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Abstract

Evaluations of potential blade-strike on an axial-flow marine hydrokinetic (MHK) turbine were
conducted using a method that integrates the following components into a computational fluid
dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) inflow turbulence
based on field data, (iii) moving turbine blades in a transient flow, and (iv) Lagrangian particles
to represent fish. The sensitivity of blade-strike probability to the following conditions was also
evaluated: (i) turbulent environment, (ii) fish particle size and (iii) mean stream flow velocity.
A limitation of the method is that fish are represented as particles that simply move with the fluid
and can exhibit no behavioral response such as avoidance of the MHK turbine. This limitation
causes a tendency for the model to overestimate strikes since it is likely that some fraction of an
approaching population of fish would actively avoid the turbine.

The CFD-based blade strike simulations provide not only the frequency of collisions, but also
insights into the causal relationships between the flow environment and resulting particle strikes
on rotating blades. The results were compared against the outcomes of a conventional method
that only considers the kinematic aspects of the fish passage event without any regard for the flow
dynamics. Overall, the conventional method, while simple to apply, largely overestimates the
probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories
as they interact with the rotating turbine. In contrast the CFD-based Lagrangian method utilizes
a set of experimental correlations of exposure-response of live fish colliding on moving blades,
frequency of occurrence, intensity of the particle collisions to calculate the estimated survival
rate of fish encountering the MHK turbine. Estimated survival rates were greater than 96%,
which are comparable to or better than many conventional hydropower turbines. Although
the proposed CFD framework is computationally more expensive, it provides the advantage of
evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish and
relating those to specific design features of the MHK turbine.
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ABBREV DEFINITION
BEM blade element method
CFD computational fluid dynamics
DES detached eddy simulation
DNS direct numerical simulation
FERC Federal Energy Regulatory Commission
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RBM rigid-body motion
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1.0 Introduction

Power production using marine hydrokinetic (MHK) energy converters is an emerging technol-
ogy for renewable energy production that has recently gained worldwide interest as one compo-
nent of national strategies to tap renewable energy sources. A report by Schweizer et al. (2011)
documented information collected from the Federal Energy Regulatory Commission (FERC) in
relation to proposed and ongoing hydrokinetic projects in the USA. Within the summary, they
described the types of systems, geographical distributions, extent of the projects (single or “farm”
units), the potential interactions with fish populations, etc. Commonly labeled as ”underwa-
ter” power sources by early researchers (Bahaj and Myers 2003, Batten et al. 2006), the main
feature of hydrokinetic turbines is the operation at zero- or near zero-head hydraulic conditions;
therefore, the device acts to transform the kinetic energy of flowing water into driving energy to
activate an electric generator (Lago et al. 2010, Mukherji et al. 2011). Hydrokinetic technology
falls into two primary categories: those units that use river flow energy and those that extract
energy from tidal currents in estuaries and coastal oceans (Lago et al. 2010). The present study
focuses on the latter type, also known as marine hydrokinetic (MHK) or tidal current energy
converter (CEC) turbines.

Hydrokinetic turbine technology is still at an early stage of development and testing at various
laboratory and on-site pilot installations. Hydrokinetic technology is promising in that it is less
dependent on weather conditions compared to other renewables such as wind or solar. It is also
possible that MHK devices may have less impact on the aquatic ecology of the installation site
compared to conventional hydropower. These energy generation devices can also be installed
near population centers, thus reducing transmission costs. On the other hand, apart from the
understandable economic disadvantage inherent of any emerging technology, MHK turbines will
inevitably interact with and alter the surrounding ecosystem, thus giving rise to potential environ-
mental effects such as accelerating sediment transport, distorting erosion/deposition dynamics,
and interacting negatively with aquatic biota by increasing the probability of hazardous strike on
the blades (James et al. 2010).

The environmental impacts of hydrokinetic turbines have been addressed in various field and
laboratory studies with live fish interacting with reduced-scale and prototype devices. In two
associated reports, concepts from fish survival assessment in conventional hydroelectric turbines
were reviewed in relation to hydrokinetic turbines in order to elucidate the potential similar-
ities and differences between the two technologies (Amaral et al. 2011a). The preliminary
conclusions pointed to a lower biological impact of hydrokinetic turbines in comparison to the
hydropower counterparts owing to the less-abrupt changes in flow direction, slower passing
velocities, lower pressure differential, and the absence of engineered structures with collision
potential for fish, such as the wicket gates and stay vanes. The follow-up report determined
injury and survival rates, as well as behavioral effects of live fish encountering hydrokinetic
turbines (Amaral et al. 2011b). The experimental design consisted of two types of turbines
(spherical, cross-flow and axial-flow), two flow conditions, two fish species, and two size groups.
The document also reports on the application of a classic kinematic model to evaluate blade-
strike probabilities, a method that was also revisited and applied in the present study. Gorlov
(2010) described a tidal power project on the U.S. East Coast of a proposed helical turbine design
and its potential consequences on fish passage safety. The study points to a very limited prob-
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ability of fish mortality owing to the “sufficient open space for fish passage”. Another study
(Normandeau Associates 2009) characterized field-based rates of survival, injury and predation
of living fish through an operating on-site hydrokinetic turbine (HGE hydrokinetic system, Hydro
Green Energy, Houston, TX) with three blades, low rotation rate and 3.66 m-rotor diameter. The
turbine was located at the tailrace of the Mississippi Lock and Dam No. 2 near Hastings, Min-
nesota. Two fish size groups were released (sample ranges of 115-235 mm and 388-710 mm) at
operating conditions that gave rise to stream flow velocities ranging from 1.73 to 2.95 m/s. A
high survival rate (>99%) was recorded, as well as no visible blade-strike injury or predation.

In the foregoing summary we can observe that those studies sought to directly link the operating
device with living organisms. An alternative to such an approach entails a first step in which the
turbine flow environment is characterized, and then, its potential biological impacts are evaluated
based on known responses to the hydraulic environment created by the turbine. The objective of
the present study is to describe a method for quantitative assessment of potential blade strike of
fish on an MHK turbine at selected operating conditions.

