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Introduction

Effective environmental decision-making, in the form of

evidence-based management and policy, is a key prere-

quisite to help balance nature conservation, natural

resource management and human socio-economic activi-

ties (Sutherland et al. 2004). To aid such decision-mak-

ing, the need for predictive tools that are accurate,

robust and parsimonious has arguably never been

greater. The Earth is currently in a time of environmen-

tal change unprecedented in human history, due to cli-

mate change, growing human population size and

resource use, land-use changes and intensification, habitat

loss and fragmentation, pollution and invasive species.

Thus, the ability to predict how biological systems will

change over time is as fundamental to research ecologists

as it is to practitioners engaged in environmental deci-

sion-making (Evans 2012). As the competition between

people and other organisms for space and resources

intensifies with continued human population growth,

public support for environmental management and policy

can only be retained if environmental decision-making is

scientifically sound.

Yet, it is widely recognized that ecologists need to be

better at prediction, as current approaches are inadequate

(Evans 2012). The use of empirical relationships between

biological properties and explanatory factors, typically

measured for a narrow range of environmental conditions,

may not hold as conditions change. Hence, predicting

beyond the empirical range may not offer a sound basis

for environmental management and policy. In contrast,

individual-based models (IBMs), also known as agent-

based models (ABMs), predict the behaviours of individ-

ual organisms and their population-level consequences on

the basis of simple decision rules, such as fitness maximi-

zation (Stillman & Goss-Custard 2010). Fitness may be a

measure of reproductive success or a short-term proxy

such as rate of energy gain. The decision rules which form

the basis of IBM predictions are not expected to change

even if the environment changes. This basis means that

IBMs can produce accurate, robust predictions outside of

the range of environmental conditions for which the

model was parameterized (Grimm & Railsback 2005).

Hence, IBMs are key decision support tools to inform

environmental management and policy and facilitate evi-

dence-based decision-making (DeAngelis & Mooij 2005;

McLane et al. 2011).

An ever-growing number of IBMs have been developed

by modellers, who aim to aid practitioners and inform a

range of issues related to conservation, natural resource

management, wildlife management and human socio-eco-

nomic activities (Grimm & Railsback 2005). Such applica-

tions of IBMs include the following: (i) wading bird

conservation within commercial fisheries (Stillman et al.

2003), (ii) assessing the impacts of river restoration on fish

populations (Railsback et al. 2009), (iii) examining the

dynamics of mangrove forests (Berger et al. 2008), (iv)

interactions between humans and large carnivores

(Ahearn et al. 2001) and (v) managing herbivore grazing

(Wood et al. 2014). The range of practitioners using IBMs

to inform their decision-making processes include statu-

tory authorities with responsibilities in environmental and

natural resource management, non-governmental organi-

zations such as conservation charities and those interested

in the sustainable use of natural resources. Thanks to

advances in computational power, data availability and

ecological theory, increasingly complicated, sophisticated

IBMs can be produced. Yet, this does not mean that these

models will be more useful in informing environmental

decision-making. IBMs typically require specialist compu-

tational knowledge to build and refine the model and ana-

lyse the model outputs, and so practitioners are unlikely

to have the requisite skills to use IBMs directly.*Correspondence author. E-mail: rstillman@bournemouth.ac.uk
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Conversely, practitioners may have greater knowledge of

the system being modelled, so their input into the model-

ling process is highly desirable. Thus, it is important that

modellers and practitioners collaborate effectively to

develop models which can address the key questions that

practitioners are interested in. In this paper, we highlight

the uses of IBMs in environmental decision-making, iden-

tify potential obstacles to their successful use and discuss

how such obstacles can be overcome. We aim to help prac-

titioners understand the potential benefits of IBMs and to

help modellers to understand how to develop IBMs which

will better aid practitioners and inform environmental

management and policy. We refer to a coastal bird IBM

case study, from which general lessons can be learned.

Using models in practice: managing coastal
bird populations

IBMs can inform decision-making on a wide range of

environmental issues, including fisheries, forestry, conser-

vation and agriculture (Grimm & Railsback 2005). In this

section, we explore the development and use of an IBM

to help reconcile nature conservation with economic activ-

ities within coastal areas.

The conservation of coastal birds within protected areas

is threatened by a range of issues including climate change,

anthropogenic disturbance, changes in fisheries practices

and habitat loss due to coastal development (Stillman &

Goss-Custard 2010). In response, practitioners including

environmental and fisheries managers needed tools to help

predict their consequences on bird populations. Since the

mid-1990s, IBMs have been developed to advise bird con-

servation and environmental management within coastal

areas (e.g. Stillman et al. 2003; Stillman & Goss-Custard

2010). In particular, IBM predictions are used by fisheries

managers to inform the setting of annual quotas of quarry

species, such as the shellfish that species of coastal wading

bird, such as the oystercatcher Haematopus ostralegus, feed

upon. This evidence-informed process allows fisheries

managers to set quotas which enhance the economic

potential of the fishery without threatening the conserva-

tion of birds. Such models are needed to predict how

changes in the environment and fisheries practices would

affect either population size or the demographic processes

that determine population size.

