Package ‘MRSea’

November 7, 2013

Title Marine Renewables Strategic environmental assessment

Description Examines animal survey data for signs of changes in animal
abundance and distribution following marine renewables development. The
functions of this package can be used to analyse segmented line transect
data and nearshore vantage point data. Non-parametric bootstrapping can be
used to estimate uncertainty. Several model assessment tools are available.
This review constitutes work carried out at the Centre for Research into
Ecological and Environmental Modelling (CREEM) at the University of St. An-
drews,performed under contract for Marine Scotland (SB9 (CR/2012/05)).

Version 0.1.1

Date 2013-10-04

Author Lindesay Scott-Hayward, Cornelia Oedekoven, Monique Mackenzie, Eric Rexstad
Maintainer Lindesay Scott-Hayward <lass@st-and.ac.uk>

Depends R (>=3.0.0), calibrate (>= 1.7.2), car (>=2.0-19), fields
(>=6.8), geepack (>= 1.1-6), ggplot2 (>=0.9.3.1), lawstat (>=
2.4), Matrix (>= 1.0-12), mrds (>= 2.1.4), mvtnorm (>= 0.9-9996), splines (>= 3.0.1)

License GPL-2
LazyData true

Note Scott-Hayward LAS, Oedekoven CS, Mackenzie ML and Rexstad E
(2013). ""MRSea package (version 0.0.1): Statistical Modelling
of bird and cetacean distributions in offshore renewables
development areas". University of St. Andrews: Contract with
Marine Scotland: SB9 (CR/2012/05)

URL http://creem2.st-and.ac.uk/software.aspx

Collate 'LocalRadialFunction.R' 'MRSea-package.r' 'SALSA1DCode.R'
'SALSA2DCode.R' 'bootstrap.orig.data.R' 'create. NHAT.R'
'create.bootcount.data.R' 'create.bootstrap.data.R’
'create.count.data.R' 'dis.data.de.r' 'dis.data.no.r'
'dis.data.re.r' 'do.bootstrap.cress.R' 'do.bootstrap.gam.r'
'functions.R' 'getCV_cress.R' 'getCVfoldID.R'
'getDifferences.R' 'getPlotDimensions.R' 'getPvalues.R'
'knotgrid.ns.r' 'knotgrid.off.r' 'makeBootCIs.R' 'makesplineParams.R' 'ns.data.de.r' 'ns.data.no.r'
'ns.data.re.r' 'ns.predict.data.de.r' 'ns.predict.data.no.r'

1

http://creem2.st-and.ac.uk/software.aspx

2 R topics documented:

'ns.predict.data.re.r' ‘plotCumRes.R' 'plotRunsProfile.R’
‘predict.data.de.r’ 'predict.data.no.r' 'predict.data.re.r'
TunACE.R' runDiagnostics.R' runInfluence.R’
'runInfluenceCheck.R' 'runPartialPlots.R' TunSALSA.R'
'TunSALSA1D_withremoval.R' TunSALSA2D.R' 'which.bin.R'

R topics documented:

acffunc L e e e 3
bootstrap.orig.data 3
checkfactorlevelcounts 4
create.bootcount.data L L. L L e e 4
create.bootstrap.data 5
create.count.data L L. e e e 6
create NHAT e 7
dis.data.de 8
dis.datano e 8
dis.data.re 9
do.boOtStrap.Cress e e 10
do.bootstrap.gam 13
getCVids e 15
getCV_CReSS e 15
getDifferences 16
getPlotdimensions L 17
getPvalues 18
getRadiiChoices L 19
knotgridns 20
knotgrid.off 20
LocalRadialFunction 20
makeBootCIs e 21
makeDists e 22
makesplineParams L. e 22
MRSea e 23
ns.datade L 24
ns.datano L. e 24
ns.datare L e e e e 25
ns.predict.data.de L. L e 26
ns.predict.data.no e e e e 26
ns.predict.datare L L e e e e 27
plotact e e 28
plotCumRes e e 28
plotRunsProfile 29
predict.data.de L e e e 30
predict.datano.o e e e e e 30
predict.data.re L L e e e e 31
return.reg.spline.fit L. L L e 31
return.reg.spline.fit.2d L. L 32
runACF . . . o L 33
runDiagnostics L L e e e e 34
runlnfluence oL e 35
runPartialPlots L 36

runSALSAID 37

acffunc 3

runSALSAID_withremoval e 39
runSALSA2D L 41
timelnfluenceCheck 43
which.bin 44
Index 46
acffunc calculate correlation for residuals by block
Description

calculate correlation for residuals by block

Usage

acffunc(block, model)

Arguments
block Vector of blocks that identify data points that are correlated
model Fitted model object (glm or gam)

bootstrap.orig.data Obtaining a data frame of bootstrapped data using resamples

Description
This function extracts the records corresponding to each resample from the original distance data
and pastes them together in a new data frame which is returned.

Usage

bootstrap.orig.data(orig.data, resample, new.resamples,
resamples.no)

Arguments
orig.data Original data to be bootstrapped
resample Specifies the resampling unit for bootstrapping, default is transect.id. Must

match a column name in orig.data exactly
new.resamples String of resampled units from datal, "resample”]. Created by create.bootstrap.data()

resamples.no Length of new.resamples

Value

Returns bootstrapped data. Internal function called by function create.bootstrap.data.

4 create.bootcount.data

Examples

data(dis.data.re)

resample<-"transect.id”

samples<-unique(dis.data.re[,resample])

resamples.no<-length(samples)
new.resamples<-sample(samples,resamples.no,replace=TRUE)
bootstrap.data<-bootstrap.orig.data(dis.data.re,resample,new.resamples,resamples.no)

checkfactorlevelcounts
Factor level response check

Description

This function checks that there are some non-zero counts in each level of each factor variable for
consideration in a model

Usage

checkfactorlevelcounts(factorlist, data, response)

Arguments
factorlist Vector of factor variables specified in model. Specified so that a check can be
made that there are non-zero counts in all levels of each factor.
data Data frame containing columns of covariates listed in factorlist. Column
names must match with names in factorlist
response A vector of response values
Examples
load data

data(ns.data.re)

checkfactorlevelcounts(factorlist=c(floodebb, impact), ns.data.re,
ns.data.re$birds)

create.bootcount.data Aggregate bootstrapped distance data into count data

Description

This function creates a new data set where dis.data is aggregated for each visit to a segment.
For bootstrapped data, the column with the ids for visits to a segment is segment.id2 which
is created by create.bootstrap.data using the default for argument rename. The sum of the
estimated number of individuals for each segment from dis.data$NHAT is given in the column
NHAT in the new data. All other columns from the observation layer should be discarded. This is
achieved by specifying the columns that should be retained using the argument column.numbers.
Generally, all columns from the segment and higher levels should be kept. If the default is used,
column.numbers=NULL, the columns distance, object, size, distbegin and distend from the
observation level are automatically discarded. Note that for those columns from the observation
layer that are kept, only the first recorded value will be transferred.

create.bootstrap.data 5

Usage

create.bootcount.data(dis.data, column.numbers = NULL)

Arguments

dis.data Data frame containing distance data (one row for each detection). Expects a
column NHAT, i.e. size of detection divided by its probability of detection (see
create.NHAT) and that and that ids in segment.id2 are unique regardless of
what resampled transect they belong to.

column.numbers Optional argument: vector of integers indicating which columns other than NHAT
from dis.data should be retained in the returned data.

Value

This function returns bootstrapped count data that is suited for second stage count modelling of
distance sampling data. The data includes the columns NHAT and area which are the response and
the offset required by functions concerned with second stage modelling from this package.

Examples

data(dis.data.re)

bootstrap data without stratification

dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")

result<-ddf (dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re, method="ds",
meta.data=1list(width=250))

dis.data.re<-create.NHAT(dis.data.re,result)

bootstrap.data<-create.bootstrap.data(dis.data.re)

bootcount.data<-create.bootcount.data(bootstrap.data)

create.bootstrap.data Create bootstrap data for non-parametric bootstrapping

Description

This function creates one realisation of bootstrapped data based on dis.data. The default resam-
pling unit is transect. id which may be modified using the argument resample.

Usage
create.bootstrap.data(dis.data, resample = "transect.id”,
rename = "segment.id”, stratum = NULL)
Arguments
dis.data Original data to be bootstrapped. Requires a column that matches argument
resample exactly.
resample Specifies the resampling unit for bootstrapping, default is transect.id. Must

match a column name in dis.data exactly

6 create.count.data

rename A vector of column names for which a new column needs to be created for
the bootstrapped data. This defaults to segment.id for line transects, however
others might be added A new column with new ids will automatically be created
for the column listed in resample

stratum The column name in dis.data that identifies the different strata. The default
NULL returns un-stratified bootstrap data. If stratum is specified, this requires a
column in dis.data that matches argument stratum exactly

Value

Returns one realisation of bootstrapped distance data. Note that a new column (in addition to
those listed under argument rename) is created. If the default for resample is used, a column with
new unique ids called transect.id2. Note that a new column is created with renamed bootstrap
resamples to preserve the number of unique bootstrap resamples. If the default for resample is
used, i.e. transect.id, this new column is called transect.id2. In addition, a new column
segment.id2 is created which is required for other bootstrap functions.