The MHK technology was developed on the basis of two consolidated engineering fields: wind
energy and marine propulsion. Although early reviews recognized that a rich knowledge base
can be transferred from these fields (Batten et al. 2006), research specialized in hydrodynam-
ics and environmental impact of MHK turbines remains limited (Kang et al. 2012). Previous
computational fluid dynamics (CFD) studies described the altered flow conditions that arise in
the proximity to MHK turbines by modeling the device as a sink/source term of momentum and
turbulence (James et al. 2010, Churchfield et al. 2013, Harrison et al. 2010). Such an approach is
advantageous in that, while being computationally affordable, it allows for the description of flow
conditions over large domains, as well as for assessment of optimized placement/arrangement of
multiple units “MHK turbine farms”); however, it precludes the evaluation of the most extreme
and adverse hydrodynamic conditions present very close to the unit (one-turbine diameter).
Instead, more recent studies have addressed the flow description near the turbine by resolving the
details of the flow physics (Mukherji et al. 2011, Kang et al. 2012). Whereas the latter research
approach (machine-scale resolution) is more computationally demanding than the former, it
allows us to examine, in detail, critical knowledge gaps such as sediment transport dynamics,
aquatic biota interaction, and hazards to fish passage.

The present work uses a device-scale, CFD approach and conducts the biological assessment of
blade-strike probabilities using Lagrangian particle modeling. With the model-based informa-
tion on collision occurrence, frequency and intensity, we ultimately estimate the survival rate of
fish crossing moving MHK turbine blades.

The specific objectives are the following:

• Simulate and describe the flow characteristics and turbulence environment in the proximity
of an MHK turbine of a prescribed geometry

• Verify the simulation results against expected power and thrust force performance at vari-
ous operation conditions

• Evaluate the likelihood that fish will strike the rotating blade during passage through the

2



turbine

• Assess the survival rate of fish colliding with the operating turbine blades based on the
intensity of the strike event

The report is organized in the following manner. We begin by presenting the prescribed geome-
try of the device used in the study, as well as the expected power and thrust performance derived
from the blade element method (BEM) calculations. In the next section, we describe the CFD
approach that was conducted in order to achieve a detailed characterization of the flow and
turbulence environment near the turbine. This includes a description of the domain descritiza-
tion techniques and flow solvers. This section also highlights the two additional features that
we implemented in order to quantify the probability of blade-strike: the generation of inflow
turbulence and the modeling of fish bodies as Lagrangian particles. The discussion of results
highlights the improved features of the present approach over the older, conventional blade strike
modeling methods. Finally, we offer suggestions for future work in this area of research.
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2.0 Axial Flow Marine Hydrokinetic Turbine

2.1 Device geometry

The marine hydrokinetic turbine evaluated in the present study was designed based upon expe-
rience with wind turbine airfoil analysis and considerations of hydrodynamic conditions (Shiu
et al. 2012). In the design process, the following objectives were pursued: (i) maximizing
hydraulic performance with respect to lift/drag ratio, (ii) minimizing sensitivity to soiling to
economize on maintenance cost, (iii) providing sufficient thickness for bending stiffness, (iv)
incorporating adequate stall features, and (v) minimizing cavitation and singing, the latter being a
hydroacoustic/hydroelastic phenomenon of the trailing edges specific to operation in water envi-
ronments. The hydrofoil profiles were determined with the support of the software XFOIL that
contains routines for parameterizing geometries and flow condition distributions. The general
dimensions of the MHK device are shown in Figure 2.1.

Figure 2.1. MHK turbine geometry obtained from Sandia National Laboratories. Dimensions
are in meters

2.2 MHK Turbine performance characteristics

The blade element method (BEM) was used by Sandia National Laboratories to design the
blade shape of the MHK unit in the study. The design optimization consisted of maximizing
the percentage of power to be extracted from the free stream (CP) while minimizing the axial
momentum imparted by the flow stream onto the device surface (CT ). In order to quantify the
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performance, the power coefficient (CP) is defined in the following relationship:

CP =
POUT

1
2ρU3A

(2.1)

Where POUT is the output power of the device (W), ρ is density of water (kg/m3), U is the free-
stream reference velocity (m/s) and A is the turbine swept area (m2). Additionally, the thrust
coefficient is calculated as:

CT =
T

1
2ρU2A

(2.2)

Where T is the thrust force (N). The turbine tip speed ratio (TSR) relates the tip tangential veloc-
ity (at maximum radius R, in m) to the free-stream reference velocity, where ω is the rotating
speed (rad/s):

T SR =
Rω

U
(2.3)

The BEM approach was carried over from wind turbine design methods and has historically
been a common modeling approach for blade design of wind energy systems (Batten et al. 2006).
Briefly, BEM theory consists of equating the flow momentum and surface forces (friction and
pressure) to define the performance of a section (lifting foil) of known characteristics from radius
(r) to radius (r + ∆r). Therefore, the local blade forces are later integrated over the entire blade
in order to obtain the overall device performance. The technique is an adequate approximation
because of the relatively high aspect ratio expected of wind and MHK turbine blades. Conven-
tionally, a prescribed foil section (or composition of prescribed sections) provides the starting
geometry for analysis.

BEM performance results are used as a baseline in order to confirm the CFD simulation out-
comes since experimental validation data were not available at the time this study was performed.
Figure 2.2 shows the values of power and thrust coefficients as a function of the tip speed ratio
(TSR).
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Figure 2.2. Power (left) and thrust (right) coefficients from BEM theory





3.0 Computational Methods

3.1 Computational fluid dynamics (CFD)

Computational fluid dynamics (CFD) was used to simulate the three-dimensional unsteady flow
and turbulence characteristics around the MHK device. For that purpose, the commercial soft-
ware STAR-CCM+ v8 (CD-adapco 2013) was used to compute the flow and Lagrangian particle
solutions. The computational domain was 80 x 40 x 20 m (stream-wise, span-wise, and vertical
directions of the flow, respectively). The entire domain in relation to the turbine diameter (D)
was approximately 32 x 16 x 8, which allowed for the adequate description of the wake flow
past the device as suggested by previous experience with this type of flow. The domain was
discretized with a unstructured (primarily hexahedral) mesh containing approximately 10.2M
cells. Cells were gradually refined in the proximity of the turbine unit. Figure 3.1 shows the
general features of the mesh. Because finer spatial resolution was necessary near the MHK unit,
approximately 30% of the cells were allocated in the rotating region containing the blade surface
boundaries. The model geometry included the tower, nacelle and hub components. In order to
test the mesh dependency of the flow solution, a simulation run was conducted on a refined mesh
of size of 37.1M cells.

