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ABSTRACT: Common loons Gavia immer are a conservation concern in New England due to a
variety of anthropogenic factors, yet little is known about biotic and abiotic environmental factors
determining their wintering distribution and abundance in nearshore and offshore waters. The
primary objective of this study was to develop a spatially explicit abundance model of wintering
common loons in the maritime waters of southern New England (USA) that could inform decisions
about offshore development. Aerial line-transect surveys were conducted throughout a 3800 km?
study area off the coast of Rhode Island during the winters of 2010-2011 and 2011-2012. A density
surface model (DSM) approach was used to account for imperfect detection and incorporate spa-
tially explicit environmental covariates. Common loon densities were greatest in waters <35 m
deep, with high chl a surface concentrations (>2 mg m™). The DSM predicted 5047 (95% CI =
3993-6379) common loons in the study area during winter, which suggests this region provides
key habitat for this species in eastern North America. This study highlights important areas for
common loons in the region, suggests key biotic (primary productivity as measured by long-term
chl a surface concentrations) and abiotic covariates (water depth) driving the spatial distribution
and abundance of common loons in southern New England, and identifies sites that should be
considered for protection from offshore development, including offshore wind facilities.
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INTRODUCTION

Common loons Gavia immer are of conservation
concern in the northeastern USA due to a variety of
anthropogenic factors including human intrusion at
breeding lakes (Titus & Van Druff 1981, Jung 1991),
commercial fishing (Forsell 1999), acid rain (Alvo et
al. 1988), mercury exposure (Evers et al. 1998, Bur-
gess & Meyer 2008), lead poisoning (Sidor et al.
2003), and marine oil spills (Sperduto et al. 2003).
Current population estimates are approximately
5500 common loons nesting in New England and
New York (Evers 2007), with the species classified as
a species of concern in Massachusetts, New York,
and Connecticut, threatened in New Hampshire, and
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endangered in Vermont (Evers 2007, Kenow et al.
2009). Recent satellite telemetry research suggests
that common loons breeding throughout the north-
eastern USA primarily winter in nearshore waters
from Maine to New Jersey (Kenow et al. 2009),
although little is known about the biotic and abiotic
environmental factors that affect their distribution
and abundance when using marine waters in this
region during winter (Daub 1989, Ford & Gieg 1995,
Kenow et al. 2009). Available evidence suggests that
wintering common loons primarily occur in shallow
(<20 m deep), nearshore marine waters, although
low densities occur out to 100 km offshore (Powers &
Cherry 1983, Haney 1990). The spatial distribution of
loons during winter is thought to be driven by prey

© Inter-Research 2013 - www.int-res.com



274 Mar Ecol Prog Ser 492: 273-283, 2013

availability (Evers 2007), which appears to be in-
fluenced by water clarity (Mclntyre 1978, Thompson
& Price 2006), water depth (Daub 1989, Kenow et al.
2009), and tidal regime (McIntyre 1978, Daub 1989).

Due to the likely development of large-scale off-
shore wind energy developments (OWEDs) in the
waters of southern New England within the next
decade, there is a pressing need to understand the
environmental factors driving the distribution and
abundance of common loons and other marine verte-
brates in the region. Loons are especially sensitive to
OWED, as well as to shipping and helicopter traffic
(Petersen et al. 2006, Schwemmer et al. 2011, Fur-
ness et al. 2013, Langston 2013). Thus, gathering
accurate information on the spatial patterns of com-
mon loons is essential for siting of OWEDs in mari-
time waters of the northeastern USA to minimize risk
to extant common loon populations (Fox et al. 2006,
Langston 2013).

Our primary objective was to develop a spatially
explicit abundance model of wintering common
loons in the maritime waters of southern New Eng-
land. We used this model to identify sites that sup-
ported high densities of common loons and thus
should be considered for protection from develop-
ment of OWEDs. We built a density surface model
(DSM; Hedley & Buckland 2004) using data from aer-
ial line transect surveys to provide a spatially explicit
estimate of the density of common loons during win-
ter off the coast of Rhode Island. DSMs consist of a
spatial model of counts of animals, with the counts
adjusted for imperfect observer detectability. We
explored the relationships between common loon
distribution and abundance and multiple spatially
explicit environmental covariates including latitude,
longitude, closest distance to coast, water depth,
sediment median grain size, bottom roughness and
multiple metrics of remotely sensed chlorophyll a
(chl a). Several of these environmental covariates
relate to the distribution and abundance of other spe-
cies of marine birds (Louzao et al. 2009, Tremblay et
al. 2009, Suryan et al. 2012, Watson et al. 2013),
which allowed us to determine whether these co-
variates relate to spatial patterns of common loons
using marine waters in the Northwest Atlantic.

MATERIALS AND METHODS
Study area

Surveys were conducted in the Rhode Island
Ocean Special Area Management Plan (OSAMP)

study area (http://seagrant.gso.uri.edu/oceansamp/),
which encompassed approximately 3800 km? in
Rhode Island Sound, Block Island Sound, and por-
tions of the Inner Continental Shelf, an area currently
under consideration for multiple OWEDs (Fig. 1;
Winiarski et al. 2011). Mean (+SD) water depth in the
study area was 34.9 = 9.9 m, with approximately 8 %
of the area <20 m deep and 86 % between 20 and
50 m deep (Fig. 1d).

