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Populations of soaring birds are often impacted by wind-
power generation. Sex and age bias in turbine collisions can
exacerbate these impacts through demographic changes that
can lead to population decline or collapse. While several
studies have reported sex and age differences in the number
of soaring birds killed by turbines, it remains unclear if they
result from different abundances or group-specific turbine
avoidance behaviours, the latter having severer consequences.
We investigated sex and age effects on turbine avoidance
behaviour of black kites (Milvus migrans) during migration
near the Strait of Gibraltar. We tracked the movements of 135
individuals with GPS data loggers in an area with high
density of turbines and then modelled the effect of proximity
of turbines on bird utilization distribution (UD). Both sexes
and age classes showed similar patterns of displacement,
with reduced UD values in the proximity of turbines and a
clear peak at 700–850 m away, probably marking the distance
at which most birds turn direction to avoid approaching the
turbines further. The consistency of these patterns indicates
that displacement range can be used as an accurate proxy for
collision risk and habitat loss, and should be incorporated in
environmental impact assessment studies.
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1. Introduction
Countries around the world are taking action against climate change by shifting to renewable energy
sources. This prompted a rapid development of wind-power industry over the past two decades, with
the occupation of large natural areas by wind-power plants [1]. Conflicts between wind-power
generation and wildlife are well documented, with birds and bats being the most impacted groups
through direct mortality by collision with turbines and the displacement from areas vital for their
survival [2]. Terrestrial soaring birds, including most raptors, storks, pelicans and other broad-winged
large birds, raise particular concerns as their flight is favoured by landscape characteristics similar to
those targeted by wind-power developers, i.e. mountain ridges and slopes at regions of frequent
winds [3,4]. In addition, soaring birds have low flight manoeuverability, increasing their chances of
collision with turbines, and low fecundity, limiting their capacity to out-balance additional mortality [2].

Sex- and age-skewed mortality gradually changes the demographic structure of animal populations,
which can lead to accelerated declines or even population collapses [5,6]. Thus, understanding the full
impact of wind-power generation on species that collide with turbines critically depends on
identifying potential sex- and age-related biases on collision risk. Several studies have reported sex
and age differences in the numbers of soaring birds killed by wind turbines [e.g. 7–11]. However, it
remains unclear whether these differences reflect vulnerability of a particular sex or age class to
collisions or simply unequal relative abundances. Nevertheless, sex- and age-related differences in
behaviour and ecological requirements of soaring birds have the potential to influence their collision
risk with wind turbines. During the breeding season, the time allocated to incubation decreases the
risk of collision of females [11,12]. The engagement of adult males with territory defence increases
frequency of social interactions during which they might have limited awareness of turbine collision
risk [13]. Subadults and floaters may occupy vacant territories close to turbines increasing their
chances of colliding with turbines [10,13]. The poorer flight ability of juveniles [14,15] and limited
perception of danger [16] may place them at a higher risk of collision.

We specifically investigated how sex and age may influence turbine avoidance behaviour using black
kites (Milvus migrans) as a model species of soaring birds. Turbine avoidance was quantified as the
displacement of bird activity in the proximity of turbines, which directly influences collision risk and
habitat loss [17,18]. Displacement effect was evaluated from high-frequency GPS tracking data of
135 individual black kites relatively balanced among sexes (61 males and 72 females) and age classes
(77 adults or 58 juveniles). Birds were tracked during the post-breeding migration before they crossed
the Strait of Gibraltar, when they use an area with high turbine density. We expected males and females
to show similar avoidance of turbines because no prior evidence supports sex differences in space use
or other relevant behaviour for this species or other soaring birds during migration. However, we
expected juveniles to show reduced avoidance of turbines given their general lack of experience and the
high juvenile fatality rates reported for other raptor species in this area during migration [7,9].
2. Material and methods
2.1. Data collection
We collected GPS-tracking data from 135 black kites moving in the region of Tarifa (Southern Spain)
during their post-breeding migration. Birds were caught with a walk-in trap (7 × 7 × 3.5 m) during
periods of high-speed crosswinds at the Strait of Gibraltar, which restrict their passage to Africa
[15,19]. Such conditions can last for periods up to a week [20] forcing the birds to roam in an area
with high density of wind turbines (figure 1). Birds were captured in 2012 and 2013 between July and
September. In each capture, we tagged similar numbers of juveniles and adults in order to produce an
age-balanced sample (77 adults and 58 juveniles). Birds were aged from plumage patterns (following
[21]). Molecular sexing conducted from breast feather samples (following [22]) showed that both sexes
were also similarly represented in our sample (61 males and 72 females). Birds were tagged with
GPS-GSM data loggers (42 g, TM-202/R9C5 module; Movetech Telemetry, UK, http://movetech-
telemetry.com) attached as backpacks using Teflon ribbon harnesses. The dataloggers recorded GPS
fixes every minute from 9.30 to 18.30, and every 20 min during the early and late hours of the day
(7.30 to 9.30 and 18.30 to 20.30) when birds were less likely to fly. Loggers recorded data with a
higher resolution (GPS fixes every 10 s with 20 s bursts at 1 Hz every 3 min) when birds got close to
the edge of the Strait of Gibraltar. Logged data was transmitted to an Internet server via GPRS every 2 h.