Figure 3.1. Mesh and base size of cells at various refinements. ∆ values are given in centime-
ters and y+ is dimensionless

A segregated, isothermal flow solver was used to simulate a transient solution. The bound-
aries that represent the rotating blades were contained within a cylindrical region set in motion
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(see Figure 3.1) at rotating speed (ω) equal to 3.2 rad/s (30.55 RPM). The detached eddy sim-
ulation (DES) version of the κ-ω turbulence solver was used as means to enhance the descrip-
tion of the turbulent fields that developed around the MHK turbine. The DES-version of the
turbulence solver poses certain extra requirements over the conventional unsteady Reynolds-
averaged Navier-Stokes (URANS) counterparts: the center of the first cell off the solid walls
was kept small enough to achieve values of y+ <50, the time step was set equal to 0.01 s (∆t∗

= Ustream∆t/D ~0.004), and fluctuating inflow velocities were generated following the synthetic
eddy formulation (SEM) explained in Section 3.2. There exists a tradeoff between the ben-
efits in flow resolution by using a smaller time step and the computational time to complete a
full simulation period. Additional computational overhead is incurred at each time step to map
out the sliding cells that constitute the interface between the moving mesh (near the rotor) and
the stationary grid. In order to minimize such computational effort without compromising the
flow solution accuracy, the time step of ∆t = 0.01 s (rotating angle change, ∆θ < 2 degrees) was
selected.

In order to evaluate the performance in a range of realistic flow scenarios, three inflow velocities
were simulated: 1, 2, and 3 m/s. These approximately correspond to tip speed ratios (TSR)
of 8.00, 4.00 and 2.67, respectively. The inflow velocity consisted of a constant mean profile
following a power-law relationship with distance from the ground overlaid by prescribed tur-
bulence characteristics of intensity and eddy size correspond to field measurements (Thomson
et al. 2012). The water surface and lateral domain boundaries were modeled as symmetry planes
(reflecting flow conditions), and no flow recirculation was allowed at the outlet. The remaining
boundaries (e.g., seabed, turbine tower, blades, nacelle, hub, etc.) were modeled as no-slip solid
walls.

3.2 Turbulence modeling

Numerical simulations solve for the velocity and pressure fields at each time step. Because
most environmental flows are turbulent in nature, one of the critical parts of a CFD model is
selecting the way turbulence is accounted for in the flow solution, also known as the “turbulence
closure problem”. Typically, especially in industrial design applications, Reynolds-averaged
Navier-Stokes (RANS) equations are solved using a turbulence model to integrate the effects
of turbulence into the momentum equations; however, new research in turbulence simulation
aims at explicitly computing turbulent flow features (velocity fluctuations) without the use of
a turbulence model. The former strategy is commonly referred as unsteady RANS (URANS)
while the latter is known as Direct Numerical Simulation (DNS). Whereas the DNS approach is
promising and appealing, its full implementation in environmental flows demands extremely
large computational resources that make it impractical at the present time. A compromise
technique is the Detached Eddy Simulation (DES) approach. DES simulations model turbulence
in the proximity of walls using RANS techniques (“attached” portion of the flow), whereas it
resolves the turbulent eddies away from the solid boundaries “detached” flow) (Spalart 2009)
using large eddy simulation (LES) methods. The DES formulation provides a computationally
affordable approach for evaluating the effect of turbulence conditions on the following:

• The turbulent inflow approaching the MHK device and its wake
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• The bulk hydrodynamic performance of the MHK unit

• The particle pathways and interactions with rotating blades

Even when the CFD model is set up for higher resolution of turbulence using a DES formula-
tion, a refined grid and a small time step, only limited improvement in the flow description is
achieved if inflow turbulence is not provided. Specific to the present study, imposing only a
mean inflow profile will result in no downstream fluctuations owing to the fairly uniform geom-
etry of the model from the inlet to the MHK region, i.e., boundary induced shear will not induce
the expected inflow turbulence. In these circumstances, there are normally two approaches to
produce turbulent inflow conditions: a precursor simulation or the generation of synthetic tur-
bulence. We used the latter method following the formulation proposed by Jarrin et al. (2006)
called the synthetic eddy method (SEM). The SEM-based inflow was effective in that:

• It produced coherent turbulent eddies, i.e. eddies that were sustained and propagated as
they traveled downstream

• It generated coherent structures based upon two turbulent characteristics that have been
measured and reported in previous studies of tidal turbulence in Puget Sound, WA (Thom-
son et al. 2012)

• It is a well documented method and computationally affordable for implementation

The inflow turbulence was characterized by values of turbulence intensity of 11% and a Lagrangian
integral time scale of 1.43 s (Richmond et al. 2011). These turbulent conditions were exper-
imentally quantified at a tidal current site located in Puget Sound, Washington, where future
deployment of MHK devices has been proposed.

We implemented two types of inflow turbulence depending on choice of turbulence modeling.
URANS simulations assumed a mean power-low velocity profile and modeling parameters for
turbulence (left Figure 3.2). DES simulations included inflow eddy generation using SEM
that imposed unsteady, coherent velocity fields at every time step (right Figure 3.2, three time
realizations are shown). These two strategies gave rise to different turbulence environments in
the computational domain (bottom figures, stream-wise velocities are normalized with respect
to the mean flow velocity of 2 m/s). We ultimately seek to quantify the impact of such differing
flow conditions on the probability that particles representing fish will collide with the rotating
blades.

11



Figure 3.2. Results from the two inflow turbulent conditions tested: URANS (left) and DES
with SEM (right).
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3.3 Evaluation of collision on turbine blades

3.3.1 Kinematic blade-strike model

The possibility that fish passing rotating turbine blades can be injured has long been recognized
and studied. von Raben (1957) calculated the kinematic probability of a fish impacting a rotat-
ing set of turbine blades using Equation 3.1, assuming that a fish of length L approaches a turbine
(of n blades and rotating at N rps) with a velocity Vaxial (in m/s) at an angle θ . A sketch of the
input parameters is shown in Figure 3.3.

