
National Energy 
Technology Laboratory 

Driving Innovation ♦ Delivering Results 

Vikrant Verma 
Tingwen Li, Jean-François Dietiker, 
William A. Rogers 

12th August, 2015 

Hydrodynamics of gas-solids flow in a 
bubbling fluidized bed with immersed 
vertical U-tube banks 
 

MFiX Simulations 



2 National Energy 
Technology Laboratory 

Outline 

• Fluidization 
• Motivation 
• Two fluid model 
• Cut-cell method 
• Geometry configuration 
• Post processing 
• Simulations results 

 Bubble properties 
 Solids motion 

• Conclusions 
 



3 National Energy 
Technology Laboratory 

Fluidization 

Image Courtesy : Multiphase Reactor group , TU/e, Netherlands 

Gas-solid contacting in many different processes: 
• polymerization 
• fluid-catalytic cracking 
• dry roasting 
• Combustion and gasification 
• … 

 
Reactors: 

Fluidized bed (fluidization: drag equals weight) 
 
Key characteristics: intrinsically multiscale 

• p-p & p-g interactions at 1-5 dp 
• flow structures (10-100 dp) 
• gas-solid behavior (industrial size: many 

other factor) 
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Motivation 

 In industrial fluidized-bed applications, internals such as 
heat exchanger tubes and baffles are regularly employed 

 Immersed internals modify the gas−solid flow structure 
and thus may have significant effects on the fluidization 

 Complex hydrodynamics in bubbling fluidized beds with 
immersed internals are still difficult to describe.  

 The effectiveness of internals is greatly dependent on 
their design (horizontal/vertical tubes, packing, baffles…) 

 Experimental study of FBs with internals is challenging 
 CFD has an advantage to investigate this complex 

hydrodynamics 
 Supporting CFD study of 1 MW pilot plant at ADA-Inc 

under CCSI, where internal vertical tubes in the FB acts 
as a heat exchangers.   
 

Image reference :  J.F. de Jong, PhD Thesis, Eindhoven University of Technology 
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Two-fluid model 

• Generalized Navier-Stokes equations for interacting continua 
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Mass conservation equations 

Momentum conservation equations 

Granular temperature balances 
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Cut cell method for internal surface 

Reference: Dietiker et al., 2009, AIChE Annual Meeting 

The internal surface (thick solid line) partition computational domain into three 
types of cells : 
(1) standard (uncut) cells;  
(2) cut-cells that require special treatment to incorporate the presence of the solid 
wall/surface (velocity nodes are adjusted to the center of the cut cell) 
 (3) blocked cells that are excluded from computations since they are located outside 
the active computational domain.  
A no-slip or free-slip velocity boundary condition can be applied for each phase at 
the wall. 
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Experimental work: Rudisuli et al. 2012  

Reference : Rudisuli et al., 2012, Ind. Eng. Chem. Res. 51: 4748-4758 

Conf. similar to ADA.inc 1MW pilot plant study 

OP: optical probe measurements 
PFM: Pressure fluctuation measurements 
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Computational geometry 

Properties Without tubes Sq. arrangement Tri. arrangement 
Column width  (number of grids) 0.15 m (100) 0.15 m (100) 0.15 m (100) 
Column depth  (number of grids) 0.15 m (100) 0.15 m (100) 0.15 m (100) 
Column height (number of grids) 
Bed diameter from cut-cells 

0.96 m (640) 
0.145 m 

0.96 m (640) 
0.145 m 

0.96 m (640) 
0.145 

Number of principal tubes (diameter)                      -      16 (15 mm)      24 (15 mm) 
Number of auxiliary tubes (diameter)                      -        8 (12 mm)        2 (10 mm) 
        

Properties Values 
Particle type Aluminum oxide 
Particle density 1350 kg/m3 
Particle diameter 289µm 
Coefficient of restitution 0.90 
Minimum fluidizing velocity(Umf) 0.041 m/s 
Superficial velocity at inlet (U0) 2.3Umf, 4.5Umf, 6.8Umf 

Fluidized bed configurations 

Particle properties 

Square arrangement Triangular arrangement Computational grids 

Computational time: Real time of 1 s  per day using 128 processors on NETL supercomputers for 6.4 million computational cells 
Simulations were performed for 25 s of real time 
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Snapshots 
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Post processing 

Reference  : Bubble tracking algorithm: Verma et al., 2015 AIChE J. 61: 4  
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Simulation Results 
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Equivalent bubble diameter  

