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INTRODUCTION  
 The drive towards sustainable energy has 
seen rapid development of wave and tidal stream 
(MRE) energy. However, little is known of any 
environmental and ecological effects [1]. The 
FLOWBEC-4D project developed an upward facing 
sonar platform to investigate how currents, waves 
and turbulence at MRE sites may influence the 
behavior of marine wildlife, how important 
collision risks might be, and how MRE devices 
(MREDs) might alter the behavior of wildlife [2]. 
Foraging efficiency (the capture of prey by a 
predator) is considered to be the major ecological 
driver of population dynamics, as it controls both 
adult and juvenile survival and condition [3]. 
Information was gathered on predator and prey 
use of MRE sites to identify and quantify which 
type of habitats (depth of water column, speed of 
tides, etc.) predators predictably use for foraging. 
 Although boat surveys can provide high-
resolution coverage along specific tracks [4], it is 
not logistically feasible to monitor a high-energy 
site continuously at high-resolution for a 14-day 
tidal cycle. Wind, waves and tide reduce positional 
accuracy such that boat surveys cannot monitor 
fine-scale interactions of individual targets at the 
precise location of MREDs and the costs of long 
duration surveys are high. Surface platforms [5, 6] 
can reduce cost but are similarly limited because 
of their instability in high-energy sites. In both 
cases, there is also the risk that the boat/platform 

presence and noise (in air and under water) could 
affect the species being studied. 
 Mounting instruments on the MRED provides 
a stable mounting and simplifies power and data 
requirements for longer duration surveys. The 
interactions of fish with tidal turbines have been 
imaged using cameras but visibility (turbidity and 
illumination) limits both the range and survey 
time [7]. Active lighting will directly affect animal 
behavior. Acoustic instruments mounted on the 
MRED are adversely affected by turbulence within 
a few meters from the MRED itself, which can 
mask the presence and interactions of wildlife [8]. 
Conversely, an independent platform allows the 
instruments to be positioned a short distance 
from the MRED, recording the interactions of 
wildlife and also conducting baseline studies 
elsewhere under similar conditions, e.g. in an area 
free from MREDs or prior to MRED installation. 
 The FLOWBEC seabed platform (Figure 1) 
addressed these issues by integrating a number of 
instruments to record information at a range of 

FIGURE 1. THE FLOWBEC SEABED PLATFORM 



 

physical and trophic levels. Data were recorded at 
several measurements per second, for a duration 
of 2 weeks to capture an entire spring-neap tidal 
cycle at wave and tidal energy sites at the 
European Marine Energy Centre (EMEC). An 
upward-facing multifrequency Simrad EK60 
echosounder (7° beamwidth, 38, 120 and 200 kHz) 
is synchronized with an upward-facing Imagenex 
Delta T multibeam (MBES) (120° x 20° 
beamwidth, 260 kHz) aligned with the tidal flow. 
An ADV measures current and turbulence, and a 
fluorometer measures chlorophyll (a proxy for 
plankton) and turbidity. The latest revision has 
integrated a Nortek Signature broadband 5-beam 
ADCP, an upward facing color video camera, and 
passive acoustic monitoring (PAM). The platform 
is self-contained with no cables or anchors, 
facilitating rapid deployment and recovery in 
high-energy sites and allowing baseline data to be 
gathered. Measurements from the subsea platform 
are complemented by a 3D hydrodynamic model 
and concurrent shore-based marine X-band radar 
and ground-truth wildlife observations.  
 The benefit of combining information from 
multiple instruments to increase coverage, 
sensitivity and the information available has been 
recognized elsewhere, as it also allows one 
instrument to trigger the recording of another [9]. 
In the case of FLOWBEC, co-registration of targets 
seen across acoustic instruments greatly increases 
the information available. The EK60 alone 
provides quantitative measures and patterns of 
target distribution [10], yet co-registration of the 
same target on the MBES, allows concurrent 
behavior and predator-prey or target-MRED 
interactions to be monitored. Targets co-
registered on both instruments can be used as a 
training dataset to aid classification of targets 
detected on a single instrument. 
 Single/split beam, MBES and acoustic cameras 
have been evaluated previously for use in tidal 
sites [5, 11, 12]. However, turbulence can both 
mask ecological targets, and compound 
classification. This paper describes the 
development of novel processing techniques to 
mask surface-connected turbulence, extract 
biological targets for parameterization and 
tracking, and an example of the information gains 
from co-registering data between instruments. 
 