Pstr =
nNLcos(θ)

Vaxial
(3.1)

Figure 3.3. Velocity vectors at the blade (from Dauble et al, 2007). The diagram shows a fish
of length (L) in flow approaching the leading edge of a runner blade in a Kaplan
turbine, velocity vectors, and associated angles. Vt = tangential velocity; V1 =
absolute velocity; Vaxial = axial velocity; u1 = blade peripheral velocity; v = velocity
relative to the blade; θ = the angle between axial (parallel to the runner axis) and
absolute velocity vectors.

Because of the availability of good approximations for the input parameters, Equation 3.1 has
been extensively applied in analyzing blade strikes occurring during fish passage through hydro-
electric turbines. Given a set of geometric features and flow conditions, the main effort lies in
determining the axial velocity and the approaching angle θ . In the present study, we assume
that Vaxial equals the stream flow velocity, for which three velocities were tested (1, 2, and 3 m/s).
In regards to the angle θ , we recognized the lack of significant input data, and assumed two
instances: (A) a value of θ = 0o that indicates an impact direction perpendicular to the runner
plane, and (B) a uniform angle distribution over the range -90 to 90 o, calculated Pstr (Equation
3.1) for each angle bin, and averaged out the Pstr values. Values of fish length are determined
by the age composition of the species of concern established either by regulatory documents or
prevalent in local conditions. In this study, we consider three sizes:
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• A small fish corresponds to migratory juvenile Salmonid species that are protected in the
Columbia River system of the Pacific Northwest. The small fish is 10 cm long with a mass
of 14 g

• A mid-sized fish has a length of 40.6 cm. The calculations of this length value are pro-
vided in section 3.3.2

• A large fish corresponds to an Atlantic sturgeon of average size of 104 cm, as reported at
the Long Island Sound by Savoy (2007)

3.3.2 Lagrangian Particle Modeling

An alternative strategy to the kinematic blade strike probability described in section 3.3.1 is to
evaluate the frequency of collision assuming that fish pathways can be represented by Lagrangian
particle motion through the MHK turbine. Lagrangian particle simulation consists of tracking
the trajectory of particles (with mass) through fluid flows. With this approach, we accounted
for the multiple forces acting on particles that were used to represent fish. An advantage of this
method is that we can simulate mechanisms of interaction between the particles (fish) and solid
surfaces (turbine blades), thus aiding in the estimates of the fraction of collisions given a popula-
tion of fish released upstream from the MHK device. A limitation of the method is that fish are
represented as particles that simply move with the fluid and can exhibit no behavioral response
such as avoidance of the MHK turbine. This limitation creates a tendency for the model to
produce conservative results since it is likely that some fraction of an approaching population
of fish would actively avoid the turbine. In addition, no attempt was made to approximate a
non-uniform distribution of the incoming fish population that would be the case for actual site
conditions.

The particle trajectories are calculated by solving the momentum balance of forces acting on a
spherical particle, which include the following:

dUpart

dt
= Fd +Fp +Fg +Fvm (3.2)

where Upart is the particle velocity, Fd is the drag force deriving from the slip velocity between
the particle and the flow, Fp is the force owing to the presence of pressure gradients, Fg is the
gravity force and Fvm is the “virtual mass” force. The STAR-CCM+ solver used in this study can
compute particle trajectories based on these forces. The software documentation (CD-adapco
2013) provides the detailed formulation of each component in Equation 3.2.

Flow velocities were monitored at various locations in the computational domain in order to
determine the time at which statistical steady-state was reached. Normally, it took from 60
to 90 seconds to reach that point, which translated into approximately 1.5 to 2 “flow-through”
times depending on the inflow velocity. After that stabilization period, spherical particles were
released for 15 seconds (Tin j) from injectors placed 10 m upstream from the MHK turbine in a
grid-like arrangement of size 6 m x 6 m, centered at the axis of rotation, and at a spacing of 0.1 m
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(Nin j = 60 x 60 = 3600 injectors, see Figure 3.4). Each time step (∆t = 0.01 s), release locations
were randomized within the grid, with a probability of Pin j = 0.0015, which results in a total
number of injected particles (Ntotal) that approximates 8100.

Ntotal =
Nin j ∗Pin j ∗Tin j

∆t
= 8100 (3.3)

Figure 3.4. Side (left) and front (right) views of the array of injectors from where Lagrangian
particles were released

Spherical particles were assumed to be neutrally buoyant (specific gravity equal to 1.0) with a
diameter that results in the fish mass indicated in section 3.3.1. Based on the selection of an
assumed fish length it is possible to estimate the fish mass (Figure 3.5). For the small fish, the
mass is taken from assumptions made in previous studies on the passage of juvenile salmonid
species through hydroelectric turbines (Dauble et al. 2007, Richmond et al. 2013a). A neutrally-
buoyant sphere of mass equal to typical 100 mm long juvenile salmon has a diameter of 0.03
m. For the large fish, we use the regressions of length (in mm) - mass (in grams) provided by
Schwartz (1997) for Atlantic sturgeon at two sites (labeled as “Corolla” and “Avon-Hatteras”,
equations 3.4 and 3.5). For L = 1040 mm, the equations will produce mass values of 8034
g and 4020 g, respectively, the average being 6027 g. A sphere of mass equal to the average
mass value has a diameter of 0.226 m. Finally, for a mid-size fish, we directly assume a sphere
diameter that falls in between the two extremes, D = 0.10 m, for which the fish mass will be
526 g. Fish biologists consider a generic relationship of length-weight that follows the form of
Equation 3.6. Therefore, we can fit the two sizes (small and large fish) into Equation 3.6 in order
to estimate a mid-size fish length of 0.406 cm. Table 3.1 summarizes the three fish sizes, mass
values and equivalent diameters of spherical particles in order to run the kinematic blade-strike
model and the Lagrangian particle solver.

log(M) =−4.9461+2.9337log(L) (3.4)
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log(M) =−1.7102+1.7615log(L) (3.5)

M = a∗Lb (3.6)

Table 3.1. Fish length, mass, and equivalent diameters of spherical Lagrangian particles

Size Length, m Mass, g Dpart , m
Small 0.100 14 0.030
Mid 0.406 526 0.100
Large 1.040 6027 0.226

