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• Characteristic assessment of noise at the 
Bodhi Island offshore wind farm 

• Underwater noise suppresses protein 
synthesis and cellular apoptosis in sea 
cucumber intestines 

• Underwater noise causes oxidative 
damage to the body cavity of sea 
cucumber 

• Lysosomes and pancreatic secretion 
support sea cucumbers' nutrient and 
energy needs in adverse conditions 

• Sea cucumbers' immune system re-
sponds more to low-frequency noise 
than high-frequency  
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A B S T R A C T   

As an important form of renewable energy, offshore wind power can effectively reduce dependence on traditional 
energy sources and decrease carbon emissions. However, operation of wind turbines can generate underwater 
noise that may have negative impacts on marine benthic organisms in the surrounding area. Sea cucumbers are 
slow-moving invertebrates that inhabit the ocean, relying on their immune system to adapt to their environment. 
To evaluate the frequency range of characteristic noise produced by offshore wind turbines, we conducted a field 
survey. Additionally, we utilized sea cucumbers in simulated experiments to assess their response to the noise 
produced by offshore wind turbines. We established a control group, a low-frequency noise group simulating 
offshore wind turbine noise at 125 Hz and 250 Hz, and a high-frequency noise group at 2500 Hz, each lasting for 
7 days. Results from measuring immune enzyme activity in the coelomic fluid suggest that noise can reduce the 
activity of superoxide dismutase enzymes, which may make sea cucumbers more susceptible to oxidative damage 
caused by free radicals. Exposure to low-frequency noise can have the effect of diminishing the activity of 
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catalase, and this decrease in catalase activity could potentially increase the susceptibility of the sea cucumber's 
coelom to inflammation. In order to elucidate the hypothetical mechanism of immune response, intestinal tissue 
was extracted for transcriptome sequencing. The results showed that under 125 Hz low-frequency noise stress, 
the number of differentially expressed genes was the highest, reaching 1764. Under noise stress, sea cucumber's 
cell apoptosis and cell motility are reduced, interfering with lipid metabolism process and membrane synthesis. 
This research provides theoretical support for the environmental safety assessment of offshore wind power 
construction.   

1. Introduction 

Underwater noise generated by human activities is widely recog-
nized as a significant threat to marine life. Examples of such activities 
encompass pile driving, deep-sea mining, seismic testing, and shipping 
noise (Howe et al., 2019; Miksis-Olds and Nichols, 2016). Extensive 
evidence has confirmed the detrimental impact of these noises on ma-
rine organisms (Jones, 2019; Popper et al., 2003; Talianni, 2020). The 
understanding of the hazards posed by underwater noise has expanded 
exponentially (Williams et al., 2015), covering a diverse range of taxo-
nomic groups from marine mammals and sea turtles to fish and in-
vertebrates (Duarte et al., 2021). Marine mammals, such as whales, 
heavily rely on acoustics for crucial activities like migration and mating 
(Ferguson et al., 2023). Exposure to noise significantly diminishes the 
foraging efficiency of marine mammals (Leduc et al., 2021). Similarly, 
coral fish exhibit reduced foraging behavior and diminished escape 
distance in response to rising noise levels (Popper and Hawkins, 2019). 
In the case of invertebrates, research has demonstrated that anthropo-
genic noise suppresses the biologically disruptive behavior of species 
like Nephrops norvegicus and Philippine clams (Solan et al., 2016). 
Soundscape studies have also explored various marine ecosystems, 
including rocky reefs, seagrass meadows, kelp/algae forests, oyster 
reefs, estuaries, and mangroves (Bertucci et al., 2015; Halliday et al., 
2020; Shi et al., 2019). Anthropogenic noise disturbance has become 
inevitable in the marine soundscape, particularly due to its low- 
frequency characteristics that allow it to propagate over long distances 
underwater. Consequently, anthropogenic noise has emerged as a 
prominent component of contemporary ocean noise. 