Examples

data(dis.data.re)

run distance analysis to create NHATS

dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")

result<-ddf(dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re, method="ds",
meta.data=1list(width=250))

dis.data.re<-create.NHAT(dis.data.re,result)

bootstrap data without stratification
bootstrap.data<-create.bootstrap.data(dis.data.re)

boostrap data with stratification (here by survey which is composed of
season and impact)
dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")

bootstrap.data.str<-create.bootstrap.data(dis.data.re, stratum = "survey.id")
create.count.data Aggregate distance data into count data
Description

This function creates a new data set where dis.data is aggregated for each visit to a segment
(segment.id). The sum of the estimated number of individuals for each segment from dis.data$NHAT
is given in the column NHAT in the new data. Only columns from the segment or higher layers should
be carried over into count.data from dis.data. Use argument column. numbers to identify these.

Usage

create.count.data(dis.data, column.numbers = NULL)

Arguments

dis.data Data frame containing distance data (one row for each detection). Expects a
column NHAT, i.e. size of detection divided by its probability of detection (see
create.NHAT) and that ids in segment . id are unique regardless of what transect
they belong to

create. NHAT 7

column.numbers Optional argument: vector of integers indicating which columns other than NHAT
from dis.data should be retained in the returned data. Generally all columns
from the segment and higher levels should be kept while those from the obser-
vation level should be discarded. If the default is used, column.numbers=NULL,
the columns distance, object, size, distbegin and distend from the obser-
vation level are automatically discarded. Note that for those columns from the
observation layer that are kept, only the first recorded value will be transferred.

Value

This function returns count data that is suited for second stage count modelling of distance sampling
data. The data includes the columns NHAT and area which are the response and the offset required
by functions concerned with second stage modelling from this package.

Examples

data(dis.data.re)
dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")
result<-ddf (dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re, method="ds",
meta.data=list(width=250))
dis.data.re<-create.NHAT(dis.data.re,result)
count.data<-create.count.data(dis.data.re)

create.NHAT Estimated number of individuals for each detection

Description

This function creates a new column in data which contains the estimated number of animals for
each detection. This is the number of observed individuals divided by their probability of detec-
tion using MCDS methods (size/detection probability). In the case that no size column is given in
dis.data, it is assumed that detections were made of individuals and size is set to 1 for all detec-
tions. The values for size and NHAT are set to zero in case the distance was larger than the truncation
distance w specified in det.fct.object. In addition, a new column area is created which is used
as the offset in the second stage count model (segment length * (truncation distance/1000) * 2).
The truncation distance is divided by 1000 to convert it from metres to km. It is assumed that the
segment data represents two-sided surveys. In case the survey was one-sided, this column needs to
be divided by 2 after the call to this function.

Usage

create.NHAT(data, ddf.obj)

Arguments

data distance data object used with det. fct to estimate probabilities of detection

ddf.obj detection function object created by ddf

8 dis.data.no

Examples

data(dis.data.re)

result<-ddf (dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re,method="ds",
meta.data= list(width=250,binned=FALSE))

dis.data<-create.NHAT(dis.data.re,result)

dis.data.de Line transect data with decrease post-impact

Description

A simulated dataset containing the observed perpendicular distances, the effort data and other vari-
ables of segmented line transect data. The variables are as follows:

Format

A data frame with 10759 rows and 12 variables

Details

* transect.id Identifier for the individual visits to the transects
* transect.label Labels for transects

* season Numerical indicator for the four different seasons

* impact Numerical indicator for before (0) and after (1) impact
* segment. id Identifier for individual visits to the segment

* segment.label Label for segments

* length Length of segment in km

* Xx.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

e depth Depth in m

* object Id for detected object

* distance Perpendicular distance from the line

dis.data.no Line transect data with no post-impact consequence

Description
A simulated dataset containing the observed perpendicular distances, the effort data and other vari-
ables of segmented line transect data. The variables are as follows:

Format

A data frame with 10771 rows and 12 variables

dis.data.re

Details

* transect.id Identifier for the individual visits to the transects
* transect.label Labels for transects

* season Numerical indicator for the four different seasons

e impact Numerical indicator for before (0) and after (1) impact
* segment. id Identifier for individual visits to the segment

* segment.label Label for segments

* length Length of segment in km

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* depth Depth in m

* object Id for detected object

* distance Perpendicular distance from the line

dis.data.re Line transect data with redistribution post-impact

Description

A simulated dataset containing the observed perpendicular distances, the effort data and other vari-

ables of segmented line transect data. The variables are as follows:

Format

A data frame with 10951 rows and 12 variables

Details

* transect.id Identifier for the individual visits to the transects
* transect.label Labels for transects

* season Numerical indicator for the four different seasons

* impact Numerical indicator for before (0) and after (1) impact
* segment. id Identifier for individual visits to the segment

* segment.label Label for segments

* length Length of segment in km

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* depth Depth in m

* object Id for detected object

* distance Perpendicular distance from the line

10 do.bootstrap.cress

do.bootstrap.cress Bootstrapping function without model selection using CReSS/SALSA

for fitting the second stage count model

Description

This fuction performs a specified number of bootstrapping iterations using CReSS/SALSA for fit-
ting the second stage count model. See below for details.

Usage

do.bootstrap.cress(orig.data, predict.data,
ddf.obj = NULL, model.obj, splineParams, g2k,
resample = "transect.id”, rename = "segment.id",
stratum = NULL, B, name = NULL, save.data = FALSE,
nhats = FALSE, seed = 12345, nCores = 1)

Arguments

orig.data

predict.data

The original data. In case ddf.obj is specified, this should be the original dis-
tance data. In case ddf.obj is NULL, it should have the format equivalent to
count.data where each record represents the summed up counts at the seg-
ments.

The prediction grid data

ddf.obj The ddf object created for the best fitting detection model. Defaults to NULL for
nearshore data.

model.obj The best fitting CReSS model for the original count data

splineParams The object describing the parameters for fitting the one and two dimensional
splines

g2k (N x k) matrix of distances between all prediction points (N) and all knot points
k)

resample Specifies the resampling unit for bootstrapping, default is transect.id. Must
match a column name in dis.data exactly

rename A vector of column names for which a new column needs to be created for
the bootstrapped data. This defaults to segment. id for line transects (which is
required for create.bootcount.data), others might be added. A new column
with new ids will automatically be created for the column listed in resample.
In case of nearshore data, this argument is ignored.

stratum The column name in orig.data that identifies the different strata. The default
NULL returns un-stratified bootstrap data. In case of nearshore data, this argu-
ment is ignored.

B Number of bootstrap iterations

name Analysis name. Required to avoid overwriting previous bootstrap results. This
name is added at the beginning of "predictionboot.RData" when saving boot-
strap predictions.

save.data If TRUE, all created bootstrap data will be saved as an RData object in the

working directory at each iteration, defaults to FALSE

do.bootstrap.cress 11

nhats (default = FALSE). If you have calculated bootstrap NHATS because there is
no simple ddf object then a matrix of these may be fed into the function. The
number of columns of data should >= B. The rows must be equal to those in
orig.data and d2k and must be in matching order.

seed Set the seed for the bootstrap sampling process.

nCores Set the number of computer cores for the bootstrap process to use (default = 1).
The more cores the faster the proces but be wary of over using the cores on your
computer. If nCores > (number of computer cores - 2), the function defaults
to nCores = (number of computer cores - 2). Note: On a Mac computer the
parallel code does not compute so use nCores=1.

Details

In case of distance sampling data, the following steps are performed for each iteration:
- the original data is bootstrapped

- a detection function is fitted to the bootstrapped data

- a count model is fitted to the bootstrapped data

- coefficients are resampled from a multivariate normal distribution defined by MLE and COV from
count model

- predictions are made to the prediction data using the resampled coefficients
In case of count data, the following steps are performed for each iteration:

- coefficients are resampled from a multivariate normal distribution defined by MLE and COV from
the best fitting count model

- predictions are made to the prediction data using the resampled coefficients

Value

The function returns a matrix of bootstrap predictions. The number of rows is equal to the number
of rows in predict.data. The number of columns is equal to B. The matrix may be very large and so
is stored directly into the working directory as a workspace object: *"name"predictionboot.RObj’.
The object inside is called bootPreds.