Aerial-based line transect surveys

Following protocols developed by Camphuysen et
al. (2004), aerial line transects were conducted to
survey common loons throughout this study area.
Approximately 3 aerial surveys per month were con-
ducted, from 1 December to 28 February in
2010-2011 and 2011-2012 for a total of 14 aerial sur-
veys. Although our surveys were restricted to the
daytime, Kenow et al. (2009) found that satellite-
tagged common loons had relatively small home
ranges on their wintering grounds; thus we assumed
their locations during daytime and nighttime were
similar. All aerial surveys occurred around midday
(usually between 10:00 and 15:00 h) on 24 transect
lines, oriented perpendicular to the coast and spaced
3 km apart, with a mean (+SD) transect length of 46.3
+ 12.3 km (min.-max. = 7.8-58.0 km) (Fig. 1f). Loca-
tions of the 24 transects were determined using the
survey design tool in Distance 6.1 which randomly
placed a grid of transect lines over the study area
(Thomas et al. 2010). Each transect line was surveyed
once per month, with 8 transect lines (every third
transect) sampled during each aerial survey. We con-
ducted all aerial surveys from a twin-engine Cessna
Skymaster aircraft that flew at an altitude of 76 m
above mean sea level at a constant speed of 160 km
h~!, when wind speed was less than 35 km h™! or
waves were <1.2 m tall. Two observers on each sur-
vey flight were located behind the pilot and co-pilot
seats (one on each side of the plane), and each
observer recorded all birds observed on their side of
the plane within 3 distance bins out to 1000 m (Bin A
= 44-163 m [note: we could not see underneath the
plane from 0 to 44 m], Bin B = 164-432 m, Bin C =
433-1000 m; Camphuysen et al. 2004). A clinometer
was used to mark set angles with black tape on the
aircraft's wing struts delineating the 3 distance bins.
Observers used their unaided eyes to detect individ-
uals or flocks, identifying species when possible or to
an avian guild (e.g. unidentified loon species) when
necessary. Loons were recorded as either on the
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Fig. 1. Spatial distribution of environmental covariates included in overall model selection: (a) geometric mean of chlorophyll a

(chl a) surface concentration from 2002-2012 (gchl_long), (b) geometric mean of chl a surface concentration for winters

2010-2011 and 2011-2012 (gchl_winter), (c) frequency of chl a peaks index (FCPI) from 2002-2012 (fcpi; Suryan et al. 2012),

(d) water depth (depthm), (e) distance to coast (distancelandkm). (f) Raw observations of common loon Gavia immer from aer-

ial line transect surveys. Black line: coast (Block Island, RI, located near the middle of the study area, mainland RI to the north
and Long Island, NY, to the west)
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water or in flight. Observers recorded common loon
sightings to the nearest second on a digital voice
recorder. Each observer had a digital stopwatch that
was synchronized with a global positioning system
(GPS; Garmin model No. 496) that recorded the air-
craft's position every 2 s. Due to the orientation of the
transect lines and the sun, glare affected observer's
detection rates of loons on sunny days when conduct-
ing surveys from north to south along transect lines;
if glare compromised detection rates on one side of
the plane, then that surveyor ceased collecting data.

Density surface modeling

We used data from aerial line-transect surveys to
build a density surface model that estimated the dis-
tribution and abundance of common loons during
winter in our study area. Development of the DSM
proceeded in 2 steps: (1) abundances were esti-
mated from line transect data using distance sam-
pling methods (Buckland et al. 2001), then (2) a
generalized additive model (GAM,; e.g. Wood 2006)
was fitted to those abundances with explanatory
variables provided by spatially referenced environ-
mental covariates. These abundances were calcu-
lated per segment by subdividing transects into con-
tiguous, 2270 m long segments. Length of segments
was determined by the spatial scale of the modeled
environmental covariates. Since <5% of detections
were of loons in flight that were assumed to not be
actively foraging, only detections of common loons
on the water were analyzed so that the spatial
model indicated where common loons were most
likely foraging.

Fitting a detection function. To estimate loon
abundance for each segment, a detection function
was fitted to all common loon detections using stan-
dard distance sampling methodology for binned data
(Buckland et al. 2001, 2004). In contrast to strip-
transect surveys where detection probability is
assumed to be 1, detection function models assume
all loons were detected at zero distance from the
transect line, with detectability decreasing with in-
creasing distance from observer. Both half-normal
and hazard-rate detection functions were fitted to the
full line-transect data that combined all segments.
Group size and observer identity were available as
covariates to be used in the detection function. When
covariates were not included in the detection func-
tion, cosine adjustment terms were added to the
models, as well as Hermite polynomials (for the half-
normal detection function) and simple polynomials

(for the hazard-rate detection function). Akaike's
Information Criteria (AIC) was used to select among
candidate detection functions. All analyses were per-
formed using the 'Distance’ package version 0.7.1
(Miller 2012) for R version 3.0.1 (R Development Core
Team 2012).

The estimated number of individuals (1) in segment
j was given by

R
J
Sy,

nj=3— (1)

P

if there were R; observations in segment j and the
flock size of flock r; was s;;. The probability of detec-
tion was denoted p and was calculated by integrating
the detection function over the observation window
(44 to 1000 m) and dividing through by this interval,
the truncation distance (956 m); see Buckland et al.
(2001) for further details. Truncation was chosen so
that all observations could be included in the analysis.

