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SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory
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PROCESS DISAGGREGATION

Block 1: Model
Simulator generation
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Block 3: Model
Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate  Add algebraic constraints
process blocks models with a functional design specs, heat/mass
form tailored for an balances, and logic
optimization framework constraints

Carnegie Mellon University 3 ]



LEARNING PROBLEM

Build a model of output variables z as a function of
input variables x over a specified interval

Process simulation or Experiment

x! < x < xt z=fx)
Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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HOW TO BUILD THE SURROGATES

 We aim to build surrogate models that are

— Accurate
We want to reflect the true nature of the simulation

— Simple
Tailored for algebraic optimization

f(x):Z%eXP (”:—2”) + 6o+ b1+ ...
1=1

A

f(x)=pra+ Boa?® + Pya° + Pye”

— Generated from a minimal data set
Reduce experimental and simulation requirements
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ALAMO

Automated Learning of Algebraic Models for Optimization
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| Build surrogate
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raining . ode
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false Model l ~ New model
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true Black-box function
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MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
Neural nets [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]
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MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models
2= f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(z)

I. Polynomial (x d)a

II. Multinomial H (xd)ad
deD’'CD

ITI. Exponential and logarithmic  exp (%) , log (‘”—j—)

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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OVERFITTING AND TRUE ERROR

* Step 1: Define a large set of potential basis functions
2(x) = o + Prry + Powo + Barima + fae” + e + ...

!
 Step 2: Model rm\ |

Z(x) =24 20+ 5e™

Error

Ideal Model

< True error

«—— Empirical error
iComplexity

< : —>
Underfitting | Overfitting
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MODEL REDUCTION TECHNIQUES

 Qualitative tradeoffs of model
reduction methods

Best subset methods
* Enumerate all possible
subsets

Regularized regression techniques
* Penalize the least squares objective using the
magnitude of the regressors [Tibshirani, 95]

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63]
Forward selection [Hamaker, 62]
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MODEL SIZING

Solve for the
best one-term

Solve for the

Goodness-of-fit } best two-term
measure model 6t" term was not worth the

4 / added complexity
Final model includes 5 terms
Some measure of

error thatis V
sensitive to /0
overfitting

(AICc, BIC, Cp)

n
>

Complexity = number of terms allowed in the model
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BASIS FUNCTION SELECTION

Find the model with the
least error

Y 1 3 3 3 \';i ' 0 $

T
Basis function used in the Wiodel M Basis function NOT used
e

ill solve thisimodelforincreasing T
until we determine a model size

7; is chosen to satisfy a leas
squares regression

(assumes loose bounds on [3;)

\_
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )

A 4

{ Initial sampling J

\ 4
4 N

Build surrogate
model

\ 4

Update 4
training
data set

A

Adaptive
sampling

false Model
converged?

Error maximization
true o
(stop ) sampling
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ERROR MAXIMIZATION SAMPLING

* Search the problem space for areas of model inconsistency
or model mismatch

* Find points that maximize the model error with respect to
the independent variables

Surrogate model

— Derivative-free solvers work well in low-dimensional spaces
[Rios and Sahinidis, 12]

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]
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COMPUTATIONAL RESULTS

* Goal - Compare methods on three target metrics

. Model accuracy ici . Model simplicity

 Modeling methods compared

— ALAMO modeler — Proposed methodology
— The LASSO — The lasso regularization
— Ordinary regression — Ordinary least-squares regression

 Sampling methods compared (over the same data set size)
— ALAMO sampler — Proposed error maximization technique
— Single LH - Single Latin hypercube (no feedback)

Carnegie Mellon University



Model accuracy E Data efficiency B Model simplicity

Fraction of problems solved

1.00 ALAMO modeler
0.99 the lasso
0.97 Ordinary regression

70%of 7 (0.005, 0.80)

problems 80% of the problems
solved exactly had <0.5% error
0.00 error maximization sampling
0 0.005 0.01
Normalized test error | ___ 0.95 ALAMO modeler
___,.---"""" ______________ - -.-r--—-: 0.84 Ordinaryregression
0.674~ T 0.87 the lasso
. _.ﬁ,‘n'{;::-"
0.00 ] single Latin hypercube
0 0.005 0.01

Normalized test error
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. Model accuracy . Data efficiency B Model simplicity

......... , — 1 1.00 ALAMO sampler
----------------- 0.95 Single LH

Fraction of ' —=
problems solved F"Jr

0.0 ALAMO modeler

I 0.99 ALAMO sampler
0.84 Single LH

ALAMO sampler
Single LH

Ordinary regression
0 0.005 0.01
Normalized test error
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Model accuracy E Data efficiency E Model simplicity