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 Predicted bubble size for no tube is in good agreement 
with literature correlation of Werther 

 Bubble size decreases with the effect of vertical tubes 
 Sim. and Exp. results are in good agreement for the 

higher inlet gas velocities of U/Umf = 4.8 and 6.8 
 At U/Umf = 2.3 Exp. results are under predicted, 

considering Sim. result in a close agreement with 
bubble size correlation of Werther  
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Equivalent bubble diameter  

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 Bubble size is larger in the center for No tubes 
 Uniform bubble size predicted across the bed diameter 

when there are vertical tubes in the bed 
 Vertical tubes prevent coalescence and also promote 

larger bubbles to  split  
 Slugging of bubbles can be prevented using vertical 

tubes, enhances quality fluidization 
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Bubble distribution 

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 For vertical tubes inside, large number of bubbles are 
predicted throughout the height 

 Significantly more bubbles are predicted in the bottom 
section of the bed 

 U-shape bank prevents bubble coalescence at the initial 
stage as the bubble grows 

 Square tube arrangement create parallel chambers for 
the bubble to rise, hence efficient in preventing bubble 
coalescence 

 Triangular tube forms staggered alignment of the tubes, 
promote splitting of larger bubbles 
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Bubble distribution 

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 Number of small bubbles in the bed is significantly 
greater for the beds with vertical tubes when compared 
to the bed with no tubes  

 The number of larger bubbles is similar for both tube 
arrangements indicating that bubble size is unaffected if 
it is sufficiently large compared to the tube spacing 
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Bubble shape/Aspect ratio 

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 The shape of the bubble is estimated from the bubble 
aspect ratio, i.e. ratio of vertical length to the horizontal 
length of the bubble 

 For no tubes, bubbles are nearly spherical in shape. 
 Bubbles elongate significantly under the influence of 

vertical tubes 
 The initial effect of vertical tubes is to squeeze and 

deform bubbles to fit the space between the tubes 
 Tri. tube arrangements shows considerable difference 

when compared with Sq. tube arrangement 
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Average bubble rise velocity 

U/Umf =2.3 

U/Umf =4.5 

UUmf =6.8 

 Bubble rise velocity shows an increasing trend in the 
presence of tubes for lower inlet gas velocity 

 At low inlet gas velocities bubble size is comparable to 
the tube spacing, therefore considerable squeeze occurs 
between the tubes and bubbles rise faster 

 Squeezing of bubble between the tubes, the centroid of 
bubble moves a longer distance than uniform size 
bubble 

 At higher gas velocities, bubble sizes are large enough 
that they enclose the tube and rise along the tube walls 
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Average bubble rise velocity  

U/Umf =2.3 

U/Umf =4.5 

U/Umf =6.8 

 Bubbles of the same size rise with different velocities, 
where bubbles travel faster in the bed with tubes 

 Because the bubble is elongated and follows 
preferential path along the vertical tubes 

 Bubble rise velocity in the bed with tubes depends upon 
fluidizing gas velocity and tube arrangements 
 



19 National Energy 
Technology Laboratory 

Solids circulations 

NT Sq. arrangement Tri. arrangement 
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Solids velocity profile 
NT 

Sq. arrangement Tri. arrangement 

 Upward motion of solids in the center and downward 
motion near to the walls for no tubes. 

 For tubes higher solids velocities lie in the region 
between the tubes. 

 The magnitude of solids velocities is nearly the same at 
these three heights for vertical tubes. 
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Conclusions 

 The influence of vertical tubes on bubble characteristics and solids motion in a 
fluidized bed has been investigated using the MFIX two-fluid model 

 A comparison of simulation results with experimental data shows good agreement 
 Square and triangular tube arrangements have been compared to the bed without 

tubes 
 A decrease in equivalent bubble diameter and a uniform distribution of bubble are 

seen for the bed with vertical tubes  
 Simulation results show that the square tube arrangement forms longitudinal, 

parallel chambers that prevent bubble coalescence 
 Triangular tubes are in a staggered arrangement, they promote bubble splitting 
 Splitting and squeezing of bubbles between the tubes their shapes change 

significantly, becoming more elongated and travel faster 
 Differences in solids circulation patterns are very distinct for the three bed 

configurations  
 Solids motion is rarely seen in the radial direction because the vertical tubes 

prevent lateral solids motion 
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