TARGET TRACKING USING A MULTIBEAM SONAR 
 MBES target tracking comprises a number of 
steps: water column delineation, target detection, 
tracking and classification. Water column 
delineation is based on a static mask rather than 
detection of the surface and connected turbulent 
disturbances. Figure 2 shows the water column 
used for the 2013 deployment adjacent to the 

Atlantis AK-1000 turbine base and piling. In this 
case, the sector range is set to 30.4 m to exclude 
the turbulent surface and its reflections. Beams in 
the outer ±27° are removed to exclude the seabed, 
turbine structure and associated reflections. The 
remaining sector is then cropped to a height of 
22.5 m to study targets overlapping with the 
Atlantis turbine structure and expected blade 
radius. Targets are tracked at ranges < 1 m and so 
no near-field cut off is applied. 
 An intensity threshold is applied to filter 
remaining spurious and persistent reflections, 
caused by strong returns from the turbine 
structure inducing both radial and sector bands of 
noise throughout the water column. This 
threshold was set based on the typical target 
strengths measured at this site. 
 Each target is approximated by an ellipse and 
stored with a number of characteristics: the XY 
center, bounding ellipse area, ellipse ratio, and 
ellipse orientation. The target acoustic intensity is 
stored as the pixel “mass” (the sum of the 
intensities of all pixels comprising the target), 
coupled with the minimum and maximum 
intensity. The number of Targets Present per 
Frame (TPF) is also recorded. A dilation operation 
is used to parameterize fish shoals as a single 
object with a single centroid to ensure robust 
tracking of the overall movement of a fish shoal.   
 Target tracking uses a modified nearest-
neighbor search, which seeks to establish a 1:1 
relationship between all targets in the current 
frame to a maintained array of tracked targets. 
The closest (nearest-neighbor) target is 
corresponded if within a velocity threshold. A 
decay function is used to reduce the search area 
for each historical frame. This represents the 
increasing uncertainty in establishing a 
correspondence with every frame in which the 
target is not observed. If there are multiple, 
equally-likely corresponding tracked targets, then 
the most recently observed tracked target is 
selected. If a correspondence to a tracked target 
cannot be established, then a new track is started 
using the current target observation. Track 
maintenance uses a voting-out algorithm which 
allows targets to be momentarily not detected (for 

FIGURE 2. THE MBES SWATH WAS CROPPED TO 
DETECT TARGETS OVERLAPPING THE TURBINE 
STRUCTURE AND EXPECTED BLADE RADIUS. 
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example if they are masked by other targets, have 
changed attitude, or momentarily moved out of 
the swath). If re-detected, the target can be 
correctly matched to the same track. The 
continuous track profile allows examination of 
behavior around the turbine structure, including 
turbine-interactions, sudden changes of direction 
(evasion) and predator-prey interactions.  
 Classification is guided by a series of key 
metrics and confirmed by manual quality control 
to ensure robustness and reliability of these initial 
deployments and to provide a ‘training’ dataset to 
confirm later development of fully-autonomous 
classification. Morphometric measurements (size, 
shape, mean backscatter and distribution of 
backscatter, number of TPF, target separation) 
and behavior (velocity, velocity relative to water 
column, directionality, vertical distribution and 
inter-target interaction) can be measured using 
the MBES, and classification performed by 
defining bounds for the various parameters. 
Figure 3 shows an example of MBES target 
classification using mean TPF. 
 
MULTIFREQUENCY ECHOSOUNDER PROCESSING 
 High-energy MRE sites demanded a new 
approach to isolate ecological targets from the 
overwhelming backscatter due to turbulent 
physical dynamics.  Custom MATLAB scripts were 
written for processing and analysis.  
 Surface removal is achieved by a line-picking 
algorithm based on a minimum threshold for 
surface volume backscatter strength (Sv). Precise 
distinction is difficult during energetic periods 
due to the disturbed surface and strongly 

reflecting aerated water near the surface. The 
optimal threshold over the changing conditions 
with minimal loss of data is selected using Otsu’s 
method from the field of image-processing. This 
defines the optimal threshold to separate the 
probability distribution functions of classes of 
pixels in an image. The resulting surface range is 
tested by inspection and power spectrum analysis. 
 Adaptive processing preserves maximum 
sensitivity throughout varying turbulent 
conditions, which avoids false detection of 
ecological targets during regions of intense 
turbulence, yet without thresholding targets out 
during calmer periods. The basis is selective 
subtraction from a scale-sensitive smoothed 
background version of the data. A moving window 
median filter is used, of dimensions small enough 
to preserve resolution yet high enough to give 
appropriate statistical stability. The filter 
dimensions are tuned based on analysis of the 
typical scales of ecological targets and turbulence 
morphology. The median-filtered result is 
suppressed during areas determined to have high 
levels of Sv from turbulent processes which 
exceed a threshold. This approach stabilizes the 
data in depth and time, providing better 
performance of standard Sv and size thresholding 
target detection methods. As this approach is scale 
selective, any physical backscattering structures 
of a comparable scale to ecological targets will be 
preserved and so an additional filter is required. 
In particular, wind-wave generated clouds of air 
bubbles cause intense backscattering structures 
across all frequencies which extend in depth over 
much of the data. Such structures are 
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FIGURE 3. THE MEAN TPF OVER A TRACK CAN BE USED 
TO CLASSIFY MULTIBEAM TARGETS INTO ‘SINGLE 
TARGETS’ (A), ‘SMALL SCHOOLS’ (B) AND ‘LARGE 
SCHOOLS’ (C). SINGLE TARGETS CAN BE FURTHER 
CLASSIFIED INTO FISH, DIVING BIRDS DISTINGUISHED BY 
THEIR CHARACTERISTIC U-SHAPED DIVE [13] AS SHOWN 
HERE AND MARINE MAMMALS CHARACTERIZED BY 
THEIR LARGE SIZE. EXAMPLE TARGETS ARE AVERAGED 
OVER SEVERAL SECONDS TO HIGHLIGHT MOVEMENT 
AND ARE FROM THE 2013 DEPLOYMENT ADJACENT TO 
THE ATLANTIS AK-1000 TURBINE STRUCTURE. THE 
TURBINE STRUCTURE IS SHADED IN GREEN, AND THE 
EXPECTED BLADE RADIUS IS OUTLINED BY A DASHED 
GREEN LINE. RANGES ARE IN METERS. 