Availability bias. Diving birds, such as common
loons, are not always available at the surface of the
water to be counted. In order to correct for individu-
als that were unavailable for detection when diving
underwater, counts of common loons were divided
per segment by the proportion of time that common
loons were available, thus appropriately inflating the
estimated counts. Using data from Ford & Gieg
(1995), who recorded the percentage of time common
loons spent underwater when wintering off the coast
of Rhode Island, common loons in waters >5.5 m
were assumed to be available for detection on aver-
age 70 % of the time.

Environmental covariates. Due to an absence of
spatial data of known common loon prey, including
small demersal fish, flounder, crabs and lobsters
(Creaser et al. 1993, Evers 2007), we used 6 abiotic
(latitude, longitude, closest distance to coast, water
depth, sediment median grain size, bottom rough-
ness) and 3 biotic factors (derived metrics of remotely
sensed chl a) in the model as proxies for loon prey
and prey abundance.

Abiotic variables: Northing (y) and easting (x)
were calculated as distances (km) from the center of
the region of interest (41.17°N, 71.34°W) using the
spherical law of cosines, which assumes the Earth is
a sphere with radius 6371 km (Fig. 1). Sediment
median grain size (phimedian; Reid et al. 2005) was
obtained from the National Oceanic and Atmo-
spheric Administration (NOAA) Geophysical Data
Center (www.ngdc.noaa.gov). Bottom roughness
(roughness; Lafrance et al. 2010) was calculated as
the standard deviation (SD) of bottom slope within a
search radius of 1000 m and a moving window algo-
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rithm using the slope tool in ArcGIS 10.0. Water
depth (m; depthm) was obtained from the NOAA
Coastal Relief Model (www.ngdc.noaa.gov/mgg/
coastal/crm.html).

Biotic variables: Assuming high densities of com-
mon loon prey would be found in areas of high pri-
mary productivity, we included 3 different measures
of chl a surface concentration (mg m=), which were
calculated from chl a concentration obtained with the
Aqua MODIS satellite (NOAA Environmental Re-
search Division's Data Access Program; http://coast-
watch.pfeg.noaa.gov/erddap/index.html): geometric
mean of chl a surface concentration for winters
2010-2011 and 2011-2012 (gchl_winter); 10 yr geo-
metric mean (2002-2012) of chl a surface concentra-
tion (gchl_long, based on the monthly average); and
the frequency of chl a peaks index (FCPI) (fcpi;
Suryan et al. 2012) based on the 10-yr (2002-2012)
geometric mean (Fig. la—c). The FCPI (Suryan et al.
2012) provided a measure of long-term deviation
from the temporal trend in the chl a surface concen-
tration level at each measurement location. The FCPI
was calculated in 3 steps, following Suryan et al.
(2012): (1) z-score-standardising the monthly loga-
rithm of chl a surface concentration, (2) fitting a
model of monthly trends over the whole region
(including yearly and monthly cyclic trends), and (3)
calculating the proportion of time that the value of
chl a surface concentration at a given location had
a positive anomaly >1 SD from the model (for details,
see the Supplement at www.int-res.com/articles/
suppl/m492p273_supp.pdf). Using these 3 measures
of chl a surface concentration, we investigated which
metric would be more useful in predicting the distri-
bution and abundance of common loons in our study
area. This allowed us to test a hypothesis proposed
by Suryan et al. (2012) that the FCPI was not as use-
ful as mean-based chl a surface concentration for
predicting the distribution and abundance of a
coastal marine bird species.

Smooth terms. The basis functions used for the
smooth terms in the model were thin plate regression
splines (Wood 2003). The maximum basis size con-
trolled the maximum complexity of the smooth terms;
since the smooth terms were penalized, only the
maximum basis size needed to be set and the penalty
reduced the complexity of the smooth terms to an
appropriate level whilst maintaining a good fit (Wood
2006, Section 4.1.7). The maximum basis size was set
to 10 for univariate smooth terms and 18 for bivariate
smooth terms.

Fitting. Models were fitted using the ‘dsm' package
for R (Miller 2013). Smoothness selection for the

smooth terms in the model was performed via re-
stricted maximum likelihood (REML; Wood 2011).
REML was preferable to generalized cross validation/
unbiased risk estimator-based estimation because
REML tends to have a more pronounced optima
(Wood 2011). When models contain highly correlated
covariates, REML was more likely to find an optimal
degree of smoothing. For example, water depth was
effectively a smooth function of location and could
therefore cause issues during model fitting.

Model selection. The estimated number of com-
mon loons in segment j was modeled as a sum of
smooth functions of the k explanatory variables (z;)
using a GAM with the general formulation:

K
E[n;]=exp[log(a;)+B+ Y, fi(zji)] (2)
k=1

where fi; ~ NegativeBinomial(0), E indicates expec-
tation, a;is an offset (the area of the segment, taking
into account 1- or 2-sided transects), B is an inter-
cept and f; are smooths of the K explanatory vari-
ables. The 6 parameter of the negative binomial dis-
tribution was estimated during model fitting (see
the Supplement).

The 'base’ model included the 3 chl a surface con-
centration metrics and all the abiotic variables as uni-
variate smooths as well as a bivariate smooth of spa-
tial location. Covariate selection then proceeded via
2 mechanisms: (1) an extra penalty for each smooth
which allowed smooth terms to be completely
removed from the model during fitting (Wood 2006,
Section 4.1.6; Wood 2011), and (2) approximate p-
values to select which smooth terms were significant.
Once models had been fitted, the residuals were
checked for spatial autocorrelation by inspecting the
correlogram, which showed the behavior of the cor-
relation between segments at a series of lags.

