

Detecting Potential and Actual Turbine-Marine Life Interactions: A Call for the Development of Best Practices

Anna Redden

Acadia Tidal Energy Institute, Acadia University Fundy Energy Research Network Canada

NOVEMBER 4-6, 2014 Halifax, Nova Scotia Canada

ICOE2014CANADA.ORG

- Jeremy Broome
- Freya Keyser
- Peter Porskamp
- Matthew Baker
- Kaycee Morrison
- Colin Buhariwalla
- Monica Reed
- Lauren Fogarty
- Montana McLean
- Mike Stokesbury
- Richard Karsten
- Brian Sanderson
- Rod Bradford
- Jamie Gibson
- Jason Wood
- Dom Tollit
- Duncan Bates et al
- Fred Whoriskey
- Murray Scotney
- Mark Wood
- Patrick Stewart
- Mark Taylor and crew
- Croyden Wood Jr. and crew
- Darren Porter, Tony Lewis and crews

Thanks to ...

OFFRA Offshore Energy Research Association of Nova Scotia

cean

Mitacs

Natural Resources

Canada

Fisheries and Oceans Canada

Tidal Energy Dev't: Environmental Implications

- Independent oversight at FORCE
 - Environmental Monitoring Advisory Committee (EMAC)
- Near to mid-field effects?
- Impacts on marine mammals?
- Impacts on fish and lobsters?
 - Migration corridor
 - Transboundary fishes
 - Threatened / endangered

Acoustic Detection of Fish & Lobsters

- Temporal and spatial patterns in site use
- Acoustic tags (Vemco)
 - Fish (286 tags implanted)
 - Lobster (85 tags, carapace)

Species	Status	#Tags
Atlantic sturgeon	Threatened	114
American eel	Threatened	45
Striped bass	Endangered (BoF)	165
Atlantic salmon	Endangered (iBoF)	62

Minas Passage / FORCE Receiver Lines

2012 / 2013

Minas Passage

Current regime in Minas Passage

Source: Karsten, Acadia

Depth-Averaged Current Speed & Range Tests (Acoustic Tag Detection)

Prop. Transmissions Logged

Acoustic Tag Range: 165 m

- Receiver detection efficiency
 - \downarrow as current speed \uparrow
 - Lower on the Flood tide
 - Turbulence effect?

- Striped bass detections in MP
 - decline as current speed increases
 - mirrors detection efficiency patterns, may not be due to absence of fish
- Need technology advances than can filter out the noise / interference

Striped bass tag detections & depths (2011 – 2013)

More than a migratory route!

Bass frequent the FORCE site

- <u>potentially</u> at risk
- vertically migrate

Tagging cannot address avoidance behaviour!

Unexpected <u>winter</u> presence / Surface Temp 0-3°C

December 2012 – April 2013

Baseline Studies: Harbour Porpoise Detection / Presence

- CPOD porpoise detector
- Seasonal peaks related to food (herring) abundance
- Detection limitations due to
 - 1. Ambient noise
 - Flood >> Ebb
 - Spring >> Neap
 - Site effects
 - 2. Flow noise at sensor tip

icListen HF Smart Hydrophone (Ocean Sonics) (FFT; 60 sec Screenshot - Lucy Software)

- Porpoise click trains, 120–140 kHz
- Detection range up to 500 m (>1000 m in ocean)

icListenHF

Noise Interference

Spring vs **Neap tides**

Shrouding to ulletreduce noise effects?

(Porskamp, 2013)

High Slack

Low

Spring Cycle

Neap Cycle

Hydrophone Performance Testing: June 2014

Detecting Marine Life – Turbine Interactions

Near-field Behavior

- Avoidance likely to vary with
 - species and animal size
 - physiological state / season
 - flow conditions

Current Methods of Detection

(with limited success at high flows):

- Sonar (split beam and multi-beam)
- Acoustic cameras
- Optical and other sensors

Need to advance sensor capabilities & sensor integration

- Research and innovation!

Approach to Addressing Environmental Research and Monitoring Needs

Research and Development \rightarrow Commercialization

Regulatory Approval & Acceptance

Take Home Messages

- Developers, regulators and other stakeholders need to be aware on the "unique challenges" in sensing marine life in a tide race
 - Requires open communication and <u>realistic expectations</u>
- Need innovation to improve detection efficiency of sensors at high current speeds
 - Sensors, mooring platforms, monitoring protocols
 - Data processing and visualization
- Requires collaboration across academia and industry
 - Aim for global Best Practices!