Amidst the drive for a low-carbon economy, there has been signifi-
cant global attention on accelerating the transition to clean energy 
(Strunz, 2018). During the “14 th Five-Year Plan” period, offshore wind 
power has been actively promoted in China as a crucial component of 
the country's clean energy strategy. It serves as a pivotal means to 
achieve carbon peak and neutrality objectives. (Zhang et al., 2022a). 
Over the past few decades, countries worldwide have been planning a 
large-scale transition towards enhanced energy efficiency and adoption 
of safer and cleaner energy sources (Park and Kim, 2019). However, 
offshore engineering activities like pile driving, drilling, dredging, and 
increased shipping introduce factors such as sound and vibration into 
the seabed, causing alterations to the ocean's physical environment. 
Consequently, this can lead to various physiological changes in marine 
organisms exposed to these disturbances (Lindeboom et al., 2011; 
Roberts and Elliott, 2017). As anthropogenic low-frequency noise in-
vades natural soundscapes and penetrates into the marine environment, 
it may disrupt the interactions between organisms and potentially cause 
harm (Wang et al., 2022). Low-frequency noise (LFN) refers to sound 
waves with frequencies between 0.1 Hz and 2 kHz (Lagrois et al., 2023). 
Low-frequency noise originates from various sources, with fishing ves-
sels being a primary contributor among them (De Robertis and Hande-
gard, 2013). As marine traffic continues to grow, the LFN emitted by 
these large vessels is almost ubiquitous in the world's oceans. Offshore 
wind power is another major contributor to LFN, and its presence is 
increasing with the implementation of offshore wind farms (Cao et al., 
2019). Although oceanic LFN has been increasing with human activity, 
little is known about how this noise affects the marine organisms. 

Natural sounds play a vital role in assisting animals with various 

aspects of their lives, including spatial orientation, finding food, guiding 
reproductive migrations, and locating habitats (Lillis et al., 2014; 
Maiditsch and Ladich, 2023; Simpson et al., 2016a). Consequently, noise 
pollution can disrupt animal behavior and have direct or indirect effects 
on their physiological state, ranging from mild stress to internal and 
external injuries, or even death (Erbe et al., 2016; Erbe et al., 2018; 
Fernandez et al., 2005; Nedelec et al., 2017). Over the past decade, 
research on the impact of ocean noise pollution has expanded beyond its 
initial focus on mammals capable of detecting sound, to include fish and 
invertebrates (Gotz and Janik, 2013; Nowacek et al., 2010; Patek et al., 
2009; Soto et al., 2016; Williams et al., 2015). Species such as sea cu-
cumbers, which have significant socio-economic value as part of marine 
ranching, are crucial to understanding the impact of ocean noise on 
invertebrates (Anderson et al., 2011; Cecilia and Monica, 1999; Eddy 
et al., 2017). 

The noise generated by offshore wind turbines can alter the acoustic 
environment of large marine habitats, with both known and unknown 
effects on marine biota (Park and Do, 2022). Several studies in the field 
of behavioral ecology have demonstrated significant impacts of noise on 
invertebrates, including bivalves, cephalopods, and crustaceans (Di 
Franco et al., 2020; Walsh et al., 2017). Invertebrates can experience 
sub-lethal effects such as reduced feeding (Celi et al., 2015), slow or 
unsuccessful location of shelter (Walsh et al., 2017), and increased 
behavioral energy expenditure due to noise pollution (Edmonds et al., 
2016; Wale et al., 2013). These studies all support the idea that organ-
isms with weaker locomotor abilities are more susceptible to the effects 
of noise pollution. Apostichopus japonicus is a benthic invertebrate spe-
cies that moves slowly (Ding et al., 2019) and is widely distributed in the 
Yellow and Bohai Seas as well as along the northwest coastal areas of the 
Pacific Ocean in China. These seas are also the main areas for wind 
power development in China, which pose a significant threat to the 
habitat of A. japonicus due to the strong overlap between the two. 
Furthermore, A. japonicus has a strong territorial behavior and may use 
wind turbines as substrates for their habitat (Hu et al., 2021). This could 
lead to chronic stress caused by noise pollution from offshore wind 
turbines, making them even more vulnerable to the sub-lethal effects of 
this type of pollution. 

Currently, the physiological mechanisms underlying the effects of 
offshore wind turbines on marine invertebrates remain unclear. Previ-
ous research demonstrated that noise increases total hemocyte count 
levels in spiny lobsters and decreases the blood refractive index (Fitz-
gibbon et al., 2017). Will the underwater noise pollution of wind power 
characteristics affect the physiological state of benthic echinoderms 
such as sea cucumbers? It is worth noting that fish are more sensitive to 
noise pollution due to their possession of air-filled organs, which can 
rupture and cause damage to surrounding organs under conditions of 
vibration in the presence of noise (Halvorsen et al., 2012). In contrast, 
invertebrates lack air-filled organs and there is no evidence that they are 
sensitive to sound pressure. Thus, we must investigate the effects of the 
particle motion (PM) component of noise on these organisms. In this 
study, sea cucumbers was selected as a representative invertebrate 
species, and the effects of exposure to four different noise frequencies on 
these organisms were analyzed and studied. The objective was to un-
derstand the physiological mechanisms by examining their immune 
system and transcriptome response to characteristic noise from wind 
turbines. These findings will greatly contribute to the environmental 
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safety assessment of offshore wind power construction, providing 
crucial theoretical support for this form of renewable energy 
development. 