Examples

#
offshore redistribution data
#
data(dis.data.re)
data(predict.data.re)
data(knotgrid.off)
#
distance sampling
dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")
result<-ddf(dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re, method="ds",
meta.data=list(width=250))
dis.data.re<-create.NHAT(dis.data.re,result)
count.data<-create.count.data(dis.data.re)

#
spatial modelling
splineParams<-makesplineParams(data=count.data, varlist=c(depth))

do.bootstrap.cress

#set some input info for SALSA

count.data$response<- count.data$NHAT

make distance matrices for datatoknots and knottoknots

distMats<-makeDists(cbind(count.data$x.pos, count.data$y.pos), na.omit(knotgrid.off))

choose sequence of radii

r_seq<-getRadiiChoices(8,distMats$dataDist)

set initial model without the spatial term

initialModel<- glm(response ~ as.factor(season) + as.factor(impact) + offset(log(area)),
family=quasipoisson, data=count.data)

make parameter set for running salsa2d

salsa2dlist<-list(fitnessMeasure = QICb, knotgrid = knotgrid.off, startKnots=4, minKnots=4,
maxKnots=20, r_seq=r_seq, gap=4000, interactionTerm="as.factor(impact)")

salsa2dOutput_k6<-runSALSA2D(initialModel, salsa2dlist, d2k=distMats$dataDist,

k2k=distMats$knotDist, splineParams=splineParams)

splineParams<-salsa2dOutput_ké6$splineParams

specify parameters for local radial function:

radiusIndices <- splineParams[[1]]$radiusIndices

dists <- splineParams[[1]]$dist

radii <- splineParams[[1]]$radii

aR <- splineParams[[1]]$invInd[splineParams[[1]]$knotPos]

count.data$blockid<-paste(count.data$transect.id, count.data$season, count.data$impact, sep=)

Re-fit the chosen model as a GEE (based on SALSA knot placement) and GEE p-values

geeModel<- geeglm(formula(salsa2dOutput_k6$bestModel), data=count.data, family=poisson, id=blockid)

dists<-makeDists(cbind(predict.data.re$x.pos, predict.data.re$y.pos), na.omit(knotgrid.off),
knotmat=FALSE) $dataDist

#

bootstrapping

do.bootstrap.cress(dis.data.re, predict.data.re, ddf.obj=result, geeModel, splineParams,
g2k=dists, resample=transect.id, rename=segment.id, stratum=survey.id,
B=4, name="cress", save.data=FALSE, nhats=NULL, nCores=1)

load("cresspredictionboot.RData") # loading the bootstrap predictions into the workspace

look at the first 6 lines of the bootstrap predictions (on the scale of the response)

head(bootPreds)

Not run:

In parallel (Note: windows machines only)

require(parallel)

do.bootstrap.cress(dis.data.re, predict.data.re, ddf.obj=result, geeModel, splineParams,
g2k=dists, resample=transect.id, rename=segment.id, stratum=survey.id,
B=4, name="cress", save.data=FALSE, nhats=NULL, nCores=4)

load("cresspredictionboot.RData") # loading the bootstrap predictions into the workspace

look at the first 6 lines of the bootstrap predictions (on the scale of the response)

head(bootPreds)

End(Not run)

#

nearshore redistribution data
#

Not run:

do.bootstrap.cress(ns.data.re, ns.predict.data.re, ddf.obj=NULL, geeModel, splineParams,
g2k=dists, resample=transect.id, rename=segment.id, stratum=NULL,
B=2, name="cress", save.data=FALSE, nhats=NULL)
load("cresspredictionboot.RData") # loading the predictions into the workspace
look at the first 6 lines of the bootstrap predictions (on the scale of the response)

do.bootstrap.gam 13

head(bootPreds)
End(Not run)

do.bootstrap.gam Bootstrapping function without model selection using gam as the sec-
ond stage count model

Description

This fuction performs a specified number of bootstrapping iterations using gams for fitting the
second stage count model. See below for details.

Usage
do.bootstrap.gam(orig.data, predict.data, ddf.obj = NULL,
model.obj, resample = "transect.id",
rename = "segment.id”, stratum = NULL, B, name = NULL,

save.data = FALSE, nhats = NULL)

Arguments

orig.data The original data. In case ddf.obj is specified, this should be the original dis-
tance data. In case ddf.obj is NULL, it should have the format equivalent to
count.data where each record represents the summed up counts at the seg-
ments.

predict.data The prediction grid data

ddf.obj The ddf object created for the best fitting detection model. Defaults to NULL for
nearshore data.

model.obj The best fitting gam model for the original count data

resample Specifies the resampling unit for bootstrapping, default is transect.id. Must
match a column name in dis.data exactly

rename A vector of column names for which a new column needs to be created for
the bootstrapped data. This defaults to segment. id for line transects (which is
required for create.bootcount.data), others might be added. A new column
with new ids will automatically be created for the column listed in resample.
In case of nearshore data, this argument is ignored.

stratum The column name in orig.data that identifies the different strata. The default
NULL returns un-stratified bootstrap data. In case of nearshore data, this argu-
ment is ignored.

B Number of bootstrap iterations

name Analysis name. Required to avoid overwriting previous bootstrap results. This
name is added at the beginning of "predictionboot.RData" when saving boot-
strap predictions.

save.data If TRUE, all created bootstrap data will be saved as an RData object in the
working directory at each iteration, defaults to FALSE
nhats (default = FALSE). If you have calculated bootstrap NHATS because there is

no simple ddf object then a matrix of these may be fed into the function. The
number of columns of data should >= B. The rows must be equal to those in
orig.data and d2k and must be in matching order.

14 do.bootstrap.gam

Details

In case of distance sampling data, the following steps are performed for each iteration:
- the original data is bootstrapped

- a detection function is fitted to the bootstrapped data

- a count model is fitted to the bootstrapped data

- coefficients are resampled from a multivariate normal distribution defined by MLE and COV from
count model

- predictions are made to the prediction data using the resampled coefficients
In case of count data, the following steps are performed for each iteration

- coefficients are resampled from a multivariate normal distribution defined by MLE and COV from
the best fitting count model

- predictions are made to the prediction data using the resampled coefficients

Value

The function returns a matrix of bootstrap predictions. The number of rows is equal to the number
of rows in predict.data. The number of columns is equal to B. The matrix may be very large and so
is stored directly into the working directory as a workspace object: *"name"predictionboot.RObj’.
The object inside is called bootPreds.

Examples

offshore redistribution data

data(dis.data.re)

data(predict.data.re)

dis.data.re$survey.id<-paste(dis.data.re$season,dis.data.re$impact,sep="")

result<-ddf (dsmodel=~mcds(key="hn", formula=~1), data=dis.data.re, method="ds",
meta.data=list(width=250))

dis.data.re<-create.NHAT(dis.data.re,result)

count.data<-create.count.data(dis.data.re)

require(mgcv)

gam. 2<-gam(NHAT~as.factor(impact)+s(x.pos,y.pos,by=as.factor(impact))+offset(log(area)),
data=count.data,family=quasipoisson)

do.bootstrap.gam(dis.data.re,predict.data.re,ddf.obj=result,model.obj=gam.2,resample="transect.id"”,
rename="segment.id",stratum=survey.id, 1,name=gam, save.data=FALSE,nhats=NULL)

load("gampredictionboot.RData"”) # loading the predictions into the workspace

look at the first 6 lines of the predictions on the response scale

head(bootPreds)

Not run: # nearshore redistribution data

data(ns.data.re)

data(ns.predict.data.re)

require(mgcv)

gam.ns2=gam(birds~as.factor(impact)+s(x.pos,y.pos,by=as.factor(impact))+offset(log(area)),
data=ns.data.re,family=quasipoisson)

do.bootstrap.gam(ns.data.re,ns.predict.data.re,ddf.obj=NULL,model.obj=gam.ns2,resample=NULL,

rename=NULL, stratum=NULL,1,name=ns.gam, save.data=FALSE,nhats=NULL)

load the replicate predictions into the workspace

load("ns.gampredictionboot.RData")

look at the first 6 lines of the predictions on the response scale

head(bootPreds)

End(Not run)

getCVids 15

getCVids IDs for running cross validation

Description
This function creates a string of integers which will be used for pointing to the right subsets of data
for cross validation of regression objects
Usage
getCVids(data, folds, block = NULL)

Arguments
data data used in regression model
folds integer number of validation data sets
block column in data indicating the blocking structure for cross-validation (if block =
NULL, individual observations will be used as blocks)
Details

The function returns a random sequence of 1:folds of the same length as observations in data. It is
called by other functions, e.g. getCV_CReSS.

Examples

load data
data(ns.data.re)

CVids<-getCVids(ns.data.re, 5)

getCV_CReSS Calculate cross-validation score for a CReSS type model

Description

Calculate cross-validation score for a CReSS type model

Usage

getCV_CReSS(data, baseModel, splineParams)

Arguments
data Data frame containing columns of covariates contained in baseModel.
baseModel glm or CReSS type model object

splineParams list object containing information for fitting one and two dimensional splines.
See makesplineParams for more details.

16 getDifferences

Details

There must be a column in the data called foldid, which can be created using getCVids. This
column defines the folds of data for the CV calculation.