Abundance estimation. Once a model was selec-
ted, abundance was predicted over the entire study
area using a spatially referenced grid of 920 x 2 km?
predictive cells. Summing over the predicted values
for all grid cells resulted in an estimate of abundance
over the whole study area.

Variance estimation. The variance of abundance in
each grid cell and the overall abundance estimate
were obtained by the variance propagation method
of Williams et al. (2011). This method incorporates
uncertainty from the estimation of the detection func-
tion parameters as well as from the GAM by fitting a
second model (used only for variance calculations).
The coefficient of variation for each prediction grid
cell was calculated and plotted over the study area to
illustrate the uncertainty in our DSM.
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Fig. 2. Gavia immer. Distribution of perpendicular detection
distances of all common loons observed on the water during
aerial-based line transect surveys with the fitted (hazard-
rate) detection function (line) overlaid onto the scaled
perpendicular distance distribution. Boxes: observation bins
(see 'Aerial-based transect surveys')

RESULTS

There was a total of 951 common loon detections
during the winters of 2010-2011 and 2011-2012. The
majority of detections, 733 (77 %), were of solitary
loons, with flocks of up to 30 loons accounting for the
remainder of detections. The 24 survey transects
were segregated into 495 segments of length 2270 m,
which produced a total of 2019 sample occasions
(transects were surveyed multiple times, but some-
times one side could not be surveyed). Of these seg-
ments, 506 (25 %) contained loons, with a maximum
estimate of 88.6 loons in a segment.

Detection function

A hazard-rate detection function with no covariates
was selected (Fig. 2). Including flock size (as a conti-
nuous variable) and/or observer covariates (as a fac-
tor) in the scale parameter of the detection function
changed the AIC by <2, so the detection function was
modelled without covariates (see the Supplement).
Half-normal models were significantly poorer models
(i.e. >19 point difference in AIC terms to the next
best hazard-rate model). Adjustment terms for the
detection function were never selected by AIC. Fur-
ther details of the detection function model selection
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Fig. 3. Gavia immer. (a) Fitted density surface model of win-
tering common loons (f: ind. km~2) over the 3800 km? Rhode
Island Ocean Special Area Management Plan study area.
Darker colors indicate higher densities of common loons in
nearshore and in shallow waters. (b) Plot of the coefficient of
variation (CV) of common loon densities for the predicted sur-
face showing the uncertainty in the predictions. Darker colors
indicate higher model uncertainty. Further details in Fig. 1

procedure are given in the Supplement. Detection
probability was relatively low (p =0.2; see Fig. 2) in
observation Bin B (164-432 m) and close to zero in
Bin C (433-1000 m).

Density surface model
The final DSM included smooth terms of mean

chl a surface concentration from 2002-2012 (i.e.
long-term geometric mean chl a), water depth and
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latitude (y). The model estimated that the highest
densities of common loons occurred in areas with
water depths <35 m, high chl a concentrations
(>2 mg m~3) and in the western portion of our study
area surrounding Block Island (Fig. 3). These rela-
tionships can also be seen in the smooth plots of chl a
surface concentration (Fig. 4a) and latitude (Fig. 4c).
The estimated abundance over the study area during
winter was 5048 common loons (CV =0.12; 95% CI =
3993-6379). A plot of the CVs for each prediction cell
illustrated that there was higher uncertainty in abun-
dance estimates nearer the coast (Fig. 3b).

Model checking

We performed a number of checks to ensure that
our final model performed well and was insensitive
to assumptions made in the modeling process (see
the Supplement). First, the 4 best-performing detec-
tion functions (all hazard-rate, one without covari-
ates, and 3 with the combinations of observer and
group size) were used in the DSM and the results
compared. In each case, the same environmental
covariates were selected and the resulting smooth
functions were almost identical. The selected model
had both the highest adjusted-R? (0.129) and highest
percentage deviance explained (37.7%). To ensure
that there was a check for unmodelled spatial auto-
correlation, correlations between segment residuals
were calculated only within a given transect at vari-
ous lags and displayed as a correlogram, which
showed a small amount of residual correlation
(Fig. 5). To check that the high correlation between
the chl a metrics was not affecting the model fit, the
model was refitted with the long-term chl a metric
removed. This led to a model that selected neither of

the other chl a measures. Aside from the negative
binomial distribution, both Tweedie and quasi-
Poisson distributions were investigated as potential
response distributions but neither yielded satisfac-
tory residual plots. The availability bias correction
was tested by varying the value from 0.5 up to 1 (no
bias), which yielded predicted abundances that were
within the confidence interval of the final model (bias
correction = 0.7) for values between 0.6 and 0.8.
Further details of sensitivity analyses (along with
the code used to fit the models) are given in the
Supplement.
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DISCUSSION

Common loons in our study area in southern New
England were abundant during the winter months
and found in the greatest densities in waters that
were <35 m and that had high long-term chl a sur-
face concentrations (>2 mg m™); these are presum-
ably areas of consistently high primary productivity
that support high densities of common loon prey.
Our DSM accounted for imperfect detectability and
provided a robust and flexible model-based ap-
proach for predicting the distribution and abun-
dance of common loons, although predictive marine
bird models could be improved with better data on
(1) spatial distribution and abundance of marine
bird prey species, and (2) longer-term systematic
marine bird survey data. This type of spatially
explicit model, which uses aerial line-transect data
and incorporates relevant biotic and abiotic covari-
ates, should be used by biologists, regulators and
developers to inform their decisions about proper
siting of offshore development, including OWEDs,
and to provide better assessments of impacts of
marine development on common loons and other
marine birds.