2. Material and methods 

The Bodhi Island Offshore Wind Farm is located in the Bohai Bay of 
Lao Ting County, Tangshan City, Hebei Province, China (118◦ 75′ - 118◦

88′ E, 39◦ 04′ - 39◦ 96′ N). Comprised of 75 wind turbines with a capacity 
of 4 MW each, the Bodhi Island Offshore Wind Power Farm is scheduled 
to be connected to the grid in June 2020. The focus of this experiment 
was to conduct a case study on the Bodhi Island Offshore Wind Farm and 
determine the frequency range of noise produced by its wind turbines. 
We then conducted simulated experiments in storage tanks to further 
investigate the effects of this noise. 

2.1. Recording of offshore wind power noise sources 

In June 2022, we recorded the characteristic noise near and far from 
the pile foundation of wind power underwater (Fig. 1). The recorded 
noise signals were converted into “wav” format using a converter 
(Lightning DAT format converter, China) and stored in a computer. The 
recorded noise audio was analyzed using audiotools. 

2.2. Experimental animals and maintenance 

The experimental animals used in this experiment were healthy sea 
cucumbers cultivated by Shandong Tonghe Ocean Science and Tech-
nology Co., Ltd. (Dongying, China). The cultivation experiment was 
conducted in the laboratory of Zhongke Tonghe (Shandong) Ocean 
Science and Technology Co., Ltd. (Dongying, China), from November 
1st, 2022, to December 30th, 2023. Firstly, approximately 200 healthy 
sea cucumbers of similar size were temporarily kept in a large water tank 
(4 m × 1.5 m × 1.2 m) and acclimated for 14 days to provide samples for 
subsequent experiments. The temporary breeding conditions were as 
follows: salinity of 27–28, pH of 7.8–8.1, and the central air conditioning 
system maintained room and water temperature at 15 ◦C ± 0.4 ◦C. 
There was an aeration device at the bottom of the tank to ensure that 
dissolved oxygen in the water remained above 8 mg L− 1. During the 
temporary breeding period, sea cucumbers were fed twice a day at 10:00 
and 22:00. The amount of food provided exceeded 5 % of the body 
weight of the sea cucumbers, and any remaining food was observed the 
next day to ensure sufficient feeding. The feed consisted of 70 % mud 

sediment, 20 % multiple-celled algae, and 10 % kelp powder. 
Throughout the process, we maintained a 12-h light-dark cycle. The sea 
water used in both the temporary breeding and subsequent experiments 
met the first-class conditions of the seawater quality standard. 

2.3. Noise exposure protocol 

The noise generation for the experiment was accomplished using 
SweepGen software. The programmed sounds were stored in a Secure-
Digital Card and played through a standard power amplifier (SAST SA- 
9019) to an underwater loudspeaker (SAST F4 50W). To determine the 
frequency settings, we referred to spectral time series data ranging from 
0 Hz to 500 Hz obtained from the Sinovel 3.0 MW SL3000 turbine tower 
and the Shanghai Electric 3.6 MW W3600 turbine tower. (Yang et al., 
2018). We utilize Low-Frequency Group 1 (L1) and Low-Frequency 
Group 2 (L2) to describe the low-frequency noise characteristics of 
wind turbines at close distances and far distances, respectively. L1 has a 
peak frequency of 125 Hz, while L2 has a peak frequency of 250 Hz. In 
addition, we set a blank control and a high-frequency (H) control of 
2500 Hz. Prior to the experiment, we calibrated the output noise using 
Audiotools, and the calibration results can be seen in Fig. 2. This cali-
bration step ensured that the underwater received noise characteristics 
met our requirements, and the sounds were digitized using the SAST SA- 
9019 and stored on a laptop computer. Each group was exposed inde-
pendently for 7 days. 

2.4. Tank exposure 

In December 2022, we conducted a Control Exposure Experiment 
(CEE) on four groups of sea cucumbers following the temporary 
breeding period. We used a white, transparent cylindrical tank with a 
diameter of 74 cm and a water depth of 10 cm to isolate the sea cu-
cumbers from their surroundings. An aeration device was installed at the 
bottom of the tank to maintain dissolved oxygen concentration in the 
water. To prevent noise interference between the groups, only one group 
of sea cucumbers was exposed at a time while the others remained in the 
temporary breeding state. A fixed loudspeaker positioned below the 
water surface played audio with specific characteristics. Throughout the 
study, we maintained consistent lighting and feeding conditions as 
during the temporary breeding period. All animal experiments con-
ducted in this study have adhered to and followed the National Research 
Council's Guide for the Care and Use of Laboratory Animals. 