Examples

load data
data(ns.data.re)

load prediction data
data(ns.predict.data.re)

splineParams<-makesplineParams(data=ns.data.re, varlist=c(observationhour, DayOfMonth))

set some input info for SALSA

ns.data.re$response<- ns.data.re$birds

salsaldlist<-list(fitnessMeasure = QICb, minKnots_1d=c(2,2), maxKnots_1d = c(20, 20),
startknots_1d = c(2,2), degree=c(2,2), maxIterations = 10, gaps=c(1,1))

set initial model without the spline terms in there

(so all other non-spline terms)

initialModel<- glm(response ~ as.factor(floodebb) + as.factor(impact) + offset(log(area)),
family=quasipoisson,data=ns.data.re)

run SALSA
salsaldOutput<-runSALSATD(initialModel, salsaldlist, varlist=c(observationhour,DayOfMonth),
factorlist=c(floodebb, impact), ns.predict.data.re, splineParams=splineParams)

make blocking structure and fold structure
ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep=)
ns.data.re$blockid<-as.factor(ns.data.re$blockid)
ns.data.re$foldid<-getCVids(ns.data.re, folds=5, block=blockid)

calculate CV
cvi<-getCV_CReSS(ns.data.re, salsaldOutput$bestModel, salsaldOutput$splineParams)

getDifferences Identify any significant differences between predicted data before an
impact event and predicted data after an impact event

Description

Identify any significant differences between predicted data before an impact event and predicted
data after an impact event

Usage

getDifferences(beforePreds, afterPreds,
quants = ¢(0.025, 0.975))

getPlotdimensions 17

Arguments
beforePreds Matrix of bootstrap predictions (n x B) to each grid cell before impact (same
length and order as afterPreds)
afterPreds Matrix of bootstrap predictions (n x B) to each grid cell after impact (same
length and order as beforePreds)
quants (default = =c(.025,.975)) Quantile for significance.
Details

This function finds the differences for every predicted grid cell for every bootstrap replicate. Quan-
tiles are used to determine whether each difference is significantly different from zero and if so, in
what direction.

Value

A list is returned consisting of

mediandiff Vector of the median difference for each grid cell
lowerci Vector of the lower 2.5% difference for each grid cell
upperci Vector of the upper 97.5% difference for each grid cell
significanceMarker

Vector of significance. 0: not significant, 1: significant and positive, -1: signifi-
cant and negative

Examples

Not run:
getDifferences(beforePreds, afterPreds)
End(Not run)

getPlotdimensions find the plotting dimensions for quilt.plot when using a regular grid

Description

find the plotting dimensions for quilt.plot when using a regular grid

Usage

getPlotdimensions(x.pos, y.pos, segmentWidth,
segmentLength)

Arguments

X.pos Vector of x-coordinates in dataset
y.pos Vector of y-coordinates in dataset
segmentWidth Width of each grid cell of data (in same units as x.pos)

segmentLength Length of each grid cell of data (in same units as y . pos)

18 getPvalues

Examples

load data
data(ns.data.re)

getPlotdimensions(ns.data.re$x.pos, ns.data.re$y.pos, segmentWidth=500, segmentLength=500)

getPvalues Calculate marginal p-values from a model.

Description
An ANOVA is fitted repeatedly with each covariate being the last so that the output is marginal.
varlist and factorlist are optional and shorten the variable names in the output.

Usage

getPvalues(model, varlist = NULL, factorlist = NULL)

Arguments
model Fitted model object (gee)
varlist (default =NULL). Vector of covariate names (continous covariates only) used to
make the output table names shorter. Useful if spline parameters are specified
in the model.
factorlist (default =NULL). Vector of covariate names (factor covariates only) used to make
the output table names shorter. Useful if spline parameters are specified in the
model.
Value

Print out table of each variable and its associated marginal p-value.

Examples

load data
data(ns.data.re)

make blocking structure

ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep=)

ns.data.re$blockid<-as.factor(ns.data.re$blockid)

initialModel<- geeglm(birds ~ as.factor(floodebb) + as.factor(impact) + observationhour + x.pos +
y.pos + offset(log(area)), family=poisson,data=ns.data.re, id=blockid)

getPvalues(initialModel, varlist=c(observationhour, x.pos, y.pos),
factorlist=c(floodebb, impact))

getPvalues(initialModel)

getRadiiChoices 19

getRadiiChoices Function for obtaining a sequence of range parameters for the CReSS
smoother

Description

Function for obtaining a sequence of range parameters for the CReSS smoother

Usage

getRadiiChoices(numberofradii = 8, distMatrix)

Arguments

numberofradii The number of range parameters for SALSA to use when fitting the CReSS
smooth. The default is 8. Remember, the more parameters the longer SALSA
will take to find a suitable one for each knot location.

distMatrix Matrix of distances between data locations and knot locations (n x k). May be
Euclidean or geodesic distances. Euclidean distances created using makeDists.

Details

The range parameter determines the range of the influence of each knot. Small numbers indicate
local influence and large ones, global influence.

Value

This function returns a vector containing a sequence of range parameters.

References

Scott-Hayward, L.; M. Mackenzie, C.Donovan, C.Walker and E.Ashe. Complex Region Spatial
Smoother (CReSS). Journal of computational and Graphical Statistics. 2013. DOI: 10.1080/10618600.2012.762920

Examples

load data
data(ns.data.re)

load knot grid data
data(knotgrid.ns)

make distance matrices for datatoknots and knottoknots
distMats<-makeDists(cbind(ns.data.re$x.pos, ns.data.re$y.pos), na.omit(knotgrid.ns))

choose sequence of radii
r_seq<-getRadiiChoices(8, distMats$dataDist)

20 LocalRadialFunction

knotgrid.ns Knot grid data for nearshore example

Description

Knot grid data for nearshore example

knotgrid.off Knot grid data for offshore example

Description

Knot grid data for offshore example

LocalRadialFunction Function for creating an exponential basis function for a spatial
smooth using the CReSS method.

Description

This function calculates a local radial exponential basis matrix for use in runSALSA2D.

Usage

LocalRadialFunction(radiusIndices, dists, radii, aR)

Arguments
radiusIndices Vector of length startKnots identifying which radii (splineParams[[1]]$radii)
will be used to initialise the model

dists Matrix of distances between data locations and knot locations (n x k). May be
Euclidean or geodesic distances.

radii Sequence of range parameters for the CReSS basis from local (small) to global
(large). Determines the range of the influence of each knot.

aR Index of knot locations. The index contains numbers selected by SALSA from
1 to the number of legal knot locations na.omit(knotgrid). Used to specify
which columns of dists should be used to construct the basis matrix.
Details
Calculate a local radial basis matrix for use in runSALSA2D. The distance matrix input may be
Euclidean or geodesic distances.
Value

Returns a basis matrix with one column for each knot in aR and one row for every observation (i.e.
same number of rows as dists)

makeBootClIs 21

Examples

load data
data(ns.data.re)

load knot grid data
data(knotgrid.ns)

splineParams<-makesplineParams(data=ns.data.re, varlist=c(observationhour))

#set some input info for SALSA
ns.data.re$response<- ns.data.re$birds

make distance matrices for datatoknots and knottoknots
distMats<-makeDists(cbind(ns.data.re$x.pos, ns.data.re$y.pos), na.omit(knotgrid.ns), knotmat=FALSE)

choose sequence of radii
r_seq<-getRadiiChoices(8, distMats$dataDist)

using the fourth radius and picking 5 knots
basis<-LocalRadialFunction(radiusIndices=rep(4, 5), dists=distMats$dataDist, radii = r_seq,
aR=c(3, 10, 15, 28, 31))

makeBootCIs Calculate percentile confidence intervals from a matrix of boot-
strapped predictions

Description

Calculate percentile confidence intervals from a matrix of bootstrapped predictions

Usage

makeBootCIs(preds, quants = c¢(0.025, 0.975))

Arguments
preds matrix of bootstrap predictions where each column is a bootstrap realisation
quants (default = c(0.025, 0.975). Vector of length two of quantiles.
Examples
Not run:

makeBootCIs(bootPreds)

End(Not run)

22 makesplineParams

makeDists Make Euclidean distance matrices for use in CReSS and SALSA model
frameworks

Description

This function makes two Euclidean distance matrices. One for the distances between all spatial
observations and all spatial knot locations. The other, if specified, is the distances between knot
locations.

Usage

makeDists(datacoords, knotcoords, knotmat = TRUE)

Arguments

datacoords Coordinates of the data locations

knotcoords Coordinates of the legal knot locations

knotmat (default=TRUE). Should a matrix of knot-knot distances be created
Details

The data-knot matrix is used in the CReSS basis and the knot-knot matrix is used in SALSA to
determine where a nearest knot to ‘move’ should be.

Examples

load data
data(ns.data.re)

load knot grid data
data(knotgrid.ns)

make distance matrices for datatoknots and knottoknots
distMats<-makeDists(cbind(ns.data.re$x.pos, ns.data.re$y.pos), na.omit(knotgrid.ns))

makesplineParams Constructing an object of spline parameters

Description

This function makes a list object containing all of the information to fit splines to continuous data.

Usage

makesplineParams(data, varlist, predictionData = NULL,
degree = NULL)

MRSea 23

Arguments
data Data frame containing columns of covariates listed in varlist. Column names
must match with names in varlist
varlist Vector of variable names for the covariates of interest

predictionData Data frame containing columns of covariates listed in varlist. Column names
must match with those in varlist. This parameter is used to find the maximum
range of covariates between the data and prediction data. If predictionData is
NULL then the range of the data is used.

degree Vector specifying the degree of the spline. If unspecified, degree 2 is stored.