Modeling type, Median more complexity than required
ALAMO modeler, 0 | E
The lasso, 4 — P
Ordinary regression, 9 = .
—ll() 0 lb 2'0 3'O 401

Number of B True number
terms in model of terms

Results over a test set of 45 known functions treated as black boxes
with bases that are available to all modeling methods.
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MODEL SELECTION CRITERIA

e Balance fit (sum of square errors) with model complexity
(number of terms in the model; denoted by p)

Corrected Akaike Information Criterion

N
1 2 +1
i=1

Mallows’ Cp
M (2= XiB)?
_ Ai=1\"1 l .
Cp = = +2p—N
Hannan-Quinn Information Criterion

N
1 2
HQC = N log( % (z; = XiB)? | + 2p log(log(N))
=1
Bayes Information Criterioln

Zliv=1(zi/: Xiﬁ)z

o

BIC =

+ p log(N)
Mean Squared Error
Iiv=1(Zi — Xiﬁ)z

MSE =
N—-p-1
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CPU TIME COMPARISON

* Eight benchmarks from the UCl and CMU data sets

* Seventy noisy data sets were generated with multicolinearity
and increasing problem size (number of bases)

Cp ——BIC ——AIC, MSE, HQC

o * BIC solves more than
two orders of magnitude
- faster than AIC, MSE and

HQC
— Optimized directly via a
1 single mixed-integer

=
o
o

CPU time (s)

0.1

convex quadratic model

0.01

Problem Size
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MODEL QUALITY COMPARISON

* BIC leads to smaller, more accurate models
— Larger penalty for model complexity

Cp ——BIC ——AIC HQC ——MVISE
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ALAMO REMARKS

New
surrogate

Surrogate
model

N
o) )
r Maximizat\o® '?ebUild mode\

* Expanding the scope of algebraic optimization

— Using low-complexity surrogate models to strike a balance
between optimal decision-making and model fidelity

* Surrogate model identification
— Simple, accurate model identification — Integer optimization

* Error maximization sampling
— More information found per simulated data point
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THEORY UTILIZATION

empirical data non-empirical information

* Use freely available system knowledge to strengthen model
— Physical limits
— First-principles knowledge
— Intuition

* Non-empirical restrictions can be applied to general
regression problems
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CONSTRAINED REGRESSION

* Challenging due to the semi-infinite nature of the regression
constraints

Standard regression .
111111
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IMPLIED PARAMETER RESTRICTIONS

Find a model 2 such that Z(x) > 0 with a fixed model form:

2(z) =1+ Poa’

Step 1: Formulate Step 2: Identify a sufficient
constraint in z- and x-space set of B-space constraints
1 2 1 2
min 3 (2 = [fra+ fra’]) min 3 (5 — [fra+ fra’])
| R

s.t. [ 0.240 31 + 0.0138 B2 > 0

st. Bix+Byz’ >0 z € [0,1] .
1 pmn 0.281 31 + 0.0223 B3 > 0

constraint 0.120 61 + 0.00173 52 Z 0
| 0.138 81 + 0.00263 B > 0

4 B-constraints
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TYPES OF RESTRICTIONS

pressure, temperature,
compositions

ﬁ(mt(.l'> g Fin

mass and energy balances,
physical limitations

>
—_
>
[\
N>
o
p—

mass balances, sum-to-
one, state variables

monotonicity, numerical
properties, convexity

safe extrapolation,
boundaryconditions

Add
no slip

(R, 0) =0 V0
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CARBON CAPTURE SYSTEM DESIGN
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* Discrete decisions: How many units? Parallel trains?
What technology used for each reactor?

e Continuousdecisions: Unit geometries

* Operating conditions: Vessel temperature and pressure, flow rates,
compositions
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SUPERSTRUCTURE OPTIMIZATION

Mixed-integer nonlinear
programming model

coolin

solidLean

« Economic model Al I
* Process model coolOut :
« Material balances i
* Hydrodynamic/Energy balances | gasOut
* Reactor surrogate models ! ot
 Link between economic model coldin uUnderflow }-----]

and process model e~ ““Technologyf

* Binary variable constraints
 Bounds for variables

Other Trains

‘ utilin
fgin flueln
>

flueOut
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warmOut feedCO2F
utilOut solidRich
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GLOBAL MINLP SOLVERS ON CMU/IBMLIB

Perfornance Profile
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CONCLUSIONS

 ALAMO provides algebraic models that are
v’ Accurate and simple

v’ Generated from a minimal number of function evaluations

 ALAMO'’s constrained regression facility allows modeling of

v’ Bounds on response variables
v Convexity/monotonicity of response variables

* On-going efforts
* Uncertainty quantification
 Symbolicregression

 ALAMO site: archimedes.cheme.cmu.edu/?g=alamo
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