Fig. 1. The location of Bodhi Island Offshore Wind Farm in China. A: The location of the Bodhi Island offshore wind farm and the noise testing points. B: Acoustic 
data was measured below the water surface at a distance of 0 m from the wind turbine. C: Acoustic data was measured below the water surface at a distance of 50 m 
from the wind turbine. 
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2.5. Detection of indicators related to oxidative stress 

After each exposure, the sea cucumbers were dissected on ice, and 
their coelomic fluid was collected. The coelomic fluid was rapidly frozen 
with liquid nitrogen and stored, then placed in a − 80 ◦C ultra-low 
temperature freezer for preservation. Before detection, the coelomic 
fluid was thawed and centrifuged at 3500 rpm for ten minutes at 4 ◦C, 
and the supernatant was collected for further use. 

2.5.1. Superoxide dismutase (SOD) activity 
The total activity of serum SOD (T-SOD) was measured using a 

standard assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China) based on the WST-1 method. Through preliminary experiments, 
we diluted the coelomic fluid 2.5 times with saline to ensure that the 
inhibition rate was between 40 % and 60 %. This was done before 
detection. Measurement was performed using an enzyme-linked 
immunosorbent assay (ELISA) reader (Thermo Scientific, Waltham, 
MA, USA) at a wavelength of 450 nm. One unit (U) of SOD activity was 
defined as the amount of enzyme required to inhibit the reaction rate by 
50 % under the assay conditions. 

2.5.2. Catalase (CAT) activity 
CAT activity was evaluated using the CAT assay kit (Nanjing Jian-

cheng Bioengineering Institute, Nanjing, China) based on the ammo-
nium molybdate method. Measurement was performed using an ELISA 
reader (Thermo Scientific, Waltham, MA, USA) at a wavelength of 405 
nm. Under 37 ◦C conditions, one unit of CAT enzyme activity corre-
sponds to the decomposition of 1 mmol hydrogen peroxide per milliliter 
of coelomic fluid per minute. 

2.5.3. Malondialdehyde (MDA) activity 
MDA activity was evaluated using the MDA assay kit (Nanjing 

Jiancheng Bioengineering Institute, Nanjing, China) based on the thio-
barbituric acid (TBA) method. Measurement was performed using an 
ELISA reader (Thermo Scientific, Waltham, MA, USA) at a wavelength of 
532 nm. 

2.6. Ultrastructural analysis 

We collected intestinal tissues from each group of sea cucumbers 
immediately after exposure and fixed them with 4 % formaldehyde so-
lution A mixture of 1: 2 volume ratio of formaldehyde-gelatin solution 
and 50 % silver nitrate solution was prepared by mixing them thor-
oughly in a clean plastic container. The slices were sequentially placed 
into xylene I for 20 min, xylene II for 20 min, 100 % ethanol I for 5 min, 
100 % ethanol II for 5 min, 75 % alcohol for 5 min, and pure water for 

three minutes of rinsing. The slices were immersed in a 1 % sodium 
thiosulfate solution and incubated at room temperature for 15 min, then 
rinsed three times with pure water and dried. The tissue was circled with 
an immunohistochemical pen, and the AgNOR staining solution was 
dropped inside the circle to cover the tissue. The slide was placed in a 
light-shielded humid box at room temperature (25 ◦C) for 25–40 min of 
incubation. Then, the staining solution was poured off, and the slice was 
thoroughly rinsed with pure water. The slice was incubated at room 
temperature with 5 % sodium thiosulfate solution for 5 min, then rinsed 
three times with pure water. Next, it was stained with 0.01 % eosin 
solution for 1 min and dehydrated with a gradient of ethanol (95 %, 100 
%). Finally, the slice was immersed in clean xylene for 10 min to become 
transparent and was mounted with neutral gum. Imaging analysis was 
performed using a microscope (ZEISS Axio Imager 2, DEU) at 40×
magnification under oil immersion objective lens. 

2.7. RNA isolation and Illumina sequencing 

2.7.1. RNA isolation 
Total RNA was extracted from the samples using the TRIzol reagent 

(Invitrogen) and treated with DNase I (TaKara) to eliminate genomic 
DNA. The quality of the RNA samples was assessed using the 2100 
Bioanalyzer (Agilent) and ND-2000 (NanoDrop Technologies) methods 
to ensure that qualified samples were used for transcriptome sequencing 
(OD 260/280 = 1.8–2.2, OD 260/230 ≥ 2.0, RIN ≥ 6.5, 28 S: 18 S ≥ 1.0, 
> 1 μg). 