Details

The information is stored in list slots [[2]] and onward (slot [[1]] is reserved for a spatial term).
Specifically:

covar. Name of covariate.
explanatory. Vector of covariate data.
knots. Knot(s) for spline fitting. This function initialises with a knot at the mean covariate value.

bd. This specifies the boundary knots. If predictionData is NULL then this is the range of the
covariate data. Otherwise, the boundary knots are the maximum combined range of the data and
prediction data.

degree. The degree of a B-spline. This function retuns 2 by default.

See runSALSA2D for details on the spatial slot ([[1]1])

Examples

load data
data(ns.data.re)

load prediction data
data(ns.predict.data.re)

splineParams<- makesplineParams(ns.data.re, varlist=c(observationhour, DayOfMonth),
predictionData=ns.predict.data.re)

MRSea MRSea

Description

MRSea

24 ns.data.no

ns.data.de Nearshore data with decrease post-impact

Description

A simulated dataset containing the observed counts, the effort data and other variables of grid data.
The variables are as follows:

Format

A data frame with 27798 rows and 12 variables

Details

* X.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area area surveyed in the gridcell in km squared

» floodebb 3 level factor covariate for tides

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact
* birds observed number of birds

e cellid identifier for the individual records

ns.data.no Nearshore data with no effect of impact

Description

A simulated dataset containing the observed counts, the effort data and other variables of grid data.
The variables are as follows:

Format

A data frame with 27798 rows and 12 variables

ns.data.re 25

Details

* X.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area area surveyed in the gridcell in km squared

* floodebb 3 level factor covariate for tides

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact
* birds observed number of birds

e cellid identifier for the individual records

ns.data.re Nearshore data with redistribution post-impact

Description

A simulated dataset containing the observed counts, the effort data and other variables of grid data.
The variables are as follows:

Format

A data frame with 27798 rows and 12 variables

Details

* X.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area area surveyed in the gridcell in km squared

* floodebb 3 level factor covariate for tides

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact
* birds observed number of birds

e cellid identifier for the individual records

26 ns.predict.data.no

ns.predict.data.de Prediction grid data for nearshore post-impact decrease

Description

A simulated prediction dataset containing the true counts, the effort data and other variables of grid
data. The variables are as follows:

Format

A data frame with 27798 rows and 11 variables

Details

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area Area surveyed in the gridcell in km squared

* floodebb 3 level factor covariate for tide state

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact

* birds true density of birds

ns.predict.data.no Prediction grid data for nearshore no post-impact consequence

Description

A simulated prediction dataset containing the true counts, the effort data and other variables of grid
data. The variables are as follows:

Format

A data frame with 27798 rows and 11 variables

ns.predict.data.re 27

Details

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area Area surveyed in the gridcell in km squared

* floodebb 3 level factor covariate for tide state

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact

* birds true density of birds

ns.predict.data.re Prediction grid data for nearshore post-impact redistribution

Description

A simulated prediction dataset containing the true counts, the effort data and other variables of grid
data. The variables are as follows:

Format

A data frame with 27798 rows and 11 variables

Details

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* area Area surveyed in the gridcell in km squared

* floodebb 3 level factor covariate for tide state

* observationhour hour of observation

* GridCode identifier for the different grids that were surveyed
* Year Year of the survey

* DavOfMonth Day of the survey

* MonthOfYear Month of the survey

* impact numerical indicator for before (0) and after (1) impact

* birds true density of birds

28

plotCumRes

plotacf

run functions to create acf matrix and plot the results

Description

run functions to create acf matrix and plot the results

Usage
plotacf(acfmat)
Arguments
acfmat Matrix of output from acffunc (blocks x max block length).
plotCumRes Calculate cumulative residuals and plot.
Description

The output is plots of cumulative residuals.

Usage
plotCumRes(model, varlist, d2k = NULL,
splineParams = NULL, label = "", save = FALSE)
Arguments
model Fitted model object (glm or gam)
varlist Vector of covariate names (continous covariates only)
d2k (default=NULL). Distance matrix of data to knot points. Used only if there is a
LocalRadialFunction smooth in the model formula
splineParams (default =NULL) List object containing output from runSALSA/runSALSA2D
required for updating model. Used only if there is a LocalRadialFunction
smooth in the model formula. See makesplineParams for details of this object.
label Label printed at the end of the plot name to identify it if save=TRUE.
save (default=FALSE). Logical stating whether plot should be saved into working
directory.
Value

Cumulative residual plots are returned for residuals ordered by each covariate in varlist, predicted
value and index of observations (temporally). The blue dots are the residuals The black line is the
line of cumulative residual. On the covariate plots (those in varlist) the grey line indicates what
we would expect from a well fitted covariate. i.e. one that is fitted with excessive knots.

Note: if the covariate is discrete in nature (like the example below), there will be a lot of overplotting

of residuals.

plotRunsProfile 29

Examples

load data
data(ns.data.re)

model<-glm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=quasipoisson, data=ns.data.re)

plotCumRes(model, varlist=c(observationhour))

plotRunsProfile Calculate runs test and plot profile plot. The output is a plot of runs
profiles (with p-value to indicate level of correlation)

Description

Calculate runs test and plot profile plot. The output is a plot of runs profiles (with p-value to indicate
level of correlation)

Usage
plotRunsProfile(model, varlist, label = "", save = FALSE)
Arguments
model Fitted model object (glm or gam)
varlist Vector of covariate names (continous covariates only)
label Label printed at the end of the plot name to identify it when save=TRUE.
save (default=FALSE). Logical stating whether plot should be saved into working
directory.
Value

Runs profile plots are returned for residuals ordered by each covariate in varlist, predicted value
and index of observations (temporally).

The black line is the line of sequences of positive or negative residuals. The vertical lines are the
change between a sequence of positive to negative residuals (or vice versa).

The p-values are from a runs.test and indicate whether there is correlation in the residuals
(p<0.05) or independence (p>0.05). The test statistic determines the type of correlation (posi-
tive/negative) and the result printed at the bottom of the figure.

Note: if the covariate is discrete in nature (like the example below), there will be a lot of overplotting
of runs. Some jittering occurs at each discrete value (for covariates with <= 25 unique values).

Examples

load data
data(ns.data.re)

model<-glm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=quasipoisson, data=ns.data.re)

plotRunsProfile(model, varlist=c(observationhour))

30 predict.data.no

predict.data.de Prediction grid data for post-impact decrease

Description

A simulated dataset containing the true number of birds, the effort data and other variables of
prediction grid data. The variables are as follows:

Format

A data frame with 37928 rows and 8 variables

Details

* area area surveyed in the gridcell in km squared

* Xx.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* depth depth in m

* segment. id Identifier for individual visits to the segment

* season Numerical indicator for the four different seasons

* impact Numerical indicator for before (0) and after (1) impact

¢ truth number of birds

predict.data.no Prediction grid data for no post-impact consequence

Description

A simulated dataset containing the true number of birds, the effort data and other variables of
prediction grid data. The variables are as follows:

Format

A data frame with 37928 rows and 8 variables

Details

* area area surveyed in the gridcell in km squared

* X.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* depth depth in m

* segment. id Identifier for individual visits to the segment

* season Numerical indicator for the four different seasons

* impact Numerical indicator for before (0) and after (1) impact

e truth number of birds

predict.data.re 31

predict.data.re Prediction grid data for post-impact redistribution

Description

A simulated dataset containing the true number of birds, the effort data and other variables of
prediction grid data. The variables are as follows:

Format

A data frame with 37928 rows and 8 variables

Details

* area area surveyed in the gridcell in km squared

* x.pos spatial location in the horizontal axis in UTMs

* y.pos spatial location in the vertical axis in UTMs

* depth depth in m

* segment. id Identifier for individual visits to the segment

* season Numerical indicator for the four different seasons

* impact Numerical indicator for before (0) and after (1) impact

e truth number of birds

return.reg.spline.fit Code for adaptively spacing knots for a given covariate.

Description

Code for adaptively spacing knots for a given covariate.

Usage

return.reg.spline.fit(response, explanatory, degree,
minKnots, maxKnots, startKnots, gap, winHalfWidth,
fitnessMeasure = "BIC"”, maxIterations = 100,
initialise = TRUE, initialKnots = NULL,
baseModel = NULL, bd, spl)

Arguments
response vector of response data for the modelling process
explanatory vector of covariate to find knots for
degree degree of the spline to be used
minKnots minimum number of knots to fit
maxKnots maximum number of knots to fit

startKnots number of equally spaced knots to start with (between minKnots and maxKnots)

32

gap
fitnessMeasure

maxIterations

initialise

initialKnots

baseModel
bd
spl

winHalfWidth

return.reg.spline.fit.2d

minimum gap between knots (in unit of measurement of explanatory)

(default=BIC). Measure used to evaluate the fit. Other options are AIC, AlCc,
BIC, QAIC, QAICc, QICb (Quasi-Likelihood Information Criterion with log(n)
penalty)

exchange/improve heuristic will terminate after maxIterations if still running

(default = TRUE). Logical stating whether or not to start with equally spaced
knots (TRUE) or user specified locations (FALSE)

If initialise=FALSE then the start locations for the knots are specified in
initialKnots

starting model for SALSA to use. Must not contain the covariate in explanatory
the x-coordinate of the boundary knots of explanatory

"bs" uses b-spline, "cc" uses cyclic cubic, "ns" uses natural cubic spline for
fitting smooth to explanatory

Half-width of window used to calculate region with biggest average residual
magnitude

return.reg.spline.fit.2d

Code for adaptively spacing knots for a spatial smooth. The smoothing
process uses a CReSS basis.