Environmental covariates predicting common
loon distribution and abundance

Our common loon DSM highlights key abiotic
and biotic environmental drivers associated with
the distribution and abundance of common loons
that are mostly consistent with previous studies,
although the model that we developed is the first to
demonstrate that chl a surface concentration is a
key biotic variable driving common loon distribu-
tion on their wintering grounds. Chl a surface con-
centration has been an important predictor of
marine bird abundance in part because areas of
high chl a surface concentrations tend to have high
primary productivity, and thus higher forage bio-
mass (e.g. fish, benthos) for top trophic predators
such as common loons (Ribic et al. 1997, Yen et al.
2006, Gremillet et al. 2008, Suryan et al. 2012).
Suryan et al. (2012) proposed that longer term
measures of chl a surface concentration better pre-
dict marine bird distribution and abundance; our
final best DSM for predicting the distribution and
abundance of common loons contained the 10 yr
average chl a surface concentration but not the
shorter-term measures. Although common loon
abundance appeared to have a bimodal relationship

with chl a surface concentration in our study area,
this is likely just an artifact of low sample sizes in
waters with concentrations >6 mg m=>. Thus, our
results for common loons support the hypothesis
that longer-term measures of chl a surface concen-
tration better predict marine bird distribution and
abundance than shorter-term measures.

Suryan et al. (2012) also suggested that their metric
of chl a anomalies (FCPI) may not be as useful for
marine bird species with a more coastal distribution,
such as common loons, where mean chl a values are
on average higher in concentration. We found that
FCPI was not selected as a covariate in our common
loon model even when long-term chl a was removed
as a candidate parameter. It is important to note that
there were only 52 unique values for the FCPI in the
observed data (compared to 281 for depth and 508 for
long term chl a), so there may be insufficient infor-
mation contained in the FCPI in comparison to the
other covariates included in the model. Whether the
differences in utility of FCPI are a matter of spatial
scale (i.e. our study area is relatively small compared
to that in Suryan et al. 2012) or related to its reduced
importance in nearshore (our study) compared to
more offshore (Suryan et al. 2012) environments is an
open question for further research.

Common loons were most abundant in the waters
of southern New England with high chl a concentra-
tions (>2 mg m~) as described above, but they were
also more abundant in relatively shallower water
depths (typically <35 m) and those waters southwest
of Block Island, where loons may be attracted by the
relatively low salinity from several major rivers in-
cluding the Connecticut River and high tidal velo-
cities, respectively (Mau et al. 2007, Codiga & Ull-
man 2010). Higher densities of common loons in this
area potentially indicate higher biomass of loon for-
age items including small demersal fish, crabs, lob-
sters and flounder (Evers 2007). The higher densities
of common loons in relatively shallow waters is con-
sistent with previous research by Kenow et al.
(2009), who found that satellite-tagged common
loons were most likely found in waters 3 to 20 m
deep (see also Daub 1989). In contrast, Kenow et al.
(2009) found that common loons were more common
in areas with a relatively flat ocean floor, whereas
we found that features of the ocean floor (i.e. bottom
roughness and sediment grain size) were not
included in our final model. Bottom roughness and
sediment grain size may be less important than pro-
ductivity (i.e. surface chl a concentration) in explain-
ing the distribution and abundance of common
loons in our study area because areas with high pro-
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ductivity that support high densities of diverse prey
may be less directly associated with certain sub-
strates in our area. Alternatively, areas with high
productivity may allow loons to broaden their diet
(e.g. benthic prey and demersal fish in the mid-
water column) and so be less reliant on a more
restricted set of prey that are strongly associated
with certain benthic habitat.

Improving spatially explicit models for predicting
marine bird abundance

Our DSM accounted for imperfect detectability and
provided a robust and flexible model-based ap-
proach for predicting the distribution and abundance
of common loons, although refinements could further
improve these predictive models. For example, our
common loon DSM allowed us to identify key envi-
ronmental covariates, yet the best model explained a
modest 38% of the overall variance. Poor model fit
and relatively low predictive power are not unusual
for such marine bird predictive models (Oppel et al.
2012, Winiarski et al. 2014) in part because the distri-
bution and abundance of marine birds is highly
dynamic over space and time, and because such
models of top predators in marine systems rarely
have accurate spatially explicit information about
their prey and instead must rely on other environ-
mental factors that only indirectly relate to the distri-
bution and abundance of prey. A better understand-
ing of the environmental factors that determine the
distribution and abundance of prey species would
inevitably improve spatially explicit models of top
predators such as common loons.

Most marine bird surveys are conducted within
relatively brief time periods, which likely results in
a relatively high number of false absences (see
Oppel et al. 2012). A recently developed common
loon DSM in our study area that used both ship-
based and aerial strip transect data revealed how
combining multiple data sets over longer timeframes
and multiple spatial scales can lead to improved
model performance (Winiarski et al. 2014). Our line-
transect sampling was robust, contemporary, and
controlled for imperfect observer detectability, but
was relatively short in duration (during the winter
months in 2 consecutive years). We need more
longer-term systematic surveys of common loons on
their wintering grounds so that we gain temporal
resolution and thus improve the accuracy and preci-
sion of models that predict common loon distribution
and abundance.