2.7.2. Library construction and Illumina Hiseq Xten/NovaSeq 6000 
sequencing 

Intestinal tissue samples were collected from four sea cucumbers in 
each group and immediately frozen in sterile tubes with liquid nitrogen. 
The tubes were stored in a liquid nitrogen container. To selectively 
capture and enrich mRNA molecules containing the poly (A) tail, oligo 
(dT)-coated magnetic beads were used, forming A-T base pairs with the 
poly(A) tail. This process, known as oligo (dT) enrichment or mRNA 
isolation, is employed for transcriptome analysis. The enriched mRNA, 
with an average length of several kilobases, was then fragmented into 
small fragments approximately 300 bp in length using a fragmentation 
buffer. Reverse transcription was performed using random primers and 
reverse transcriptase to synthesize single-stranded cDNA from the 
mRNA template. The single-stranded cDNA was then converted into 
double-stranded cDNA through second-strand synthesis, forming a sta-
ble double-stranded structure. The sticky ends of the double-stranded 
cDNA were repaired to create blunt ends by adding an End Repair 
Mix. Subsequently, a Y-shaped adapter was ligated to the 3′ end of the 
cDNA after adding a single A base. The product after adapter ligation 

Fig. 2. Peak underwater sound spectrum of control group and different noise groups. A: Peak spectrum of control group underwater noise frequency experiment; B: 
Peak spectrum of Low Frequency Group 1 underwater noise frequency experiment; C: Peak spectrum of Low Frequency Group 2 underwater noise frequency 
experiment; D: Peak spectrum of high Frequency Group underwater noise frequency experiment. 
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underwent purification and fragment selection, followed by PCR 
amplification using the selected fragments. The resulting library was 
further purified, and its effective concentration (each concentration 
being above 2 nm) was measured using qPCR to ensure its quality. 
Finally, high-throughput sequencing was performed on these libraries 
using the Illumina NovaSeq 6000 platform with a read length of PE 150. 

2.8. Statistical analysis 

The data are presented as means ± standard deviation (SD). IBM 
SPSS Statistics 24 software was used for data analysis. Before analysis, 
the Levene test was conducted to test the homogeneity of variance in the 
data. One-way analysis of variance (ANOVA) was conducted to test the 
differences in oxidative stress activity and gene expression before and 
after noise exposure using Welch's t-test, Tamhane's test, and LSD test. A 
value of P < 0.05 indicates a statistically significant difference. 

3. Results 

3.1. Oxidative stress related indicators 

The effects of different treatment methods on the activity of SOD, 
content of MDA, and CAT in sea cucumbers are shown in Fig. 3. In the 
noise exposure experiment, the SOD enzyme activity in the control 
group was significantly higher than that in the exposure group (df = 3, F 
= 12.58, P < 0.001). The MDA activity in the H group was significantly 
lower than that in the L2 group (df = 3, F = 4.86, P < 0.05). CAT activity 
in the L1 group was significantly lower than that in the control group 
and H groups (df = 3, F = 8.75, P < 0.01). There was a certain gradient 
change in SOD activity and MDA activity in the low-frequency range. 

3.2. Histopathology 

The AgNOR staining results indicate that intestinal cell proliferation 
activity in sea cucumbers decreases with increasing noise frequency, as 
demonstrated by SME analysis (Fig. 4) and count statistics (Fig. 5). The 
proliferation activity of cells in the control group was significantly 
higher than that in the L2 group and the H group (df = 3, F = 8.03, P <
0.01). 

3.3. Gene function annotation analysis 

Fig. 6 displays the classification of the enriched gene set and the 
results of Gene Ontology (GO) enrichment analysis, which aimed to 
investigate the biological functions of all differentially expressed genes 
(DEGs). Based on sequence homology, both single genes and DEGs were 
categorized into multiple functional groups. Regarding the biological 
process ontology, the most prevalent terms were metabolic process, 
cellular process, and biological regulation. Inl;.’ the molecular function 
ontology, catalytic activity and binding were the most abundant terms. 
Within the cellular component ontology, membrane part, cell part, and 
membrane were the most frequently observed terms. 

3.4. Identification of differentially expressed genes 

To reveal the response mechanisms of sea cucumbers to different 
frequency noise stress, we performed differential gene expression anal-
ysis (P < 0.05) between the intestinal tissues of the control group in the 
environmental treatment and those of the L1, L2, and H groups. 
Compared with the control group, the L1 group had the largest number 
of DEGs, reaching 1764, including 825 upregulated DEGs and 939 
downregulated DEGs. The L2 group had 949 DEGs, including 557 
upregulated DEGs and 392 downregulated DEGs. The H group had 692 
DEGs, consisting of 330 upregulated DEGs and 362 downregulated 
DEGs. In addition, the L1 group had a significantly higher number of 
DEGs than the L2 and H groups, with 1688 (878 upregulated and 810 
downregulated) and 1659 (892 upregulated and 767 downregulated) 
DEGs, respectively (Fig. 7). 