The coastal bird IBM was developed from the long-term

study of the oystercatcher in the Exe Estuary in southern

England (Stillman et al. 2003). Subsequently, it has been

applied to a wide range of sites around the world and to

species and issues other than oystercatchers and shellfish-

eries (Stillman & Goss-Custard 2010). The growing range

of site- and species-specific applications led to the develop-

ment of a general IBM software package called MORPH,

which made few system-specific assumptions and hence

can potentially be applied to any system (Stillman 2008).

Subsequently, MORPH has been used to develop a num-

ber of different IBM applications, including a model to

inform the management of overgrazing by herbivores

(Wood et al. 2014). In working closely with practitioners

to use IBMs to inform environmental management and

policy, we have encountered a range of problems, and

solutions, which we discuss in the remainder of the paper.

Co-creation of IBMs by practitioners and
modellers

We propose a framework to allow practitioners and model-

lers to co-create IBMs to inform environmental decision-

making (Fig. 1). Our proposed framework is based on our

experiences of developing IBMs with practitioners in over

35 coastal systems, to assess the conservation impact of

processes including sea level rise, habitat loss, shellfishing,

disturbance from humans, tidal barrages, wind farms,

nuclear power stations, and changes in agriculture and

hunting (Stillman & Goss-Custard 2010; Table 1).

WHAT IS THE QUESTION?

The first step is to identify the question of interest to

practitioners. To avoid a mismatch between the IBM that

modellers develop and the predictions that practitioners

want, practitioners must be involved in the first stages of

IBM development. Furthermore, engaging practitioners

too late can make them feel that they have no say in the

Fig. 1. Our proposed framework to guide modellers on develop-

ing, using and communicating individual-based models to aid

practitioners in environmental decision-making.
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modelling process and can lead to practitioner involve-

ment being viewed as tokenistic. Where the aim of the

IBM is to test the efficacy of different management

options for a given focal species or study system, close

collaboration will help the modellers understand which

options are practical and will thus avoid wasted effort

testing unrealistic options.

Recent experience has shown that by discussing model

development and data eligibility with all relevant groups of

practitioners and other stakeholders, in advance of generat-

ing model predictions, modellers can increase the chances

that model predictions will be accepted by everyone (e.g.

Elston et al. 2014). There are various ways in which practi-

tioners can be engaged, although to date, there is little

understanding of which approaches are most effective at

achieving and maintaining such engagement. For example,

modellers can use a series of workshops to discuss the con-

ception, development and results of an IBM. Ideally, such

workshops should involve participants from all of the rele-

vant groups of practitioners. Alternatively, a modeller

might be seconded into a practitioner group, or vice versa,

in order to better understand what those practitioners need

from an IBM. Again, such an approach must ensure that

key practitioner groups are not excluded.

WHAT DATA ARE REQUIRED?

Once the question of interest has been identified, the next

step is to identify the data that will be required to param-

eterize, run and test the model. Practitioner involvement

at this stage is essential due to their expertise of the study

system and its environmental issues. This is a critical step

because a barrier to building and using IBMs is the rela-

tively high requirement for data. The types of data

required are likely to vary depending on both the question

and study system of interest. For example, the data

needed for a model of landscape dynamics of forests (e.g.

Berger et al. 2008) will differ from a model of avian her-

bivory (e.g. Wood et al. 2014). The IBMs used to manage

coastal bird populations typically require information on

(i) species bioenergetics, including daily energy require-

ment; (ii) foraging behaviour, including estimates of

intake rates for different prey species and densities; (iii)

interactions with other foragers, as well as predators and

parasites; (iv) food quantity, quality, availability and

spatial configuration; and (v) the availability and spatial

configuration of different habitat types (Stillman &

Goss-Custard 2010).

DATA ACQUIS IT ION

Whilst IBMs have a relatively high requirement for data

for parameterization and testing, a range of data sources

are typically available. To estimate the parameters, such

sources include the following: (i) contemporary and

historical field data, (ii) values derived from allometric

relationships and (iii) values inferred statistically. Addi-

tional site-specific data are likely to be required to run

and test the model, such as the physical specifications of

the patches and the starting population sizes. This infor-

mation can be obtained from contemporary and historical

field data. Particular caution is needed in using historical

data, as such values may no longer be appropriate. Close

collaboration between practitioners and modellers is key

to understanding what data are available given the

requirements of the model. Practitioners also have knowl-

edge of useful unpublished literature.

