active signal groups are removed from the list and the key features are written to disk
and published.

3.6 Data Publishing

Detected signals are published directly to disk in CSV format and via MQTT in the CBOR
format, which is a binary format and introduces smaller overheads compared to text-based
formats. The MQTT broker running on a tRackIT station can be configured to forward
published signals to other brokers, such as a central server via a cellular network or other
IP-based networks.

Field Accuracy Size (bit)
Time ms of current min 16
Frequency offset to 150 MHz in kHz 9
Duration ms 6
Signal Availability flags 4
Signals 3-decimals [1 − 4] × 17

52 − 103

Tab. 1: tRackIT station’s LoRa matched signal payload: fields, accuracy, and sizes.

In addition to this IP-based data publishing, LoRa can be used to publish signals. LoRa
is a physical layer protocol based on chirp spread spectrum (CSS) modulation, that is ro-
bust against channel noise, multi-path fading, and the Doppler effect. This allows transmis-
sion ranges of a few kilometers in urban environments and up to 15 kilometers in rural
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areas, with minimal power requirements but also only low data rates between 300 bps and
50 kbps [Md17, Pe17, Hö20a].

The LoRa publishing service of tRackIT OS receives signals through the local MQTT bro-
ker, converts the data in a custom data-saving binary format, and sends it via LoRa. Table 1
shows the fields used for a matched signal’s payload, including accuracy and required size
in bits. A matched signal contains a minimum of one and a maximum of four signals, de-
pending on the number of antennas that received the signal, hence the final payload size
is 52 up to 103 bits. Zeros are appended to the payload to reach the required byte bound-
aries, resulting in messages of 7, 9, 11, and 13 bytes, depending on the number of the
contained matched signals. Compared to the already compact representation in CBOR of
a 4-component matched signal (56 bytes + overhead), a reduction of up to 77% is achieved
(13 bytes). In the most robust LoRa settings (SF:12, BW:250 kHz, CR:4/8), such a short-
ened message would require 594 ms Time-on-Air (ToA) (using Implicit Header mode with
a 1-byte sender ID, the total length of the packet is 14 bytes). Following the duty cycle
regulation of a maximum utilization of 1% (10%) per band, a message could be sent every
59 (5.9) seconds. While these settings do not allow continuous monitoring of individuals,
sparse reporting of single observations are still of value, when trying to detect tags fallen off
or with empty batteries. For stations in closer physical proximity to the receiving gateway,
less robust settings may be chosen. Using a less robust LoRa setting (SF:8, BW:250 kHz,
CR:4/8), the ToA drops down to 45.5 ms, allowing messages to be sent in an interval of 4.6
(0.46) seconds. From previous measurements in the Marburg Open Forest, signals could
be reliably transmitted over 600 meters using this setting.

4 Experimental Evaluation

In this section, we evaluate tRackIT OS in benchmarking scenarios and in field experiments.
The data of all experiments is publicly available at https://github.com/Nature40/
hoechst2021tRackIT-eval.

4.1 Experimental Scenario

To evaluate tRackIT OS in a realistic manner, we use a system setup in the Marburg Open
Forest, consisting of 15 tRackIT stations; 5 of them are used in our evaluation described
below. The experiments are carried out twice: (a) with the most recent tRackIT OS 0.7.0
and (b) using the most recent stable operating system version of the radio-tracking.eu14

project [Go19], called paur 4.2. We activated a test tag and carried it around in the area of
the selected tRackIT stations together with a GPS receiver to receive ground truth data. The
experiment took place over the course of 0:51:10 h with a VHF sender of 600µW power, 20

14 https://radio-tracking.eu
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ms duration and an interval of one signal per second, which results in 3,193 sent signals. In
Figure 7, the GPS trace of the conducted experiment is presented; stations are marked by
the white circles, and the trace is colored to indicate the time component of the experiment.

© Mapbox © OpenStreetMap 00:00 min

51:10 min

Fig. 7: GPS trace of the experimental evaluation track and the corresponding
tRackIT stations.

Our observations using paur in two seasons of 2019 and 2020 indicated high numbers
of falsely detected signals. We were not able to distinguish between true and false posi-
tives through the information available after signal detection. Thus, we used a power signal
threshold. The paur experiments conducted in this paper showed the same low precision,
hence all detected signals with a power lower than -78 dBW were removed for further pro-
cessing. Using tRackIT OS, this threshold is not required, since we observed very low num-
bers of falsely detected signals.

4.2 Signal Delay

A second observation from our previous field seasons in 2019 and 2020 is a delay in signal
detection using paur in the order of seconds to minutes. In Figure 8, an example of observed
signal delay is visualized. The dots show the received signal strength measured on multiple
antennas of the same tRackIT station. Every antenna received a series of signals with low
variance in signal strength that appear to be a straight line, indicating that the tag is not
moving. However, these straight lines on the individual receivers are offset in time from
each other, which makes further processing of the data difficult and and leads to worse
to unusable bearing calculation. In the experiments of this paper, we measured a delay in
signal detection of 8 seconds in paur and no recognizable delay in tRackIT OS.
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Fig. 8: Example of signal delay among different receivers observed in the 2020 field
season using paur.