3.5. Gene ontology enrichment analysis of differentially expressed genes 

To comprehensively understand the biological function of differen-
tially expressed genes (DEGs), GO enrichment analysis was performed. 
The results revealed three major functional categories: Biological Pro-
cesses (BP), Cellular Components (CC), and Molecular Functions (MFs). 
In the L1 group compared to the CK group, the three major functional 
categories that showed the most significant enrichment for DEGs were 
catalytic activity, metabolic process, and organic substance metabolic 
process；In the L2 group compared to the CK group, the three major 
functional categories that showed the most significant enrichment for 
DEGs were endonuclease activity, synaptic membrane, and animal 
organ development； In the H group compared to the CK group, the 
three major functional categories that showed the most significant 
enrichment for DEGs were organelle membrane, oxidoreductase activity 
acting on CH-OH group of donors, and endoplasmic reticulum mem-
brane；In the L1 group compared to the L2 group, the three major 
functional categories that showed the most significant enrichment for 
DEGs were lipid metabolic process, isomerase activity, and lipid cata-
bolic process；In the L1 group compared to the H group, the three major 
functional categories that showed the most significant enrichment for 
DEGs were lipid metabolic process, oxoacid metabolic process, and 
carboxylic acid metabolic process. 

3.6. Kyoto encyclopedia of genes and genomes (KEGG) enrichment 
analysis of differentially expressed genes 

Through the comparison of RNA-seq data from two low-frequency 
groups and one high-frequency group exposed to sound, we studied 
the regulatory mechanism of noise exposure on intestinal immunity in 
sea cucumber. We conducted a cluster analysis on the differentially 
expressed genes that we obtained. The results of our study showed that 
sea cucumber intestinal immunity is most significantly affected under 
low-frequency sound. We further analyzed the functions of DEGs using 
KEGG annotation (with a P-value threshold of 0.05 based on hyper-
geometric testing as the standard for pathway detection). By analyzing 

Fig. 3. The activity of SOD, content of MDA, and CAT in sea cucumbers at the end of the noise exposure experiment. CK: control group; L1: 125 Hz low-frequency 
group; L2: 250 Hz low-frequency group; H: 2500 Hz high-frequency group. 
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the KEGG data, we identified significant pathways that differed between 
the low-frequency group and the H group. The results of our study 
showed that the most significantly changed pathways in the low- 
frequency group were pancreatic secretion, protein digestion and ab-
sorption, and glycerol lipid metabolism, whereas the most significant 
pathways in the high-frequency group were peroxisome and butanoate 
metabolism when compared to the CK group. The most significant 
pathways that differed between the low-frequency group and high- 
frequency group were valine, leucine and isoleucine degradation, and 
lysosome. In order to express our findings clearly and concisely, we 
analyzed the KEGG pathways that showed significant changes in both 
environmental concentration and high-concentration treatment groups 
separately (Fig. 8). 

4. Discussion 

4.1. Wind turbine noise causes oxidative damage 

Sea cucumber coelomic fluid, which functions similarly to lymph, 
harbors a substantial population of immune cells responsible for im-
mune responses. Serving as a vital element of the innate immune system 
in marine invertebrates, it is frequently employed as a significant 

parameter to assess the immune competence of organisms (Lin et al., 
2011; Zhengqiang et al., 2019). 

In this study, the noise group exhibited a decrease in SOD activity in 
the coelomic fluid, rendering the enclosed intestines more vulnerable to 
oxidative damage. The inhibition of CAT activity by low-frequency noise 
significantly increased the susceptibility of sea cucumbers to intestinal 
inflammation reactions. This is similar to the previous findings in the D- 
veliger larval phase research (De Soto et al., 2013). albeit the observed 
changes in oxidative stress markers were attributed to long-term expo-
sure to noise in this study. Long-term exposure to noise also triggers an 
increase in cortisol levels in clownfish, whereas short-term exposure 
does not elicit significant changes in stress hormones (Mills et al., 2020). 
On the other hand, goldfish showed an increase in cortisol levels within 
10 min of noise exposure (Smith et al., 2004), indicating that different 
species require varying durations to respond to acoustic stress. More-
over, marine mammals like gray whales exhibit notable alterations in 
stress hormones, including cortisol, progesterone, and testosterone, 
when exposed to low-frequency noise emitted by ships and other sources 
(Lemos et al., 2022). Although evidence suggests that animals' stress 
indicators and vital signals may diminish with chronic adaptation to 
sound (Berkhout et al., 2023; Slabbekoorn et al., 2010), it is evident that 
low-frequency noise has a widespread physiological impact on marine 

Fig. 4. The AgNOR staining of intestinal tissue of A. japonicus was observed under microscope in control group and different noise exposure group. The scale bar 
measures 100 μm. 