Figure 3.5. The averaged fish length (L) and the diameter (Dpart) of an equivalent-mass sphere
were used to calculate probability of strike (Pstr) and fraction of collisions (Fimp),
respectively, for a juvenile Salmonid species (left) and an adult Atlantic sturgeon
(right)

As depicted in Figure 3.4, the grid of injectors extends beyond the MHK sweep area. In the
post-processing stage, the fraction of collisions (Fimp) was defined as the ratio of the number of
hits with respect to the number of particles that have any potential for being impacted, i.e., we
account for only those particles crossing the turbine sweep area at any time during its movement
downstream. Because the interaction of particles with blades was set to rebounding with tangen-
tial and normal restitution coefficients equal to 1.0, only single hits are included in the fraction
of collisions, i.e., if a particle hits the blade multiple times, it still counts as a single colliding
particle. This refinement allowed for comparisons of the two methods in this study: the kine-
matic probability of strike (Pstr, section 3.3.1) and the fraction of collisions (Fimp) of Lagrangian
particles.

16



3.4 Evaluation of Fish Survival to Blade Strike

Any collision on a rotating MHK turbine blade is only harmful if the collision conditions result
in direct or indirect injury or mortality on the fish. The physical evidence indicates that when
a direct injury does take place, it can take the form of decapitation, severing of the body, tears,
descaling, and bruising (Turnpenny et al. 2000). The quantitative analysis of injury mechanisms
that fish experience while interacting with engineered systems has proven to be challenging
owing to the numerous uncertainties that a collision event entails. Note that indirect injury refers
to injuries not immediately caused by the turbine, but those occurring due to mechanisms such as
disorientation by severe turbulence that could make fish vulnerable to predation from other fish or
birds.

Previous studies experimentally evaluated the survival of various species of fish that crossed
prototype hydrokinetic devices in conditions that are likely to be found in potential MHK deploy-
ment sites (Amaral et al. 2011b, Castro-Santos and Haro 2012). They also tested the effect of
the fish body size and prototype designs on the survival rate. They found survival rates that
were relatively high (always greater than 90%) regardless of the test conditions. Although
the laboratory experiments are independent of the present modeling efforts, certain underlying
assumptions are similar. First, two approach flow velocities were tested. Second, the fish size
was a test parameter. Last, the survival rates are based upon fish individuals that were contained
within a net upstream from the device in order to eliminate the likelihood of avoidance, which
turned out to be high in the preliminary runs with releases far upstream from the devices. The
outcomes from these studies gave a clear indication that exposure to collisions and other injury
mechanisms result in low mortality rates. However, having tested an array of a few discrete
experimental conditions, the outcomes did not allow for the development of an empirical model
to estimate survival rates of fish passing though hydrokinetic devices. Therefore, the present
study calculates the survival rate of fish colliding on the MHK blades by following the biological
performance assessment (BioPA) framework proposed by Richmond et al. (2013b,a) and applied
to hydroelectric turbines based on studies by Amaral and Hecker (2008). More details on the
blade-strike type of injury, the underlying modeling assumptions, and the involved uncertainty
are found in Richmond et al. (2013a).

In the present application we determined the probability of survival (survival rate, SR) for each
collision event that was modeled by the Lagrangian solution scheme described in the previous
sections. Figure 3.6 shows the experimental laboratory results from Amaral and Hecker (2008)
in which SR was determined as a function of the blade thickness (T ), the fish length (L) and
the strike velocity (∆V) over a variety of test conditions that allowed for the construction of an
empirical relationship as in equation 3.7. A brief summary of the experimental conditions can
provide the extents as well as the limitations of the experimental results in the context of the
present modeling efforts. The range of fish length was 100-760 mm, whereas the blade thickness
ranged from 10 mm to 150 mm. The selected combinations of these two conditions gave rise to
ratios of L/t varying from 0.67 to 30. Fish of sizes ranging from 100 to 760 mm were held at a
vertical position to expose them to the strike of a blade moving at speeds (∆V) that ranged from
3.0 to 12.2 m/s. The selected fish species were rainbow trout (Oncorhynchus mykiss), white
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sturgeon (Acipenser transmontanus), and American eel (Anguilla rostrata).

SR = f (∆V,
L
T
) (3.7)

Figure 3.6. Survival rate of fish exposed to blade strike from experiments of Amaral and
Hecker (2008)

The values of fish length in the present work are summarized in Table 3.1, whereas the blade
thickness is estimated as twice the minimum radius of curvature of the leading edge profile. The
blade thickness was calculated at various radial locations along the blade. Figure 3.7 shows an
example of the blade thickness at a cross section located at R = 1.4 m, along with the curve of T
as a function of R. The Lagrangian solver recorded the coordinate locations (x,y,z) of the strike
events, from which we calculated the radial distance with respect to the center of rotation, and,
ultimately, the blade thickness at the impact location.

The impact velocity, ∆V, (Equation 3.8), is calculated as the difference between the blade velocity
(Vb, Equation 3.9) and the tangential fish velocity (Vf ) at the moment of impact (Figure 3.8).
The three components of the particle impact velocity (Ū) of Lagrangian particles were sampled
immediately before strike to determine Vf along the unit vector, t̂, using Equation 3.10. Lastly,
the estimated survival rate for the entire particle population is the averaged SR of all particles,
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Figure 3.7. Blade thickness of cross section at R = 1.0 m (left) and the thickness at multiple
cross sections along the blade (right)

with a non-striking particle having a SR = 1.0.

∆V = |Vb−Vf | (3.8)

Vb = R∗ω (3.9)

Vf =U · t̂ (3.10)

t̂ =
1√

Y 2
0 +Z2

0

∗ (Z0 ĵ−Y0k̂) (3.11)

We also evaluated the survival rates based on the kinematic model in section 3.3.1. In such case,
the impact velocity (∆V) is equal to the blade velocity (Vb) as the fish is assumed to enter the
impact plane perpendicularly, i.e., Ū = (Vaxial , 0, 0). Because Vb depends on the radial location,
and the distribution of the fish at the impact plane is unknown, we calculated the survival rate
over 10 bins equally spaced in the radial direction, and weighted them by the annular area of each
bin in order to obtain a global survival rate for the MHK device (SRglobal). This value still needs
to be weighted by the probability that a strike event takes place; therefore, the ultimate survival
rate is defined as SR = 1−Pstr · (1−SRglobal).