Conservation implications for common loons
in southern New England

Our model predicted on average 5048 common
loons (95 % CI = 3993-6379) wintering in our south-
ern New England 3800 km? study area, which was
similar to estimates of common loon abundance esti-
mated in the same study area in a previous winter
using different survey protocols and a different pre-
dictive model (95 % CI = 4726-6489; Winiarski et al.
2014). These population estimates for common loons
in our study area in southern New England confirm
that this area contains key habitat for wintering com-
mon loons (Evers 2007).

Given the importance of southern New England for
wintering common loons, and the prospects for
OWED in this region (Department of Energy 2011),
the predicted distribution and abundance of common
loons from our density-surface models needs to be
carefully considered when deciding where to deve-
lop these large-scale offshore energy-production
facilities. Nearshore waters (Daub 1989, Kenow et al.
2009), which our model clearly shows are important
for common loons, are attractive for OWED because
they usually provide lower construction and opera-
tional costs than facilities further offshore (Snyder &
Kaiser 2009). We do not yet know the extent to which
large-scale development will negatively impact this
particular common loon population. Given the cur-
rent conservation status of common loons in New
England and our inadequate understanding of the
population effects of displacement, we recommend
that areas predicted to support high densities of com-
mon loons be excluded from OWED consideration. In
our study area this includes the shallow waters
southwest of Block Island that are known to be highly
productive and important to a number of marine bird
species, particularly wintering seaducks (Loring et
al. 2014) and common loons (present study). Our
DSM should also inform decisions about the location
of new shipping routes that will be used during con-
struction and maintenance of OWEDs because loons
are sensitive to shipping and helicopter traffic
(Schwemmer et al. 2011).

Continuing systematic surveys before and after
OWED construction will further our understanding of
the potential negative effects of OWED on common
loons. Displacement from the developed area can be
assessed with the model-based approach presented
here (see also Petersen et al. 2011) which allows for
incorporation of spatially explicit environmental co-
variates and accounts for spatial autocorrelation,
both of which are known to be important for detect-
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ing changes in marine bird density in response to
development (Pérez-Lapena et al. 2010). Ultimately
these spatially explicit abundance models can be
used to inform decisions about siting of offshore
development, including OWEDs, and to provide bet-
ter assessments of impacts of marine development on
common loons and other marine birds.

Acknowledgements. We thank the following people for their
assistance with various aspects of the project. For help
collecting survey data, we thank observers J. Veale and E.
Jedrey. We also thank J. Chronic and D. McGowan of New
England Specialized Aviation Services for piloting the
Cessna Skymaster. This research was supported by grants
from the State of Rhode Island for the Ocean Special Area
Management Plan.

LITERATURE CITED

Alvo R, Hussell DJT, Berrill M (1988) The breeding success
of common loons (Gavia immer) in relation to alkalinity
and other lake characteristics in Ontario. Can J Zool 66:
746-752

Buckland ST, Anderson DR, Burnham KP, Laake JL,
Borchers DL, Thomas L (2001) Introduction to distance
sampling: estimating abundance of biological popula-
tions. Oxford University Press, London

Buckland ST, Anderson DR, Burnham KP, Laake JL,
Borchers DL, Thomas L (2004) Advanced distance sam-
pling. Oxford University Press, London

Burgess NM, Meyer MW (2008) Methylmercury exposure
associated with reduced productivity in common loons.
Ecotoxicology 17:83-91

Camphuysen CJ, Fox AD, Leopold M, Petersen IK (2004)
Towards standardized seabirds at sea census techniques
in connection with environmental impact assessments
for offshore wind farms. UK COWRIE 1 Report. Royal
Netherlands Institute for Sea Research, Texel

Codiga DL, Ullman DS (2010) Characterizing the physical
oceanography of coastal waters off Rhode Island, Part 1:
Literature review, available observations, and a repre-
sentative model simulation. Rhode Island Ocean Special
Area Management Plan, Narragansett, RI

Creaser EP, Perkins HC, Pierce F (1993) Common loons
feeding on lobsters. Maine Nat 1:223-224

Daub BC (1989) Behavior of common loons in winter. J Field
Ornithol 60:305-311

Department of Energy (2011) Offshore energy workshop. A
joint workshop by the Energy Department's office of
Energy Efficiency and Renewable Energy and the
Department of the Interior's Bureau of Ocean Energy
Management. Department of Energy, Washington, DC

Evers DC (2007) Status assessment and conservation plan
for the common loon Gavia immer in North America. BRI
Report 2007-20, US Fish and Wildlife Service, Hadley,
MA

Evers DC, Kaplan JD, Meyer MW, Reaman PS and others
(1998) A geographic trend in mercury exposure in com-
mon loon feathers and blood. Environ Toxicol Chem 17:
173-183

Ford TB, Gieg JA (1995) Winter behavior of the common
loon. J Field Ornithol 66:22-29

Forsell DJ (1999) Mortality of migratory waterbirds in mid-
Atlantic coastal anchored gillnets during March and
April, 1999. US Fish Wildl Serv Tech Rep, Chesapeake
Bay Office, Annapolis, MD