MODEL CONSTRUCTION

In order to address the question of interest to practitioners,

the IBM must make explicitly testable predictions of the

relevant biological properties or phenomena, such as the

survival probability of animals within a population. Many

IBM packages include a graphical user interface (GUI)

that allows practitioners to visualize the model and its

components (Fig. 2), and which can aid the practitioner’s

understanding of how the model works. Our experience is

that IBMs can be communicated much more effectively

when shown as a visual animation, for example showing

patches being exposed and covered by the tide, and birds

moving between patches in response to changes in food

abundance and availability through the tidal and day/night

cycle. These animations make much more ‘intuitive sense’

than IBM descriptions in reports or papers.

To increase the use of IBM approaches among

researchers and practitioners, modellers must develop

IBMs that are more intuitively used and user-friendly.

Already, IBM software packages exist that do not require

specialist programming skills, such as MORPH (Stillman

2008) and WaderMORPH (West et al. 2011). General

modelling platforms such as NetLogo (http://ccl.north-

western.edu/netlogo/) also allow inexperienced program-

mers to develop IBMs.

MODEL PREDICTIONS

After model construction, testing of predictions against

real-world data can begin through a process of model

validation. The degrees of accuracy and precision in the

predictions should be agreed with practitioners and will

likely vary depending on the question. The confidence of

practitioners in the predictions will be undermined if the

model is not adequately tested and shown to give accu-

rate, robust predictions (Bart 1995). Unless tested, a

model is useless to decision-makers as they have no way

of knowing whether the model is producing reasonable

predictions. The predictions of IBMs should be tested rig-

orously using the pattern-oriented modelling (POM)

approach developed by Grimm & Railsback (2012). POM

is a well-established strategy for designing and testing

models of complex systems by comparing model predic-

tions and observations of multiple processes, at multiple

levels, from the individual to population and community
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(Grimm & Railsback 2012). To achieve this, modellers

should design IBMs to predict multiple patterns observed

in nature at different scales and levels of organization.

Such a strategy will reduce the risk that an IBM will pre-

dict the correct pattern for the wrong reason because in

nature, different patterns are interlinked in ways that

reflect the systems’ internal organization. Within the

POM approach, each pattern serves as a filter for falsify-

ing unsuitable versions of submodels and unsuitable

parameter combinations. The accuracy and precision of

model predictions may be improved through an iterative

process of model calibration, until the quality of predic-

tions satisfies the practitioners (Grimm & Railsback

2005).

ROBUSTNESS ANALYSIS

Models ought to contain sufficient complexity to predict a

biological phenomenon to within an acceptable margin of

error. Additional complexity is therefore unnecessary.

When developing models, one must keep in mind that the

aim is to generate an accurate, robust prediction of a

given biological property or phenomenon in order to

answer a question, not to maximize complexity. A robust-

ness analysis is a process of model simplification that can

help to identify unnecessary parameters and processes, i.e.

those that do not improve the accuracy or robustness of

model predictions, by systematically varying model struc-

ture and processes (Grimm & Railsback 2005).

SENSIT IV ITY ANALYSIS

Sensitivity analyses are useful tools to quantify the range

of parameter values over which the IBM can generate

accurate predictions (Grimm & Railsback 2005). There

are a range of methods for sensitivity analyses, the most

commonly used of which is the ‘one-at-a-time’ method in

which the values of key parameters are varied, either

based on knowledge of parameter variation or a fixed

value, over successive simulations (Grimm & Railsback

2005). A thorough sensitivity analysis lets practitioners

know the range of conditions over which the model pre-

dictions are likely to be valid. Such analyses are particu-

larly useful in helping practitioners understand the

uncertainty associated with predictions where parameter

values are associated with large natural variation or mea-

surement error.

REPORTING THE MODEL

A major barrier to the effective use of IBMs is that they

can be viewed as complicated ‘black boxes’ (Topping,

Table 1. The sites and issues for which coastal bird individual-based models have been co-created with practitioners

Sites Issues Practitioners

Burry Inlet and

Three Rivers, UK

Shellfishing, site quality Countryside Council for Wales, Natural Resources Wales,

Welsh Government

Bridgwater Bay, UK Nuclear power station outflow Centre for Environment, Fisheries and Aquaculture Science,