http://movetech-telemetry.com
http://movetech-telemetry.com
http://movetech-telemetry.com
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Figure 1. Utilization distribution (UD) of black kites in the study area (Tarifa, Spain) discriminated by sex or age. UD values are shown in
a colour gradient, with darker colours reflecting higher UD. All plots follow the UD scale presented in top left plot. UD values resulted
from dynamic Brownian bridge movement models (dBBMMs) built with GPS tracking data of 135 birds caught during the post-breeding
migration in 2012 and 2013. UD resolution is 100 × 100 m. Hill shading was added to image background to show interaction between
bird movement and topography.
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2.2. Data analysis
The effect of turbine proximity on bird utilization distribution (UD) was modelled with generalized
additive mixed models (GAMMs), as this relationship was shown before to be nonlinear [17]. Bird UD
was produced from the tracking data using dynamic Brownian bridge movement models (dBBMMs,
[23]). This method accounts with the time between locations in UD estimation, which is major
improvement in relation to kernel-based methods, commonly employed for space use inference
[23,24]. The dataset used for dBBMMs included only GPS fixes of birds in flight (with speed greater
than 1 m s−1) and recorded in a target area with high bird movement and turbine density (electronic
supplementary material, figure S1). We also restricted the data to those collected during easterly
winds (direction 70 to 130°), representing ca 90% of all data recorded. Other wind conditions allowed
birds to quickly cross the Strait of Gibraltar [15,19], limiting the potential of the tracking data
recorded for the purposes of this study. dBBMMs were produced for each individual bird in each day
in a 100 × 100 m grid, and these models were then summed up to produce a general UD. The
dBBMMs were built with the function brownian.bridge.dyn of the R package move [25], using a
window size of 15 locations, a margin of five locations and a location error of 20 m. Besides proximity
to turbines, the GAMMs included orographic and thermal uplift as predictors of UD since these
variables are critical for the movement of soaring birds [26]. Orographic and thermal uplift were
mapped for the study area following the methods described in Santos et al. [26]. The estimation of
orographic uplift velocity uses terrain aspect and slope, which were extracted from a 30m resolution
digital elevation model (available at https://lpdaac.usgs.gov), and wind direction and speed, which
were obtained from local weather stations. The methods of Santos et al. [26] estimate thermal uplift
velocity from land surface temperature, which is retrieved from Landsat imagery. For that purpose,
we used a Landsat 8 OLI/TIRS image acquired on 17 July 2013 (available at https://earthexplorer.
usgs.gov), matching the period of data collection. Orographic and thermal uplift velocities were

https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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Figure 2. GAMM partial effects of turbine proximity on utilization distribution (UD) of black kites. Different models were built for
each sex and age class. All four models included orographic and thermal uplift velocities as predictors, and accounted for spatial
autocorrelation. Shaded areas represent 95% confidence intervals.
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included as linear predictors in the GAMMs, as they tend to show a linear relationship with bird UD [17].
GAMMs were fitted with the function gamm of the R package mgcv [27], assuming Tweedie error
distribution (log link and power variance = 1.6) and Gaussian spatial correlation structure, in order to
account for spatial autocorrelation. Fitting assumptions were checked from residual plots using the
function gam.check of the mgcv package. Correlations between model predictors were lower than 0.2.
GAMMs were produced with data of grid cells at distances up to 2 km from wind turbines to avoid
confounding effects of factors possibly acting at larger scales. A few extreme UD values were removed
prior to analysis to prevent their overinfluence in our results (three for the juvenile model, two for the
female model and one for the male model). The modelling results including these data are presented
in electronic supplementary material, figure S2.
3. Results
In general, bird movements tended to concentrate in a belt of ca 5 km inland from the shoreline, and
particularly in a valley on the east side of the study area (figure 1). Juveniles seem to move
particularly close to the shoreline. In all four groups, there was a visible drop in movement density in
the areas nearby wind turbines (figure 1).