19



Figure 3.8. Strike velocity of a colliding particle



4.0 Results and Discussion

4.1 Flow and turbulence fields

This section presents the main findings related to the flow simulation results followed by the
analysis of the Lagrangian approach to quantify probability of collision. Figure 4.1 shows the
computed output power and thrust values deriving from the case of Ustream = 2 m/s when using
the URANS and DES turbulence modeling approaches. The DES outcomes contain a wide
range of time scales owing to the enhanced description of turbulent structures initially imposed
on the inlet boundary. Visibly, the time history of output power consists of two, apparently
random signal frequencies. The large scale oscillations are driven by the large scale eddies
traveling through the MHK turbine; superimposed is the periodicity owing to the effect of the
rotating blades passing through the tower shadow/wake. The time record of thrust is highly
correlated to that of the power as shown by the time scales composing the signal. The power
output ranged from 16.8 to 47.0 kW (range = 30.2 kW) with an average of 33.4 kW, whereas the
thrust force oscillated from 19.9 to 35.5 kN (range = 15.6 kN) around an average of 28.8 kN.

A different pattern is observed for the URANS results in which a single frequency—mostly
driven by the turbine rotation—is clearly observed. In terms of the mean quantities, the URANS
averages of power and thrust (31.9 kW and 29.2 kN, respectively) are only slightly different
with respect to the DES counterparts (-4.5% and 1.4%, respectively). However, the variability,
expressed in terms of the range, is significantly lower (3.1 kW and 1.9 kN). In general, we see
that the averaged quantities are captured by both turbulence solvers, whereas the variability of
the flow environment is explicitly computed only by advanced turbulence modeling approaches,
such as the DES with inflow turbulence generation. These differences can have an effect on
dynamic loads on the turbine blades. In following sections, we will further examine the effect
of the enhanced description of turbulence in relation to the transport of Lagrangian particles to
simulate fish particle pathways.

Figure 4.2 shows iso-surfaces of Q-criterion as a means to depict the differing flow environments
that arose from the presence of the rotating turbine, for the two turbulence solvers at an instan-
taneous time step. Briefly, the Q-criterion was originally defined by Hunt et al. (1988) as a
mathematical quantity to visualize coherent turbulent structures simulated with CFD tools. In
both instances, the iso-surface of Q-criterion indicates two turbulent structures: spiral-like vor-
tices generated by the rotating blade tips and less dominant structures originating over the trailing
edge of the blades. Both types are relevant in the context of the extreme conditions that fish
can potentially encounter if interacting with the MHK turbine. The turbulence solution modes
clearly give rise to differing near-wake flows. In the DES solution, the large vortex rope extends
“with three turns” behind the turbine before the structures break down and dissipate into the less
altered, ambient flow surrounding the device. On the other hand, the URANS solution indicates
an almost immediate mixing between the near-wake and ambient flows, judging by the shorter
vortex ropes. It will be later shown how the stronger dissipation in the URANS model results in
straight pathways across the turbine, and ultimately, affects the likelihood of particles colliding
the blades.

In order to judge the predictive capabilities of the CFD approach, we compare the computed
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Figure 4.1. Thrust and power from two flow simulations (URANS vs DES) at stream flow
velocity of 2 m/s. The dashed lines represent the average values for the corre-
sponding colored curve

power and thrust coefficients against the corresponding BEM outcomes provide by Sandia
National Laboratories (Figure 4.3). The results are in good agreement and the differences are
mainly due to the underlying assumptions of both methodologies. The performance coefficients
are very sensitive to the reference velocity as indicated in equations 2.1 and 2.2. Those values
are prescribed in the BEM approach, whereas they are computed from the oncoming transient
velocities in the CFD simulations, for which they turn out slightly different from the nominal
stream flow velocities. Additionally, the CFD model is complete in that it includes the acces-
sory parts (nacelle, hub, tower), whereas the BEM approach does not incorporate them into the
analysis. Lastly, and specific to the DES solution, Figure 4.1 shows that the simulation time has
allowed for only few cycles of the large timescale oscillations; therefore, further extension of
the simulation time will likely develop statistically steady power and thrust coefficient values.
Table 4.1 summarizes the power and thrust coefficient values. Additionally, the difference in
hydraulic performance as obtained from a refined mesh (37.1M cells) is small; therefore, the suc-
ceeding calculations of blade strike are conducted on the coarser mesh for calculation efficiency
(size equal to 10.2M cells).

4.2 Blade strike probability

The Lagrangian particles tracks are sensitive to the turbulence modeling approach. Figure 4.4
shows the tracks of two spherical particles of similar features (mid-size) when they are subject
to two turbulent environments (URANS vs DES). On each frame, the spheres are released from
the same injector. The distinct tracks clearly illustrate the strong influence of the resolved tur-
bulent flow, as particle pathways on a DES simulation tend to deflect more during their travels
downstream in comparison to the straight tracks arising from the URANS solution. In order to
provide a quantitative description of the displacement, we define the rate of change in radial loca-
tion (UR = dR

dt ) with respect to the release coordinates (Y0, Z0), thus R = ((Y −Y0)
2+(Z−Z0)

2)0.5.
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Table 4.1. Power and thrust coefficient from the CFD flow simulation cases

CP
Ustream, m/s TSR DES URANS URANS-Fine
1 8.00 0.240 - -
2 4.00 0.461 0.452 0.460
3 2.67 0.390 - -

CT
1 8.00 0.947 - -
2 4.00 0.787 0.812 0.812
3 2.67 0.651 - -

The plots of UR with respect to the X-particle coordinate (Figure 4.5) show a pattern that repeats
on most particle tracks: rapid changes occur throughout most of the particle travel downstream
in the eddy-resolving scheme whereas the changes take place smoothly only near the MHK tur-
bine in the eddy-modeled flow. Furthermore, the effect of the developed turbulent structures in
the near wake flow region can also be seen in Figure 4.5.