4.3 Signal Detection

In the tRackIT OS experiments, the selected five tRackIT stations detected 30,507 signals,
each on potentially four antennas, resulting in an average of 1,525 signals (47.8%) detected
per antenna. Signal detection depends on various factors, such as geographical and topo-
graphical conditions, the orientation of the antenna, the height of the transmitter above the
ground, air humidity, and forest cover. Figure 9 shows the numbers of detected signals by
station and antenna. Due to the positioning of the stations, the orientation of the antennas,
and the selected test area, some of the antennas receive only a very small amount, others a
large amount of the test signals. On the north antenna of station 11, only 95 (3.0%) signals
could be detected, while 2,611 (81.8%) signals where detected on south antenna of station
9.
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Fig. 9: Detected signals on tRackIT stations in the experimental scenario.
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In addition to this quantitative analysis of signal detection, we evaluated the distances be-
tween the test tag and the tRackIT stations. Figure 10 shows the distance of the tag and
stations measured via GPS and the power of the detected signal. While most stations can
detect signals at distances of up to 400 meters, stations 4 and 11 detect signals up to 800
meters away. While the correlation of signal strength and measured distance is straightfor-
ward, a high variance can be observed from the data and signal strength alone, hence this
is not a suitable estimator for distance in the presented experiment. Initially, the overall
performance of the two systems appears comparable, especially for signals with high sig-
nal strength. While paur received 2,728 signals usable for bearing calculations, tRackIT
OS received 4,438 such signals, an increase of 62.7%, when applying the same -78 dBW
threshold. In addition, tRackIT OS received 1,108 signals of lower signal strength, which
corresponds to an effective increase of 103.3% compared to paur.
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Fig. 10: Signal power and distance to a receiving station.

4.4 Bearing Calculation

To reach the goal of signal triangulation, signals detected on multiple antennas of a station
are used to calculate bearings. We use the method proposed by Gottwald et al. [Go19]
to produce comparable results for our bearing calculation. First, the pair of neighboring
antennas with the highest and second highest signal strength are selected (𝑠𝑙 , 𝑠𝑟 ) and the
relative gain difference 𝛿𝑔 is computed using the maximum signal strength difference 𝛿𝑚:
𝑔 = 𝑠𝑙−𝑠𝑟

𝛿𝑚 . Second, the signal strength is used to calculate the bearing between the antennas
following the formula derived from the cosine theorem 𝜔 = 𝜋

90 × 𝑎𝑟𝑐𝑐𝑜𝑠(𝛿𝑔).

Figure 11 shows a histogram of bearing errors in tRackIT OS and paur. Due to an error
on station 4 which was not resolved automatically, signal detection failed on this station in
the paur experiment run, hence no data is presented in the histogram. While tRackIT OS
has a mean bearing error of 23.7° and a standard deviation of 30.7°, paur not only has a
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Fig. 11: Histogram of bearing errors.

lower total bearing count, but also results in 38.9° mean bearing error with 42.6° standard
deviation. These results indicate that tRackIT OS is superior to paur that represents the
current the state of the art in this field.

4.5 Power Requirements

To operate stations autonomously and to monitor and transmit data, a stable power supply
is necessary. To get realistic values for the required power, we measured a tRackIT station
at the 12 volts input using a Monsoon High Voltage Power Monitor15.
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Fig. 12: Power measurements of tRackIT OS and paur in default settings.

15 Monsoon Solutions Inc. High Voltage Power Monitor: https://www.msoon.com/online-store/
High-Voltage-Power-Monitor-p90002590
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Figure 12 shows the power demands of paur and tRackIT OS. In contrast to tRackIT OS,
paur does not start signal detection automatically. After all SDRs and signal analysis
threads are running, tRackIT OS consumes an average of 8.23 W (684 mA), while paur
consumes an average of 8.03 W (667 mA), which is an overhead of 2.55%. We also carried
out experiments with varying sample rates (225 kHz – 300 kHz), but did not observe vary-
ing power demands. The systems used in the Marburg Open Forest use 12 V batteries with
a capacity of 120 Ah (1440 Wh) of which only 80% should be used to limit wear, which
allows a maximum theoretical runtime of 140 hours, or roughly 5.5 days. To allow a con-
tinuous operation, a 300 Watts peak solar panel is connected via a solar charger that even
works during cloud cover. The presented results show only a slight increase in power con-
sumption of tRackIT OS compared to paur, i.e., tRackIT OS meets the power requirements
for continuous operation of the system.

5 Conclusion

We presented tRackIT OS, open-source software for reliable VHF radio tracking of small
animals in their wildlife habitat. tRackIT OS is an operating system distribution for tRackIT
stations that receive signals emitted by VHF tags mounted on animals. tRackIT OS encom-
passes components for VHF signal processing, system monitoring, configuration manage-
ment, and user access.

We evaluated and compared tRackIT OS against a previous operating system distribution
(called paur), in an experimental field evaluation carried out in the Marburg Open Forest.
Our experimental results showed that compared to paur, tRackIT OS (a) enables reliable
VHF signal detection for bearing calculation, (b) increases the number of usable signals
by 103.3%, (c) improves the mean bearing calculation error from 38.9° to 23.7°, and (d)
introduces only a slight overhead in power consumption of 2.55% or 0.2 W. tRackIT has
the potential to substantially improve the quality of habitat usage studies and/or environ-
mental assessments in the context of anthropogenic interventions in the environment, while
massively reducing the time required for field work.

There are several areas for future work. For example, calculating exact bearings can be chal-
lenging, since signals are affected by multiple factors, such as vegetation, topology of the
surrounding area, humidity, and rainfall. While bearings can be directly calculated based
on a simple model, higher quality can be achieved by using data of multiple stations and
further context information, such as a topology model and/or a calibration for the specific
area of operation. Furthermore, it is quite challenging to transmit all detected signals under
the given bandwidth limitations of the LoRa protocol. A coordinated selection and trans-
mission approach for detected signals should be developed to increase the efficiency of
stations connected via LoRa. Finally, the continuous preparation and further processing of
the collected data is the next major task in creating a user-friendly and widely applicable
animal tracking system for generating ecological knowledge.
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