Description

Code for adaptively spacing knots for a spatial smooth. The smoothing process uses a CReSS basis.

Usage

return.reg.spline.fit.2d(splineParams, startKnots,
winHalfWidth, fitnessMeasure = "BIC",
maxIterations = 100, tol = 0, baseModel = NULL,
radiusIndices = NULL, initialise = TRUE,
initialKnots = NULL, interactionTerm = NULL)

Arguments

splineParams

startKnots

fitnessMeasure

maxIterations
baseModel

radiusIndices

initialise

List object where the first element [[1]] contains a list of objects for the 2D
SALSA fitting process: knotDist, radii, dist, gridresp, grid, datacoords,
response, knotgrid, minKnots, maxKnots, gap

number of space-filled knots to start with (between minKnots and maxKnots)

(default=BIC). Measure used to evaluate the fit. Other options are AIC, AICc,
BIC, QICb (Quasi-Likelihood Information Criterion with log(n) penalty)

exchange/improve heuristic will terminate after maxIterations if still running
starting model for SALSA to use. Must not already contain a spatial smooth.

vector of length startKnots identifying which radii (splineParams[[1]]$radii)
will be used to initialise the model

(default = TRUE). Logical stating whether or not to start with space-filled knots
(TRUE) or user specified locations (FALSE)

runACF 33

initialkKnots If initialise=FALSE then the start locations for the knots are specified in
initialKnots. Must be coordinates.

interactionTerm

(default=NULL). Specifies which term in baseModel the spatial smooth will
interact with. If NULL no interaction term is fitted

winHalfWidth Half-width of window used to calculate region with biggest average residual
magnitude

tol Tolerance for difference between fit measures. E.g. tol=2 means that the calcu-
lated fitness measures must be 2 units apart to be considered different

Details

The following are the details of the splineParams[[1]] objects. Note. If salsalD has been run then
details for those covariates will sit in splineParams[[2]] and onward.

knotDist: matrix of knot to knot distances (k x k). May be Euclidean or geodesic distances. Must
be square and the same dimensions as nrows(na.omit(knotgrid))

radii Sequence of range parameters for the CReSS basis from local (small) to global (large).
Determines the range of the influence of each knot.

dist: matrix of distances between data locations and knot locations (n x k). May be Euclidean or
geodesic distances.

gridresp The first column of knotgrid

grid Index of knotgrid locations. Should be same length as knotgrid but with x=integer values
from 1 to number of unique x-locations and y= integer values from 1 to number of unique y-
locations.

datacoords: Coordinates of the data locations
response: vector of response data for the modelling process

knotgrid: grid of legal knot locations. Must be a regular grid with c(NA, NA) for rows with an
illegal knot

minKnots: minimum number of knots to fit
maxKnots: maximum number of knots to fit

gap: Minimum gap between knots (in unit of measurement of datacoords)

runACF run functions to create acf matrix and plot the results

Description

run functions to create acf matrix and plot the results

Usage

runACF (block, model, store = FALSE, save = F)

34 runDiagnostics

Arguments
block Vector of blocks that identify data points that are correlated
model Fitted model object (glm or gam)
store (default=F). Logical stating whether a list of the matrix of correlations is stored
(output from acffunc.)
save (default=FALSE). Logical stating whether plot should be saved into working
directory.
Value

Plot of lag vs correlation. Each grey line is the correlation for each individual block in block. The
red line is the mean values for each lag.

If store=TRUE then the matrix of correlations (nblocks x length_max_block) is returned and plotacf
may be used to plot the acf.

Examples

load data
data(ns.data.re)

model<-glm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=quasipoisson, data=ns.data.re)

ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep=)

ns.data.re$blockid<-as.factor(ns.data.re$blockid)

runACF (ns.data.re$blockid, model)

runDiagnostics functions to create observed vs fitted and fitted vs scaled pearsons
residual plots

Description

functions to create observed vs fitted and fitted vs scaled pearsons residual plots

Usage

runDiagnostics(model, plotting = "b", save = FALSE)

Arguments
model Fitted model object (glm or gam)
plotting Plotting options (default=b). b: returns both plots, f: returns observed vs fitted
only and r: returns scale pearsons residual plot only.
save (default=FALSE). Logical stating whether plot should be saved into working

directory.

runlnfluence 35

Value
Two plots:

Observed vs Fitted

Plot of observed vs fitted with concordence correlation and marginal R-squared
printed in the plot title.

Fitted vs scaled Pearsons residuals

The red line is a locally weighted least squares regression line of all of the resid-
uvals.

Examples

load data
data(ns.data.re)

model<-glm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=quasipoisson, data=ns.data.re)

runDiagnostics(model)

runInfluence Assessing the influece of each correlated block on both the precision
of the parameter estimates (COVRATIO statistics) and the sensitivity
of model predictions (PRESS statistics).

Description
Assessing the influece of each correlated block on both the precision of the parameter estimates
(COVRATIO statistics) and the sensitivity of model predictions (PRESS statistics).

Usage

runInfluence(model, id, d2k = NULL, splineParams = NULL,
save = FALSE)

Arguments
model Fitted model object (glm or gam)
id blocking structure
d2k (default=NULL). (n x k) Matrix of distances between all data points in model

and all valid knot locations.

splineParams (default=NULL). List object containng output from runSALSA (e.g. knot lo-
cations for continuous covariates). See makesplineParams for more details of
this object.

save (default=FALSE). Logical stating whether plot should be saved into working
directory.

Details

Always run timeInfluenceCheck first to see how long it will take to produce the plots.

36 runPartialPlots

Value

Two plots one each for COVRATIO and PRESS statistics, giving the influence of each block on
precision of the parameter estimates and the sensitivity of model predictions. List object:

influenceData List of blocks, COVRATIO statistics and PRESS statistics used for making the
plot of PRESS and COVRATIO statistics.

influencePoints
Row id of blocks in influenceData that lie outside the 95% quantile of COV-
RATIO statistics and above the 95% quantile of PRESS statistics.

Examples

load data
data(ns.data.re)

ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep=)
ns.data.re$blockid<-as.factor(ns.data.re$blockid)

model<-geeglm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=poisson, data=ns.data.re, id=blockid)

timeInfluenceCheck(model, ns.data.re$blockid)
Not run:
WARNING this example takes a long time

influences<-runInfluence(model, ns.data.re$blockid)

End(Not run)

runPartialPlots Plot partial plots for each of the variables listed in factorlist or
varlist.

Description

Plot partial plots for each of the variables listed in factorlist or varlist.

Usage

runPartialPlots(model, data, factorlist = NULL,
varlist = NULL, showKnots = FALSE, save = FALSE)

Arguments
model Fitted model object (glm or gam)
data Data frame of data information used to fit model
factorlist (default=NULL). Vector or names of factor variables
varlist (default=NULL). Vector of names of continuous variables
showKnots (default=FALSE). Logical stating whether knot locations should be plotted.
save (default=FALSE). Logical stating whether plot should be saved into working

directory.

runSALSAID 37

Value

Partial plots, one for each covariate in factorlist and varlist

Examples

load data
data(ns.data.re)

model<-glm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=quasipoisson, data=ns.data.re)

runPartialPlots(model, ns.data.re, factorlist=c(floodebb, impact),
varlist=c(observationhour))

runSALSA1D Running SALSA for continuous one-dimensional covariates.

Description

This function finds spatially adaptive knot locations for one or more continuous one-dimensional
covariates.

Usage

runSALSA1D(initialModel, salsaldlist, varlist,
factorlist = NULL, predictionData,
varlist_cyclicSplines = NULL, splineParams = NULL)

Arguments

initialModel The best fitting CReSS model with no continuous covariates specified

salsaldlist Vector of objects required for runSALSATD: fitnessMeasure, minKnots_1d,
maxKnots_1d, startknots_1d degree, maxIterations gap.

varlist Vector of variable names for the covariates required for knot selection

factorlist vector of factor variables specified in initialModel. Specified so that a check
can be made that there are non-zero counts in all levels of each factor. Uses the
function checkfactorlevelcounts. Default setting is NULL.

predictionData The data to be predicted for. column names correspond to the datain initialModel

varlist_cyclicSplines
Vector of variable names for covariates to be modelled with cyclic cubic splines.
This must be a subset of varlist.The default is NULL

splineParams List object containing information for fitting splines to the covariates in varlist.
If not specified (NULL) this object is created and returned. See makesplineParams
for details.