Previous studies have shown the superior performance of eddy-resolving flow solutions to predict
deposition of particles modeled as Lagrangian spheres, although the specific problem was con-
taminant transport within airplane cabin ventilation systems (Wang et al. 2012). In another study
related to Lagrangian particle tracking supported by eddy-resolving flow simulations (Escauriaza
and Sotiropoulos 2011), spheres showed intermittent, sudden, rapid motion rather than smooth
displacements. The latter study is particularly of interest because it describes environmental
flows altered by the presence of engineered systems, which makes it relevant to our case. Thus,
we argue that the integration of advanced turbulence modeling techniques can better support
further quantitative studies of MHK turbine interaction with aquatic biota and of altered sediment
transport dynamics.
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Spherical particles—and potentially, fish—interact with the rotating turbine in one of three ways:
collision, rotor crossing, and complete avoidance (Figure 4.7). These modes are relevant for the
assessment of probability of blade-strike, although others can occur, e.g., entrainment in turbulent
wake flow or multiple collisions. The interaction depends on the location of release, on localized
entrainment in a traveling eddy, and on the angular position of blades with respect to particle
location at the moment of crossing. Particles impacting the blades will have a severe change in
trajectory and experience acceleration/deceleration events (top frame in Figure 4.7). Those that
safely cross the region influenced by the turbine experience a pathway deflection stronger than
those that avoid the turbine altogether (middle and bottom frames in Figure 4.7, respectively).
Rather than analyzing the interaction per particle, the present study released a sample of spheres
in a random manner in terms of the injection timing and location, as described in the method
(section 3.3.2). In this fashion, we obtain a global assessment of the MHK turbine from an
environmental standpoint.

To test the influence of the turbulence modeling approach, Table 4.2 summarizes the fraction of
collisions for the case of Ustream = 2 m/s, when small, mid-size and large spheres are released.
Two trends are observed: (a) increasing collisions with increasing size and (b) increasing colli-
sions with enhanced turbulence description. For the former, we hypothesize that a larger sphere
takes longer time to cross the blade gaps, thus allowing for more chance of collision as in the
form of Equation 3.1. This likelihood is mostly kinematic, i.e. it has to do purely with velocity
and geometric features. The other part of the argument lies in the fact that smaller spheres have
smaller inertia and are able to respond faster to the rapidly-changing flow conditions near the
MHK blades (thus, avoiding them), in comparison to large spheres (recall that mass difference is
430X between small and large particles). For the latter trend in Table 4.2, we break up the cal-
culation of Fimp values for the explanation. A fraction of all the released particles turns out not
to have any potential for impact, and such fraction is influenced by the turbulence solver. DES
simulations resulted in percentages of 44.7%, 43.8% and 35.6%, whereas URANS techniques
produced nearly constant values of 48.0% for small, mid-size and large spheres, respectively.
Despite the larger number of particles with potential of collision, URANS values of Fimp are
indeed lower. Therefore, we hypothesize that the combination of Lagrangian solution and DES
technique redistributes the particle locations towards the hub, thus increasing the fraction of colli-
sions because of the thicker blade features toward the center of rotation. However, this argument
must be tested by quantifying dispersion and redistribution of particles as they travel through the
MHK device.

Table 4.2. Percentage of particles with potential of collision and fraction of collisions (Fimp)
from two flow simulation cases, URANS and DES, at Ustream = 2 m/s

Flow case Small Mid Large
Collision potential

URANS 48.0 48.0 48.0
DES 44.7 43.8 35.6

Fractions, Fimp
URANS 8.3 9.1 9.5
DES 8.3 10.4 13.0

24



Spheres and fish of different sizes tend to lower the likelihood of collision with increasing flow
rate, as summarized in Table 4.3. In the case of the Pstr values, the lower probability results from
the shorter time needed to cross the blade plane at higher velocities; in fact, the Pstr values are
linearly proportional to Ustream for small and mid-size fish, and not so for large fish only because
the values are capped at 100%. The linear proportionality also holds true across the fish length
values. In the probabilistic model, fish arriving perpendicular to the impact plane (Pstr,A) have
an overall greater likelihood of strike compared to the case with uniform distribution of impact
angle (Pstr,B). In both cases, the order of magnitude of Pstr is similar to those values from
Amaral et al. (2011b). Lagrangian particle collisions, on the other hand, are overall lower than
probabilities of strike, except for small spheres. The values of Fimp, which were determined with
Lagrangian particles, scaled up with neither the stream velocity nor with the sphere diameter. In
general and compared to large particles, small and mid-size spheres are 33% and 15% less likely
to collide, in all cases.

Table 4.3. Kinematic probability of strike and fraction of Lagrangian collisions from the flow
simulation cases

Kinematic probabilities, Pstr, A
Ustream TSR Small Mid Large
1 8.00 15.3 62.0 100.0
2 4.00 7.6 31.0 79.5
3 2.67 5.1 20.7 53.0

Kinematic probabilities, Pstr, B
Ustream TSR Small Mid Large
1 8.00 9.7 39.5 79.3
2 4.00 4.9 19.8 50.6
3 2.67 3.2 13.2 33.8

Lagrangian fractions, Fimp
1 8.00 13.4 15.1 19.1
2 4.00 8.3 10.4 13.0
3 2.67 6.5 7.1 9.5

Apart from tracking particle locations, the present method has the ability to track the magnitude
of various flow quantities of interest for post-processing analysis, e.g. pressure, velocity compo-
nents, strain rate, etc. By sampling the entire flow domain and by analyzing the trends of such
variables, we can evaluate the biological performance of the MHK turbine in view of an array
of potential biological stressors. In this way, we can provide comparative scores that point to
turbine designs that perform better from an environmental standpoint. This approach is imple-
mented into a software tool developed and tested at PNNL for hydroelectric turbines (Richmond
et al. 2013b). Particularly important is to account not only for the likelihood and frequency of
collisions, but also for the intensity of such collisions, as well as for the ultimate possibility of
injury or mortality.
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4.3 Blade strike mortality