X. Cheng et al.                                                                                                                                                                                                                                   



Science of the Total Environment 906 (2024) 167802

7

organisms. 
This study examined the effects of high-frequency noise on sea cu-

cumbers through observation. Surprisingly, similar outcomes were 
observed in the high-frequency group compared to the control group. 

Some research has indicated that high-frequency noise exposure can 
increase the activity of acellular coelomic fluid in sea cucumbers. 
However, under the same conditions, there was no significant change in 
total protein concentration (Vazzana et al., 2020). Currently, there are 

Fig. 5. Counting the brown particles of NORs under the microscope. Counting using grid sampling method for statistical analysis.  

Fig. 6. The bar graph illustrates the statistics of GO classification for multiple gene sets, with different colors representing each gene set.  
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no further reports available describing the potential effects of high- 
frequency noise on benthic species that lack the ability to quickly 
escape noise. One possible reason for this is that water absorbs high- 
frequency noise more than low-frequency noise, resulting in a signifi-
cant reduction of high-frequency noise over short distances (Hada et al., 
2010). Additionally, it is also possible that invertebrates are less sensi-
tive to high-frequency noise compared to mammals (Deng et al., 2014). 

4.2. Cell proliferation and apoptosis 

Apoptosis, as a fundamental biological phenomenon, plays an 
important role in the evolution of organisms, the maintenance of in-
ternal environment homeostasis, and the development of multiple sys-
tems (Gregory and Devitt, 2003; Krysko et al., 2006). Lutein has been 
found to reduce apoptosis activity in mice (Chen et al., 2016). Our 
transcriptome sequencing results indicate that the expression of genes 
related to cell growth and apoptosis is downregulated in the noise- 
exposed group, such as those involved in cell senescence, apoptosis, 
hydrolysis, redox regulation, and endoplasmic reticulum stress. Treat-
ment of both the low-frequency and high-frequency groups led to a 
significant decrease in cell senescence and apoptosis. However, a study 
found that fish exposed to noise stress exhibited enhanced apoptosis and 
cell motility (Zhang et al., 2022b). This disparity may be attributed to 
the fact that fish exhibit more pronounced avoidance behavior and have 
increased metabolic rates in response to acoustic stress compared to sea 
cucumbers (Jhawar et al., 2020; Simpson et al., 2016b). When exposed 
to in situ pile driving stress, Dicentrarchus labrax showed a considerable 
decrease in oxygen consumption and lactate response (Debusschere 
et al., 2016). This could be due to the metabolic and oxidative stress 
related to the exposure to noise (Karimaian et al., 2017; Wale et al., 
2019). Interestingly, our study found similar results at the histological 
level, in contrast to studies that use metabolic and oxidative stress as 

biomarkers to assess the effects of underwater noise on marine organ-
isms (Gaspar et al., 2009; Watts, 2022). Based on our findings, we 
propose that underwater noise, being a potent stressor, may disrupt the 
cell apoptosis process in sea cucumber intestinal tissue. 

4.3. Mechanism of the immune physiology impact of wind turbine noise 
on sea cucumbers 

Lysosomes are acidic cell compartments containing a large number 
of hydrolytic enzymes. The hydrolytic enzymes within lysosomes can 
degrade components such as proteins and lipids, which can kill and 
degrade pathogens, playing a crucial role in the immune response. Food 
particles in the partially digested gut lumen of invertebrates are absor-
bed and intracellularly digested through phagocytosis or pinocytosis 
(Hartenstein and Martinez, 2019). Under exposure to noise, Terapon 
jarbua exhibit higher lysosomal activity, which is similar to the results 
obtained in our experimental study. During the experiment, sea cu-
cumbers showed no difference in feeding time between the low and high 
frequency groups. However, a comparison of gut transcriptomes 
revealed that as noise frequency increased, the expression of lysosomal 
genes in sea cucumbers was upregulated. At the same time, the 
expression levels of genes related to autoimmune thyroid disease were 
also upregulated. The increase in noise frequency promotes the gut 
immune function of sea cucumbers. 