38 runSALSAID

Details
There must be a column called response in the data, which is the response variable used in the
initial model to be fitted.
The object salsaldlist contains parameters for the runSALSA1D function.

fitnessMeasure. The criterion for selecting the ‘best’ model. Available options: AIC, AIC_c,
BIC, QIC_b.

minKnots_1d. Minimum number of knots to be tried.
maxKnots_1d. Maximum number of knots to be tried.
startKnots_1d. Starting number of knots (spaced at quantiles of the data).

degree. The degree of the B-spline. Does not need to be specified if splineParams is a parameter
in runSALSA1D.

maxIterations.The exchange/improve steps will terminate after maxIterations if still running.
gaps. The minimum gap between knots (in unit of measurement of explanatory).

minKnots_1d, maxKnots_1d, startKnots_1d and gaps are vectors the same length as varlist.
This enables differing values of these parameters for each covariate.

The initial model contains all the factor level covariates and any covariates of interest that are not
specified in the varlist argument of runSALSA1D

Note: The algorithm will not remove variables in varlist. If there is no better model than with
a knot at the mean, the output will include that covariate with a knot at the mean. The user must
decide if the covariate is required in the model as a linear term instead.

Value

A list object is returned containing 4 elements:

bestModel A glm model object from the best model fitted

modelFits1D A list object with an element for each new term fitted to the model. The first
element is a model fitted with a knot at the mean for each of the covariates
in varlist. Within the first element, the model term of interest, the current
fit, knots and formula. The second element is the result of SALSA on the
first term in varlist. Within this element, the knots chosen and the improve-
ment in model fit are presented $modelfits. This continues till all covariates in
varlist have been through SALSA.

splineParams The updated spline parameter object, with the new (if chosen) knot locations for
each covariate in varlist

fitstat The final fit statistic of bestModel. The type of statistic was specified in salsaldlist.

References

Walker, C.; M. Mackenzie, C. Donovan and M. O’Sullivan. SALSA - a Spatially Adaptive Local
Smoothing Algorithm. Journal of Statistical Computation and Simulation, 81(2):179-191, 2010

Examples

load data
data(ns.data.re)

load prediction data
data(ns.predict.data.re)

runSALSA1D_withremoval 39

splineParams<-makesplineParams(data=ns.data.re, varlist=c(observationhour, DayOfMonth))
#set some input info for SALSA
ns.data.re$response<- ns.data.re$birds

set initial model without the spline terms in there

(so all other non-spline terms)

initialModel<- glm(response ~ as.factor(floodebb) + as.factor(impact) + offset(log(area)),
family=quasipoisson,data=ns.data.re)

salsaldlist<-list(fitnessMeasure = QICb, minKnots_1d=c(2,2), maxKnots_1d = c(20, 20),
startKnots_1d = c(2,2), degree=c(2,2), maxIterations = 10, gaps=c(1,1))
run SALSA
salsaldOutput<-runSALSA1D(initialModel, salsaldlist, varlist=c(observationhour, DayOfMonth),
factorlist=c(floodebb, impact), ns.predict.data.re, splineParams=splineParams)

runSALSA1D_withremoval
Running SALSA for continuous one-dimensional covariates.

Description

This function finds spatially adaptive knot locations for one or more continuous one-dimensional
covariates. It differs to runSALSA1D in that if the CV score of a model does not improve with the
addition of a covariate in varlist then that term is either reduced to linear or removed from the
model.

Usage

runSALSA1D_withremoval (initialModel, salsaldlist,
varlist, factorlist = NULL, predictionData,
varlist_cyclicSplines = NULL, splineParams = NULL)

Arguments

initialModel The best fitting CReSS model with no continuous covariates specified

salsaldlist Vector of objects required for runSALSATD: fitnessMeasure, minKnots_1d,
maxKnots_1d, startknots_1d degree, maxIterations gap.

varlist Vector of variable names for the covariates required for knot selection

factorlist vector of factor variables specified in initialModel. Specified so that a check
can be made that there are non-zero counts in all levels of each factor. Uses the
function checkfactorlevelcounts. Default setting is NULL.

predictionData The data to be predicted for. column names correspond to the datain initialModel

varlist_cyclicSplines
Vector of variable names for covariates to be modelled with cyclic cubic splines.
This must be a subset of varlist.The default is NULL

splineParams List object containing information for fitting splines to the covariates in varlist.
If not specified (NULL) this object is created and returned. See makesplineParams
for details.

40 runSALSA1D_withremoval

Details

There must be columns called response (response variable) and foldid (for cross-validation cal-
culation) in the data used in the initial model to be fitted.

The object salsaldlist contains parameters for the runSALSA1D function.

fitnessMeasure. The criterion for selecting the ‘best’ model. Available options: AIC, AIC_c,
BIC, QIC_b.

minKnots_1d. Minimum number of knots to be tried.

maxKnots_1d. Maximum number of knots to be tried.

startKnots_1d. Starting number of knots (spaced at quantiles of the data).

degree. The degree of the B-spline. Does not need to be specified if splineParams is a parameter
in runSALSA1D.

maxIterations.The exchange/improve steps will terminate after maxIterations if still running.
gaps. The minimum gap between knots (in unit of measurement of explanatory).

minKnots_1d, maxKnots_1d, startkKnots_1d and gaps are vectors the same length as varlist.
This enables differing values of these parameters for each covariate.

The initial model contains all the factor level covariates and any covariates of interest that are not
specified in the varlist argument of runSALSA1D

Note: The algorithm may remove variables in varlist (but not the variables in factorlist. If
there is no better model than with a knot at the mean, the output will include that covariate with a
knot at the mean. The best model with a given smooth term is tested both against a model with the
term as linear or removed. Cross-Validation is used in the selection process.

Value
A list object is returned containing 4 elements:

bestModel A glm model object from the best model fitted
modelFits1D A list object with an element for each new term fitted to the model. The first
element is a model fitted with a knot at the mean for each of the covariates
(startmodel) in varlist. Within the first element, the current fit and formula of
the start model.
The second element is the result of SALSA on the first term in varlist. Within
this element:
e term: term of interest
* kept: Statement of whether the term is kept in the model (yes- initial knots,
yes - new knots, yes -linear or no)

* basemodelformula: the resulting model formula. If kept=yes or kept=linear
then the term of interest is included in the model otherwise it is removed.

e knotSelected: the knots chosen for the term of interest (NA if term re-
moved or linear)
* baseModelFits: fit statistics for the resulting formula
e modelfits: fit statistics for the model with the term included (same as
resulting formula if kept=yes)
This continues till all covariates in varlist have been through SALSA.
splineParams The updated spline parameter object, with the new (if chosen) knot locations for
each covariate in varlist
fitstat The final fit statistic of bestModel. The type of statistic was specified in salsaldlist.
keptvarlist The covariates from varlist that have been retained in the model

runSALSA2D 41

References

Walker, C.; M. Mackenzie, C. Donovan and M. O’Sullivan. SALSA - a Spatially Adaptive Local
Smoothing Algorithm. Journal of Statistical Computation and Simulation, 81(2):179-191, 2010

Examples

load data
data(ns.data.re)

load prediction data
data(ns.predict.data.re)

splineParams<-makesplineParams(data=ns.data.re, varlist=c(observationhour, DayOfMonth))

make column with foldid for cross validation calculation

ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear, ns.data.re$DayOfMon’
ns.data.re$blockid<-as.factor(ns.data.re$blockid)

ns.data.re$foldid<-getCVids(ns.data.re, folds=5, block=blockid)

set initial model without the spline terms in there

(so all other non-spline terms)

ns.data.re$response<- ns.data.re$birds

initialModel<- glm(response ~ as.factor(floodebb) + as.factor(impact) + offset(log(area)),
family=quasipoisson,data=ns.data.re)

#set some input info for SALSA
salsaldlist<-list(fitnessMeasure = QICb, minKnots_1d=c(2,2), maxKnots_1d = c(5, 5),
startknots_1d = c(2,2), degree=c(2,2), maxIterations = 10, gaps=c(1,1))

run SALSA
salsaldOutput<-runSALSATD_withremoval(initialModel, salsaldlist, varlist=c(observationhour, DayOfMonth),
factorlist=c(floodebb, impact), ns.predict.data.re, splineParams=splineParams)

runSALSA2D Running SALSA for a spatial smooth with a CReSS basis

Description
This function fits a spatially adaptive two dimensional smooth of spatial coordinates with knot
number and location selected by SALSA.

Usage

runSALSA2D(model, salsa2dlist, d2k, k2k,
splineParams = NULL)

Arguments
model A model with no spatial smooth
salsa2dlist Vector of objects required for runSALSA2D: fitnessMeasure, knotgrid, startKnots,
minKnots, codemaxKnots, r_seq, gap, interactionTerm.
d2k (n x k) Matrix of distances between all data points in model and all valid knot

locations specified in knotgrid #

42 runSALSA2D

k2k (k x k) Matrix of distances between all valid knot locations specified in knotgrid

splineParams (default =NULL) List object containng output from runSALSA (e.g. knot loca-
tions for continuous covariates)

Details

There must be a column called response in the data, which is the response variable used in the
initial model to be fitted.