 



 

morphologically isolated based on their 
connectivity with the sea surface and again an 
optimal threshold is selected to exclude the 
minimum possible data from further analysis. 
Tracing algorithms are used to delineate these 
intense physical backscattering structures from 
further target detection steps (Figure 4). 
 Target detection is then performed using Sv 
and size thresholds. A -55 dB re 1 m-1 threshold is 
used on the 200 kHz processed dataset with a 
minimum 10 pixel connected region to delineate a 
target boundary. This provides better 
performance at near-zero and very high velocities 
than the use of a minimum height and length 
dimensions in meters. The final processing step 
validates target regions using multifrequency 
characteristics; an optimal threshold for the mean 
Sv difference between frequencies is used to 
systematically reject regions corresponding to 
physical processes. Target classification then uses 
morphometric, target strength and 
multifrequency information. 
 
CO-REGISTRATION 
 Co-registration between the MBES and EK60 
adds certainty and robustness to the detection, 
tracking and identification of targets, but also 
allows targets to be described with information 
from both instruments (e.g. movement and 
behavior from the MBES, calibrated target 
strength, higher sensitivity and frequency 
response from the EK60). Co-registration of all 

targets is not possible, with some targets not seen 
on the EK60 due to the smaller detection volume, 
and some targets not seen on the MBES due to the 
lower sensitivity. Preserving targets detected on a 
single instrument, together with any co-registered 
targets provides the most complete dataset. 
 Co-registration aims to identify the same 
target on each instrument with an associated 
measure of certainty. This can be performed at a 
variety of levels. The simplest method seeks to 
establish a single nearest-neighbor match within a 
temporal and spatial threshold for targets 
observed on both instruments. 
 The next level incorporates trajectory. For 
example, if a target is moving through the MBES 
swath toward the EK60 beam, then its trajectory 
and time to next EK60 ping can be used to predict 
the target’s path through the EK60, with an 
uncertainty based on vertical movement, 
directionality and time between observations. 
 The final level of co-registration incorporates 
target characteristics to aid establishing 
correspondences between targets detected on 
each instrument. This is useful in periods of high 
target density. However, metrics are not directly 
translatable between instruments and only 
approximate conversions can be used due to the 
different modes of operation, non-linear 
conversions and an uncalibrated MBES.  
 Figure 5 demonstrates temporal co-
registration from the 2013 deployment next to the 
Atlantis turbine structure, combining behavioral 
MBES information with quantitative EK60 metrics.  
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FIGURE 5. MBES AND EK60 CO-REGISTRATION OF A FISH SHOAL AROUND THE ATLANTIS TURBINE STRUCTURE. 

FIGURE 4. MORPHOLOGICAL ISOLATION OF PHYSICAL SOURCES OF BACKSCATTER AROUND A FISH SCHOOL. 
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CONCLUSIONS 
 Environmental monitoring in high-energy 
sites around MREDs has been demonstrated. The 
integration of a MBES and multifrequency 
echosounder provides information gains, 
including robust target tracking and behavioral 
observations (e.g. predator-prey interactions) 
with concurrent quantitative measurements of 
target size, distribution and morphology. Using 
this information, the depth preference and 
interactions of birds, fish schools and marine 
mammals with MREDs can be tracked. Seabird 
and mammal dive profiles, predator-prey 
interactions and the effect of hydrodynamic 
processes during foraging events throughout the 
water column can also be analyzed. These datasets 
offer insights into how fish, seabirds and marine 
mammals successfully forage within dynamic 
marine habitats and whether individuals face 
collision risks with tidal stream turbines. The 
results can be used to guide marine spatial 
planning, device design, licensing and operation, 
as individual devices are scaled up to arrays and 
new sites are considered. The combination of the 
sensor platform and analytical approach can help 
to de-risk the licensing process by providing a 
higher level of certainty about the behavior of a 
range of mobile marine species in high-energy 
environments. With a greater mechanistic 
understanding of how and why mobile predators 
use these high-energy areas for foraging at single 
demonstration scales, the predictive power of the 
outcomes may lead to a wider strategic approach 
to monitoring and a reduction in the level of 
monitoring required at each commercial site. 
These monitoring techniques are now informing 
the environmental monitoring program for the 
MeyGen Tidal Energy Project in Scotland, UK. 
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