The evaluation of blade strike mortality reveals the limitations of the kinematic method (in
section 3.3.1) that ignores the individual information of impact intensity at specific locations
on the blade. The proposed method by Lagrangian particle tracking, on the other hand, provided
the collision data that can be used as the input data for quantitative fish mortality assessment.
Table 4.4 shows the survival rate for the three particle sizes at three different approach velocities
based on both the kinematic model and Lagrangian-particle simulations. The kinematic model-
based survival rates are calculated for the two crossing scenarios: fish crossing perpendicularly
to the plane of the leading edge of the turbine blades, and fish crossing with a body orientation
angle following a uniform distribution (Pstr,A and Pstr,B in table 4.3). The values of SR are
considerably low for large-sized fish mainly because we are accounting for the actual fish length.
However, the values tend to be similar for the case of small fish regardless of the calculation
method. On the other hand, the CFD-based survival rates remain relatively high, conforming to
the experimental evidence that fish passage through hydrokinetic turbines have high survival rate
(Amaral et al. 2011b, Castro-Santos and Haro 2012, Normandeau Associates 2009). Although
the survival rate decreases with fish size, the mortality is similar to that occurring in conventional
hydroturbines. Figure 4.6 shows the frequency distribution of the three input parameters needed
for quantitative assessment of blade strike mortality at approach velocity equal to 2 m/s. The
mean values roughly correspond to a collision that occurs at the middle of the blade length with
an impact velocity approximately equal to the rotating blade velocity (Vb), indicating a small
global effect of the fish velocity tangential to the runner plane, i.e., Vf tends to be small.

The modeled values of impact velocity (chart of ∆V distribution in figure 4.6) for the most part
fit the laboratory conditions from which the survival rate chart (figure 3.6) was estimated (3.0
to 12.2 m/s); similarly, the blade thickness fits entirely over the test range (10 - 150 mm). The
laboratory species also contemplated one salmonid-type and one sturgeon-type of fish species.
Only the modeled “large” fish length (L = 1.04 m) has to be extrapolated from the experimental
values (L ranged from 0.10 - 0.76 m).

It should be noted that the driving factor for the high survival rates is the relatively low impact
velocities on rotating blades of the MHK turbine. In comparison to conventional hydroelectric
turbines, the present turbine design does not have a water passageway that produces contraction
and acceleration of the fluid flowing through the turbine. This results in particles (and fish)
velocities that are not largely different from the ambient flow velocity as they cross the rotor
plane, and in turn, lower impact velocities. Additionally, the majority of planned and pilot
MHK installations do not include structures (e.g., shrouds) that would act to constrain the fish
within a path through the turbine blades. This fact largely increases the likely avoidance rate as
observed in laboratory tests and, in turn, increases the survival rate even more. Nevertheless, this
conclusion may differ for other MHK designs in which the turbines are enclosed or in which flow
contraction is enhanced to achieve greater availability of flow kinetic energy.

Ultimately, we can observe that for the small, juvenile salmonids considered in the analysis, sim-
ilar survival rate outcomes can be obtained with a much simpler evaluation method if locations
specific results are not needed.
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Table 4.4. Survival rate from the simulation cases, %

Kinematic SR (A), Fish size
Ustream TSR Small Mid Large
1 8.00 98.3 87.2 79.1
2 4.00 99.2 93.6 83.4
3 2.67 99.4 95.7 88.9

Kinematic SR (B), Fish size
Ustream TSR Small Mid Large
1 8.00 98.9 91.8 83.4
2 4.00 99.5 95.9 89.4
3 2.67 99.6 97.3 92.9

Lagrangian Solution SR, Particle size
Ustream TSR Small Mid Large
1 8.00 99.0 97.7 96.7
2 4.00 99.4 98.6 98.1
3 2.67 99.3 98.9 98.1



Figure 4.2. Iso-surfaces of Q-criterion equal to 8.0 shows the vortex structures that form in
the proximity of the MHK turbine, based upon a URANS (top) and DES (bottom)
turbulence modeling approach



Figure 4.3. Power (left) and thrust (right) coefficients from BEM theory and CFD simulations



Figure 4.4. Particle tracks originating from the same injector and resulting from URANS (blue)
and DES (red) turbulence simulations



Figure 4.5. The change in particle location on a YZ-plane as it travels downstream. Particles
correspond to those in frames of Figure 4.4. DES turbulence induces more rapid
and continuous track changes in comparison to the URANS modeling approach



Figure 4.6. Frequency distribution of radial location (top), blade thickness (middle), and impact
velocity for colliding particles of mid-size at 2 m/s approach velocity



Figure 4.7. Three modes of Lagrangian particle interaction with the rotating blades: collision
(top), potential but no collision (middle), and avoidance (bottom). The example
particles were subject to a DES-simulated flow at Ustream = 2 m/s





5.0 Summary and Future Work

We conducted quantitative evaluations of the likelihood of blade-strike on a marine hydrokinetic
turbine of the axial-flow type. The calculations used a method that involves the detailed solution
of turbulent flow in combination with Lagrangian particle tracks to mimic potential fish pathways
albeit not including volitional fish behavior such as avoidance. This novel method represents
an improvement over typical environmental performance assessments and modeling because
it combines the following components: (i) advanced turbulence modeling (DES), (ii) imple-
mentation of field-data-supported turbulent ambient inflow (SEM), (iii) transient blade-strike
sampling on rotating turbine blades (rigid body motion, RBM), and (iv) movement of spheres
with mass similar to fish (Lagrangian particle analysis). The proposed method allowed us to test
the influence of three conditions on the likelihood of blade strike: the turbulent environment,
the approaching inflow conditions, and the fish particle sizes. Additionally, we conducted the
biological performance of blade strike probability by means of a conventional method that took
into account the kinematic motion of objects through the turbine rotor plane. By using the same
MHK design and flow conditions, we compared and discussed the results obtained from applying
both methodologies.

By using a set of laboratory experimental correlations of exposure-response of live fish colliding
on moving blades, the occurrence, frequency and intensity of the particle collisions were next
used to calculate the survival rate of fish crossing the MHK turbine. This step indicated a low
mortality rate (<4%) which is consistent with experimental observations.

A detailed particle tracking analysis is currently underway in order to characterize the statistical
distributions of strike/collision frequency, severity, and location, i.e. to better assess the potential
consequences of the blade-strike events. For the future work, we will:

• Conduct statistical analysis of particle dispersion and redistribution in order to establish
causal relationships between the flow environment and the likelihood of blade-strike

• Expand the present analysis to include other biological responses of fish (injury, mortality,
etc) to the exposure to adverse flow conditions (strike, low pressure, turbulence, etc.)

• Incorporate the effect of fish distribution and cognitive behavior (e.g., avoidance) in the
particle model using methods such as those prescribed by (Scheibe and Richmond 2002).
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