The object salsa2dlist contains parameters for the runSALSA2D function.

fitnessMeasure. The criterion for selecting the ‘best’ model. Available options: AIC, AIC_c,
BIC, QIC_b.

knotgrid. A grid of legal knot locations. Must be a regular grid with c(NA, NA) for rows with
an illegal knot. An illegal knot position may be outside the study region or on land for a marine
species for example.

startknots. Starting number of knots (initialised as spaced filled locations).
minKnots. Minimum number of knots to be tried.
maxKnots. Maximum number of knots to be tried.

r_seqg. Sequence of range parameters for the CReSS basis from local (small) to global (large).
Determines the range of the influence of each knot. Sequence made using getRadiiChoices.

gap. The minimum gap between knots (in unit of measurement of coordinates). interactionTerm.
Specifies which term in baseModel the spatial smooth will interact with. If NULL no interaction term
is fitted.

Value

The spline paramater object that is return now contains a list in the first element (previously reserved
for the spatial component). This list contains the objects required for the SALSA2D fitting process:

knotDist Matrix of knot to knot distances (k x k). May be Euclidean or geodesic distances.
Must be square and the same dimensions as nrows(na.omit(knotgrid)). Cre-
ated using makeDists.

radii Sequence of range parameters for the CReSS basis from local (small) to global
(large). Determines the range of the influence of each knot.

dist Matrix of distances between data locations and knot locations (n x k). May be
Euclidean or geodesic distances. Euclidean distances created using makeDists.

gridresp The first column of knotgrid.

grid Index of knotgrid locations. Should be same length as knotgrid but with

x=integer values from 1 to number of unique x-locations and y= integer values
from 1 to number of unique y-locations.

datacoords Coordinates of the data locations

response Vector of response data for the modelling process

knotgrid Grid of legal knot locations. Must be a regular grid with c(NA, NA) for rows
with an illegal knot.

minKnots Minimum number of knots to be tried.

maxKnots Maximum number of knots to be tried.

gap Minimum gap between knots (in unit of measurement of datacoords)

timelnfluenceCheck 43

radiusIndices Vector of length startKnots identifying which radii (splineParams[[1]]$radii)
will be used for each knot location (splineParams[[1]]1$knotPos)

knotPos Index of knot locations. The index identifies which knots (i.e. which rows) from
knotgrid were selected by SALSA

invInd This is a vector of length the number of rows of knotgrid. It is used to translate
between knotgrid (used in SALSA) and na.omit(knotgrid) (used in dist
and LocalRadialFunction).

References

Scott-Hayward, L.; M. Mackenzie, C.Donovan, C.Walker and E.Ashe. Complex Region Spatial
Smoother (CReSS). Journal of computational and Graphical Statistics. 2013. doi: 10.1080/10618600.2012.762920

Scott-Hayward, L.. Novel Methods for species distribution mapping including spatial models in
complex regions: Chapter 5 for SALSA2D methods. PhD Thesis submitted to University of St.
Andrews. 2013

Examples

load data
data(ns.data.re)

load prediction data
data(ns.predict.data.re)
load knot grid data
data(knotgrid.ns)

splineParams<-makesplineParams(data=ns.data.re, varlist=c(observationhour))

#set some input info for SALSA
ns.data.re$response<- ns.data.re$birds

make distance matrices for datatoknots and knottoknots
distMats<-makeDists(cbind(ns.data.re$x.pos, ns.data.re$y.pos), na.omit(knotgrid.ns))

choose sequence of radii
r_seq<-getRadiiChoices(8, distMats$dataDist)

set initial model without the spatial term

(so all other non-spline terms)

initialModel<- glm(response ~ as.factor(floodebb) + as.factor(impact) + offset(log(area)),
family=quasipoisson, data=ns.data.re)

make parameter set for running salsa2d
salsa2dlist<-list(fitnessMeasure = QICb, knotgrid = knotgrid.ns, startKnots=6, minKnots=4,
maxKnots=20, r_seq=r_seq, gap=1, interactionTerm="as.factor(impact)")

salsa2dOutput_k6<-runSALSA2D(initialModel, salsa2dlist, d2k=distMats$dataDist,
k2k=distMats$knotDist, splineParams=splineParams)

timeInfluenceCheck Timing check to see how long it will take to run runInfluence.

44 which.bin

Description

Timing check to see how long it will take to run runInfluence.

Usage

timeInfluenceCheck(model, id, d2k = NULL,
splineParams = NULL)

Arguments
model Fitted model object (glm or gam)
id blocking structure
d2k (default=NULL). (n x k) Matrix of distances between all data points in model

and all valid knot locations.

splineParams (default=NULL). List object containng output from runSALSA (e.g. knot lo-
cations for continuous covariates). See makesplineParams for more details of
this object.

Examples

load data
data(ns.data.re)

ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep=)
ns.data.re$blockid<-as.factor(ns.data.re$blockid)
model<-geeglm(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family=poisson, data=ns.data.re, id=blockid)

timeInfluenceCheck(model, ns.data.re$blockid)

which.bin Determining the distance bin

Description

For a vector of perpendicular (or radial) distances, this function determines which distance bin it
belongs to (given the input of cut points) and adds the beginning and end points of the respective
distance bins in new colunns in dis.data called "distbegin" and "distend".

Usage

which.bin(dis.data, cutpoints)

Arguments
dis.data A data frame with distance data for which perpendicular (or radial) distances are
recorded in the distance column
cutpoints A vector of cut points of the intervals (this function is not set up to deal with

left-truncation)

which.bin 45

Details

Ifavalueindis.data$distance matches a cut point in cutpoints exactly, the value of dis.data.re$distance
will be attributed to the bin that is closer to the line/point unless the value of dis.data.re$distance

is 0.

E.g. if cutpoints=c(0,1,2,3), dis.data$distance=2 will be attributed to interval 2 (and not 3).

Value

The dis.data data frame to which columns "distbegin" and "distend" were added giving the be-
ginning and end cutpoints of the bin that the respective dis.data$distance belongs to.

Index

*Topic datasets
dis.data.de, 8
dis.data.no, 8
dis.data.re, 9
knotgrid.ns, 20
knotgrid.off, 20
ns.data.de, 24
ns.data.no, 24
ns.data.re, 25
ns.predict.data.de, 26
ns.predict.data.no, 26
ns.predict.data.re, 27
predict.data.de, 30
predict.data.no, 30
predict.data.re, 31

acffunc, 3
bootstrap.orig.data, 3

checkfactorlevelcounts, 4
create.bootcount.data, 4
create.bootstrap.data, 5
create.count.data, 6
create.NHAT, 7

dis.data.de, 8
dis.data.no, 8
dis.data.re, 9
do.bootstrap.cress, 10
do.bootstrap.gam, 13

getCV_CReSS, 15, 15
getCVids, 15, 16
getDifferences, 16
getPlotdimensions, 17
getPvalues, 18
getRadiiChoices, 19, 42

knotgrid.ns, 20
knotgrid.off, 20

LocalRadialFunction, 20, 28

makeBootCIs, 21

46

makeDists, 19, 22, 42

makesplineParams, 15, 22, 28, 35, 37, 39, 44

MRSea, 23
MRSea-package (MRSea), 23

ns.data.de, 24
ns.data.no, 24
ns.data.re, 25
ns.predict.data.de, 26
ns.predict.data.no, 26
ns.predict.data.re, 27

plotacf, 28
plotCumRes, 28
plotRunsProfile, 29
predict.data.de, 30
predict.data.no, 30
predict.data.re, 31

return.reg.spline.fit, 31

return.reg.spline.fit.2d, 32

runACF, 33
runDiagnostics, 34
runInfluence, 35
runPartialPlots, 36
runs.test, 29
runSALSA1D, 37, 39
runSALSA1D_withremoval, 39
runSALSA2D, 20, 23, 41

timeInfluenceCheck, 35, 43

which.bin, 44

	acffunc
	bootstrap.orig.data
	checkfactorlevelcounts
	create.bootcount.data
	create.bootstrap.data
	create.count.data
	create.NHAT
	dis.data.de
	dis.data.no
	dis.data.re
	do.bootstrap.cress
	do.bootstrap.gam
	getCVids
	getCV_CReSS
	getDifferences
	getPlotdimensions
	getPvalues
	getRadiiChoices
	knotgrid.ns
	knotgrid.off
	LocalRadialFunction
	makeBootCIs
	makeDists
	makesplineParams
	MRSea
	ns.data.de
	ns.data.no
	ns.data.re
	ns.predict.data.de
	ns.predict.data.no
	ns.predict.data.re
	plotacf
	plotCumRes
	plotRunsProfile
	predict.data.de
	predict.data.no
	predict.data.re
	return.reg.spline.fit
	return.reg.spline.fit.2d
	runACF
	runDiagnostics
	runInfluence
	runPartialPlots
	runSALSA1D
	runSALSA1D_withremoval
	runSALSA2D
	timeInfluenceCheck
	which.bin
	Index