Amino acids, as organic compounds, play crucial physiological roles 
in regulating metabolism, providing energy, and supporting the immune 
system (Broer, 2022). Exposure to low-frequency noise environment 
leads to an upward trend in carbohydrate and amino acid metabolism in 
the Tegillarca granosa to meet the energy demands associated with 
feeding (Peng et al., 2016). Our experimental results are consistent with 
this finding. In the low-frequency noise group, genes related to carbo-
hydrate digestion and absorption were upregulated. Notably, in the 

Fig. 7. Differential expression genes (DEGs) were identified in the intestine of sea cucumbers after noise exposure. Volcano plots for DEGs between (A) CK and L1, 
(B) CK and L2, (C) CK and H, (D) L1 and L2, and (E) L1 and H were generated. Red dots represent upregulated genes, and blue dots represent downregulated genes. 
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comparison between the high and low-frequency groups, genes related 
to the degradation of valine, leucine, and isoleucine were down-
regulated. Underwater low-frequency noise may stimulate sea cucum-
bers to produce more nutrients to meet the energy demands underwater. 
However, as the noise frequency increases, the energy demand will 
decrease, resulting in the inhibition of muscle growth and energy 
metabolism (Zeitz et al., 2019). 

Pancreatic secretion plays a positive regulatory role in food digestion 
and absorption in the body's digestive system (Hasegawa et al., 1993). 
Secretin plays a role in lipid breakdown through protein kinase A acti-
vation and hormone sensitive lipase phosphorylation, as demonstrated 
in both in vitro and in vivo studies (Sekar and Chow, 2014). In this 
study, exposure to low-frequency noise resulted in upregulation of genes 
associated with pancreatic secretion in sea cucumbers. Additionally, the 
expression levels of genes related to fat digestion and absorption were 
also upregulated. Our experimental results are consistent with previous 
findings, which observed a significant increase in both pro-secretory and 
pancreatic fluid levels in insect cells infected with rod-shaped viruses 
(Asmann et al., 2004). Underwater low-frequency noise may promote 
pancreatic secretion in sea cucumbers, leading to increased absorption 

and utilization of nutrients such as fats. Additionally, genes related to 
carbohydrate absorption were upregulated in the low-frequency noise 
group, which is consistent with our analysis results. 

Peroxisomes are important cell organelles that contain various 
enzyme molecules capable of catalyzing a wide range of metabolic re-
actions (Nazarko, 2017). Peroxisomes are involved in a variety of 
physiological processes, including muscle growth, energy metabolism, 
maintaining redox balance, and protecting cells from harmful oxides 
(Zalckvar and Schuldiner, 2022). Peroxisomes have important physio-
logical functions for dna protective activity in aquatic invertebrate im-
mune response (Abbas et al., 2019). In this study, exposure to high- 
frequency noise resulted in downregulation of genes related to peroxi-
somes in sea cucumbers, which is consistent with our results from 
analyzing oxidative stress markers. Exposure to high-frequency noise 
significantly altered the gene expression of peroxisomes in the coelomic 
fluid of sea urchin (Vazzana et al., 2020). The gene expression of per-
oxisomes in sea cucumbers was significantly suppressed under the in-
fluence of high-frequency noise, indicating that high-frequency noise 
may affect the oxidative and toxin metabolism of sea cucumbers. 

Fig. 8. The KEGG pathways enriched in DEGs between the CK group and low-frequency and high-frequency groups, with a P-value of <0.05. A: CK vs low-frequency 
group. B: CK vs high-frequency group. C: low-frequency group vs high-frequency group. 
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5. Conclusion 

In summary, the impact of noise on oxidative stress in sea cucumbers 
is mainly from low-frequency noise. Although high-frequency noise also 
leads to a reduction in enzyme activity, its effect is weaker than that of 
low-frequency noise. Low-frequency noise is more likely to induce in-
testinal inflammation and reduce the antioxidant capacity of sea cu-
cumbers. Continuous exposure to underwater noise leads to decreased 
intestinal cell vitality, as well as the suppression of protein synthesis and 
cellular apoptosis in sea cucumbers. This study reports for the first time 
the transcriptome information of the gut of sea cucumbers after expo-
sure to noise at different frequencies. Upregulation of lysosomal, 
pancreatic secretion, and fat digestion and absorption genes under low- 
frequency noise ensures the nutritional and energy needs of sea cu-
cumbers exposed to adverse conditions, while also activating their in-
testinal immune system. As frequency increases from low to high, 
carbohydrate absorption and amino acid degradation decrease while 
peroxisome expression is suppressed, leading to inhibition of muscle 
growth and energy metabolism. Overall, these findings provide valuable 
insights into the regulatory mechanisms of sea cucumbers under un-
derwater noise exposure and highlight the importance of considering the 
effects of different frequency ranges when assessing the impacts of noise 
pollution on marine organisms. 
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