Fox AD, Desholm M, Kahlert J, Christensen TK, Petersen IK
(2006) Information needs to support environmental
impact assessment of the effects of European marine off-
shore wind farms on birds. Ibis 148:129-144

Furness RW, Wade HM, Masden EA (2013) Assessing vul-
nerability of marine bird populations to offshore wind
farms. J Environ Manag 119:56-66

Gremillet D, Lewis S, Drapeau L, van Der Lingen CD and
others (2008) Spatial match-mismatch in the Benguela
upwelling zone: should we expect chlorophyll and sea-
surface temperature to predict marine predator distribu-
tions? J Appl Ecol 45:610-621

Haney JC (1990) Winter habitat of common loons on the
continental shelf of the southeastern United States. Wil-
son Bull 102:253-263

Hedley SL, Buckland ST (2004) Spatial models for line tran-
sect sampling. J Agric Biol Environ Stat 9:181-199

Jung RE (1991) Effects of human activities and lake charac-
teristics on the behavior and breeding success of com-
mon loons. Passeng Pigeon 53:207-218

Kenow KP, Adams D, Schoch N, Evers DC and others (2009)
Migration patterns and wintering range of common loons
breeding in the northeastern United States. Waterbirds
32:234-247

Lafrance M, Shumchenia E, King J, Pockalny R, Oakley B,
Pratt S, Boothroyd J (2010) Benthic habitat distribution
and subsurface geology selected sites from the Rhode
Island Ocean Special Area Management Plan study area.
Rhode Island Ocean Special Area Management Plan,
Narragansett, RI

Langston RHW (2013) Birds and wind projects across the
pond: a UK perspective. Wildl Soc Bull 37:5-18

Loring PH, Paton PWC, Osenkowski J, Gilliland SG, Savard
JPL, McWilliams SR (2014) Habitat use of black scoters in
southern New England and siting of offshore wind
energy facilities. J Wildl Manag (in press)

Louzao M, Bécares J, Rodriguez B, Hyrenbach KD, Ruiz A,
Arcos JM (2009) Combining vessel-based surveys and
tracking data to identify key marine areas for seabirds.
Mar Ecol Prog Ser 391:183-197

Mau JC, Wang DP, Ullman DS, Codiga DL (2007) Compari-
son of observed (HF radar, ADCP) and model barotropic
tidal currents in the New York Bight and Block Island
Sound. Estuar Coast Shelf Sci 72:129-137

MclIntyre JW (1978) Wintering behavior of common loons.
Auk 95:396-403

Miller DL (2012) Distance: a simple way to fit detection func-
tions to distance sampling data and calculate abun-
dance/density for biological populations. R package ver-
sion 0.7.1. http://CRAN.R-project.org/package=Distance

Miller DL (2013) dsm: density surface modelling of distance
sampling data. R package version 2.0.1. http://CRAN.R-
project.org/package=dsm (accessed 5 March 2013)

Oppel S, Meirinho A, Ramirez I, Gardner B, O'Connell AF,
Miller PI, Louzao M (2012) Comparison of five modelling
techniques to predict the spatial distribution and abun-
dance of seabirds. Biol Conserv 156:94-104

[] Pérez-Lapeia B, Wijnberg KM, Hulscher SJIMH, Stein A

(2010) Environmental impact assessment of offshore
wind farms: a simulation based approach. J Appl Ecol 47:
1110-1118


http://dx.doi.org/10.1111/j.1365-2664.2010.01850.x
http://dx.doi.org/10.1016/j.biocon.2011.11.013
http://dx.doi.org/10.1016/j.ecss.2006.10.011
http://dx.doi.org/10.3354/meps08124
http://dx.doi.org/10.1002/wsb.262
http://dx.doi.org/10.1675/063.032.0204
http://dx.doi.org/10.1198/1085711043578
http://dx.doi.org/10.1111/j.1365-2664.2007.01447.x
http://dx.doi.org/10.1016/j.jenvman.2013.01.025
http://dx.doi.org/10.1111/j.1474-919X.2006.00510.x
http://dx.doi.org/10.1002/etc.5620170206
http://dx.doi.org/10.2307/3858183
http://dx.doi.org/10.1007/s10646-007-0167-8
http://dx.doi.org/10.1139/z88-110

Winiarski et al.: Spatially explicit model of loons 283

Petersen IK, Christensen TK, Kahlert J, Desholm M, Fox AD
(2006) Final results of bird studies at the offshore wind
farms at Nysted and Horns Rev, Denmark. National
Research Institute Report, Ronde

Petersen IK, MacKenzie ML, Rexstad E, Wisz MS, Fox AD
(2011) Comparing pre- and post-construction distribu-
tions of long-tailed ducks Clangula hyemalis in and
around the Nysted offshore wind farm, Denmark: a
quasi-designed experiment accounting for imperfect
detection, local surface features and autocorrelation.
CREEM Tech Rep no. 2011-1, University of St. Andrews,
Edinburgh, http://research-repository.st-andrews.ac.uk/
handle/10023/2008

Powers, KD, Cherry J (1983) Loon migrations off the north-
eastern United States. Wilson Bull 95:125-132

R Development Core Team (2012) R: a language and envi-
ronment for statistical computing. R Foundation for Sta-
tistical Computing, Vienna