Royal Society for the Protection of Birds, Natural England

Caerlaverock, UK Habitat change Wildfowl and Wetlands Trust

Cardiff Bay, UK Habitat loss British Trust for Ornithology

Chichester Harbour, UK Human disturbance Solent Forum, Natural England, Royal Society

for the Protection of Birds

Dee estuary, UK Shellfishing Environment Agency, Natural Resources Wales

Exe estuary, UK Shellfishing, disturbance, site quality,

sea level rise

Natural England

Humber estuary, UK Sea level rise, port development,

habitat loss, site quality

Associated British Ports Marine Environmental Research

Liverpool bay, UK Wind farms, habitat loss, disturbance Crown Estates

Menai Straits, UK Shellfishery management Countryside Council for Wales, Shellfishing industry

Morecambe Bay, UK Shellfishery management Royal Society for the Protection of Birds

Poole Harbour, UK Sea level rise, site quality, shellfishing,

invasive species

English Nature, HR Wallingford, British Association

for Shooting and Conservation

Baie de Seine, France Port development, habitat creation Syndicat Mixte Baie de Somme

Solway Firth, UK Shellfishing Scottish Natural Heritage, Royal Society for the

Protection of Birds

Baie de Somme, France Hunting, shellfishing, sedimentation,

site quality, Spartina encroachment

Syndicat Mixte Baie de Somme

Severn Estuary, UK Tidal barrage and lagoon development Natural England, Countryside Council for Wales,

Royal Society for the Protection of Birds,

British Trust for Ornithology

Southampton Water, UK Port development, habitat loss,

site quality, human disturbance

Associated British Ports Marine Environmental Research,

Solent Forum, Natural England, Royal Society

for the Protection of Birds

Strangford Lough, UK Shellfishing Department for the Environment Northern Ireland

Wash, UK Shellfishing, site quality English Nature, Eastern Sea Fisheries Joint Committee
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Høye & Olesen 2010). The notion of black boxes discour-

ages use of such models and undermines confidence in the

entire approach. However, there is no reason why an

IBM, with full and clear reporting, cannot be made intelli-

gible to the non-specialist, including practitioners. The use

of GUI-enabled models can be particularly useful in

model communication to stakeholders, as these allow

practitioners to visualize the model and its constituent

processes and parameters (Fig. 2). Furthermore, one

should keep in mind that even the most complex model is

less akin to a black box than the ‘expert judgement’ which

currently underpins most environmental decision-making

(Sutherland et al. 2004). Whilst the modelling process can

be made transparent through adequate reporting, human

decision-making is a biased, subjective internal process.

The predictions of an IBM, however accurate and

robust, are likely to form only part of the evidence con-

sidered by practitioners during decision-making. To

ensure that IBM-based predictions are seen as a viable

part of the evidence base available to practitioners, the

IBMs must be reported clearly. Helpfully, there is an

established, standardized protocol for describing IBMs

(Grimm et al. 2006) which should be more widely used.

Reporting of the IBM should include a full description of

the model structure and parameter values, including how

such values were derived. Clear reporting is particularly

important where complex statistical techniques have been

used to infer parameter values, as such techniques may be

unfamiliar to practitioners. Finally, publication of the

model and its applications in peer-reviewed scientific liter-

ature will increase the scientific credibility of that model,

which in turn can improve confidence in that model

among practitioners (Bart 1995).

A further benefit of close collaboration between

modellers and practitioners is increased awareness of

model predictions among the practitioner community.

Evidence has shown that practitioners do not routinely

consult peer-reviewed journal articles to directly inform

management actions; indeed, Sutherland et al. (2004)

reported that the primary scientific literature accounted

for only 2�4% of the total sources of information that

conservation practitioners in England used to make

management decisions.

Final remarks

Clearly, there is more that could be done to improve the

development of effective decision support tools. In partic-

ular, development will benefit from approaches that make

it easier to collect the relatively high amounts of data

required for an IBM, at increasingly high spatial and tem-

poral resolutions. Data collection approaches that allow

data to be gathered over relatively short periods of time

would allow models to be developed more rapidly to meet

Fig. 2. An example of the graphical user interface (GUI) associated with the MORPH software, showing an individual-based model of

waders foraging on intertidal invertebrates. The distribution of patches and foragers (circles) is displayed to the left (different types of

forager are represented in different colours). Tabs to the right display the values of state variables (food resources in this example)

graphically. The details tab shows the numerical value of each global-, patch-, and forager-state variable during each time step.

Individual foragers can be selected by double-clicking either in the display or on the details tab; the forager can then be followed

through the simulation. Buttons at the bottom right allow the simulation to be paused, slowed down or sped up, or progressed one time

step at a time.
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the demands of practitioners. In this regard, the rise of

approaches such as remote sensing and citizen science

could become increasingly useful. More generally, we need

to understand better how modellers and practitioners can

work together given the pressures on time, money and

other resources that affect both groups. Despite these

areas for improvement, we believe that IBMs are powerful

tools to inform environmental debates, which are best cre-

ated through the close collaboration between modellers

and practitioners.
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