Reid JM, Reid JA, Jenkins CJ, Hastings ME, Williams SJ,
Poppe LJ (2005) usSEABED: Atlantic coast offshore surfi-
cial sediment data release. US Geological Survey Data
Series 118, version 1.0, usSEABED, Reston, VA

Ribic CA, Davis R, Hess N, Peake D (1997) Distribution of
seabirds in the northern Gulf of Mexico in relation to
mesoscale features: initial observations. ICES J Mar Sci
54:545-551

Schwemmer P, Mendel B, Sonntag N, Dierschke V, Garthe S
(2011) Effects of ship traffic on seabirds in offshore
waters: implications for marine conservation and spatial
planning. Ecol Appl 21:1851-1860

Sidor IF, Pokras MA, Major AR, Poppenga RH, Taylor KM,
Miconi RM (2003) Mortality of common loons in New
England, 1987 to 2000. J Wildl Dis 39:306-315

Snyder B, Kaiser MJ (2009) Ecological and economic cost-
benefit analysis of offshore wind energy. Renew Energy
34:1567-1578

Sperduto MB, Powers SP, Donlan M (2003) Scaling restora-
tion to achieve enhancement of loon, seaduck, and other
seabird populations. Mar Ecol Prog Ser 264:221-232

Suryan RM, Santora JA, Sydeman WJ (2012) New approach
for using remotely sensed chlorophyll a to identify
seabird hotspots. Mar Ecol Prog Ser 451:213-225

Thomas L, Buckland ST, Rexstad E, Laake JL and others
(2010) Distance software: design and analysis of distance

Editorial responsibility: Yves Cherel,
Villiers-en-Bois, France

sampling surveys for estimating population size. J Appl
Ecol 47:5-14

Thompson SA, Price JJ (2006) Water clarity and diving
behavior in wintering common loons. Waterbirds 29:
169-175

Titus JR, VanDruff LW (1981) Response of the common
loon to recreational pressure in the Boundary Waters
Canoe Area, northeastern Minnesota. Wildl Monogr 79:
5-59

Tremblay Y, Bertrand S, Henry RW, Kappes MA, Costa DP,
Shaffer SA (2009) Analytical approaches to investigating
seabird—environment interactions: a review. Mar Ecol
Prog Ser 391:153-163

Watson H, Hiddink JG, Hobbs MJ, Brereton TM, Tetley MJ
(2013) The utility of relative environmental suitability
(RES) modelling for predicting distributions of seabirds
in the North Atlantic. Mar Ecol Prog Ser 485:259-283

Williams R, Hedley SL, Branch TA, Bravington MV, Zerbini
AN, Findlay KP (2011) Chilean blue whales as a case
study to illustrate methods to estimate abundance and
evaluate conservation status of rare species. Conserv
Biol 25:526-535

Winiarski KJ, Trocki CL, Paton PWC, McWilliams SR (2011)
Spatial distribution, abundance, and flight ecology of
birds in nearshore and offshore waters of Rhode Island:
January 2009 to August 2010. Rhode Island Ocean Spe-
cial Area Management Plan, Narragansett, RI

Winiarski KJ, Burt LM, Rexstad EA, Miller DL, Trocki CL,
Paton PWC, McWilliams SR (2014) Integrating aerial and
ship surveys of marine birds into a combined density sur-
face model: a case study of wintering common loons.
Condor (in press)

Wood SN (2003) Thin plate regression splines. J R Stat Soc B
65:95-114

Wood SN (2006) Generalized additive models: an introduc-
tion with R. Chapman & Hall/ CRC, Boca Raton, FL

Wood SN (2011) Fast stable restricted maximum likelihood
and marginal likelihood estimation of semiparametric
generalized linear models. J R Stat Soc B 73:3-36

Yen PPW, Sydeman WJ, Bograd SJ, Hyrenbach KD (2006)
Spring-time distributions of migratory marine birds in
the southern California Current: oceanic eddy associa-
tions and coastal habitat hotspots over 17 years. Deep-
Sea Res II 53:399-418

Submitted: March 8, 2013; Accepted: July 25, 2013
Proofs received from author(s): October 25, 2013


http://dx.doi.org/10.1016/j.dsr2.2006.01.013
http://dx.doi.org/10.1111/j.1467-9868.2010.00749.x
http://dx.doi.org/10.1111/1467-9868.00374
http://dx.doi.org/10.1111/j.1523-1739.2011.01656.x
http://dx.doi.org/10.3354/meps10334
http://dx.doi.org/10.3354/meps08146
http://dx.doi.org/10.1675/1524-4695(2006)29[169%3AWCADBI]2.0.CO%3B2
http://dx.doi.org/10.1111/j.1365-2664.2009.01737.x
http://dx.doi.org/10.3354/meps09597
http://dx.doi.org/10.3354/meps264221
http://dx.doi.org/10.1016/j.renene.2008.11.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12910757&dopt=Abstract
http://dx.doi.org/10.1890/10-0615.1
http://dx.doi.org/10.1006/jmsc.1997.0251

	cite4: 
	cite10: 
	cite21: 
	cite26: 
	cite32: 
	cite17: 
	cite3: 
	cite8: 
	cite12: 
	cite23: 
	cite28: 
	cite19: 
	cite14: 
	cite25: 
	cite20: 
	cite31: 
	cite16: 
	cite1: 
	cite6: 
	cite11: 
	cite22: 
	cite27: 
	cite33: 
	cite5: 
	cite13: 
	cite30: 
	cite15: 
	cite9: 