There was a clear nonlinear effect of turbine distance on bird UD for all four groups compared, with UD
valuesdroppingabruptly in the first fewhundredmeters of thewind turbines (figure 2). The relationshiphad



Table 1. Summary of GAMMs relating UD of black kites with turbine proximity and orographic and thermal uplift velocities.
Different models were built for each sex and age class. Models were fitted with Tweedie error distribution (log link and power
variance = 1.6) and Gaussian spatial correlation structure, in order to account for spatial autocorrelation. s.e., Standard error; t, T
statistics; edf, estimated degrees of freedom; F, F statistics.

model parameter estimate s.e. t edf F p-value R2adj.

adults intercept −12.2 0.40 −30.3 <2 × 10−16 0.15

s(distance to turbines) 6.50 24.8 <2 × 10−16

orographic uplift 0.3 0.02 14.3 <2 × 10−16

thermal uplift 3.4 0.21 16.1 <2 × 10−16

juveniles intercept −10.8 0.58 −18.5 <2 × 10−16 0.05

s(distance to turbines) 4.66 16.8 2.8 × 10−15

orographic uplift 0.2 0.04 4.9 1.2 × 10−16

thermal uplift 2.6 0.31 8.4 <2 × 10−16

females intercept −12.8 0.47 −27.0 <2 × 10−16 0.14

s(distance to turbines) 5.41 18.1 <2 × 10−16

orographic uplift 0.3 0.03 10.0 <2 × 10−16

thermal uplift 3.8 0.25 15.1 <2 × 10−16

males intercept −9.8 0.47 −21.0 <2 × 10−16 0.07

s(distance to turbines) 6.22 28.9 <2 × 10−16

orographic uplift 0.2 0.03 8.6 <2 × 10−16

thermal uplift 2.0 0.25 8.1 6 × 10−16
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adistinct peak thatwas relatively similar in all groups (700–850 m) afterwhich it tended to stabilize (figure 2).
A second peakwas present around 1500 m from thewind turbines for adults andmales, although thismight
be an artefact that results from excessive degrees of freedom in the smoother (figure 2). These patterns
remained the same when testing groups of independent individuals (adult females, adult males, juvenile
females and juvenile males, electronic supplementary material, figures S3 and S4).

The effects of orographic and thermal uplift velocities on bird UD were significant and with
increasing trends in all four models (table 1).
4. Discussion
We found no relevant differences in the patterns of turbine avoidance between sexes or age classes of
migrating black kites. The effect of turbine proximity on bird UDs had a consistent pattern among the
groups compared, with a gradual increase of UD up to 700–850 m from the turbine locations
(hereafter displacement range) and after a slight decrease UD values tended to stabilize (figure 2). The
consistency of this pattern among groups of birds that travelled in different areas and had interactions
with different turbines suggests it results from a systematic avoidance behaviour of individuals. Birds
probably kept a similar safe distance from turbines and the peak observed in UD seems to mark the
distance at which most birds turned direction to avoid approaching the turbines further. This
phenomenon was observed before in raptors tracked by radar (see fig. 4 of [28]). Results from other
studies suggest that this avoidance pattern is common among soaring birds, although the
displacement range varies between species and across the annual cycle [29–31].

Confirming our earlier expectations, female and male black kites showed similar patterns of turbine
avoidance. However, it is interesting to note that the displacement range was slightly higher in females
than males (786 and 717 m, respectively). Whether these differences have biological relevance is difficult
to ascertain, but females are expected to be less manoeuverable than males due to their larger body size
[2,11], which may keep them at a larger distance from turbines. The similarity in the avoidance
behaviour of juvenile and adult black kites was rather surprising. Previous studies reporting of high
juvenile collision rates in other raptor species in this exact area and season suggested that juveniles could
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approachwind turbines closer, either because of being naive or having lowermanoeuverability than adults
[7,9]. However, the small differences that we found in the displacement range between juveniles and adults
follow an opposite trend, with adults getting closer to turbines than juveniles.

Our results add to the previous knowledge that turbine avoidance behaviour of soaring birds during
migration may not be affected by sex or age, contrary to observations in other studies during the breeding
season [10,11,13]. Obviously, further studies are needed to ascertain if our results apply to other soaring
bird species and spatio-temporal contexts. Importantly, we showed a consistent pattern of turbine
displacement among the different groups of birds tested. Similar patterns with varying displacement
ranges were also reported in earlier studies [29–31]. Displacement ranges should be further
investigated and incorporated in environmental impact assessment studies, as they can help predicting
collision risk and habitat loss [17,18]. Our results also elucidate that before–after, control–impact
(BACI) studies comparing areas wider than species-specific displacement ranges may not be able to
detect the effects of wind turbines on bird densities. The accurate determination of the displacement
ranges in this study was possible due to high-resolution data provided by GPS telemetry and the use
of a modelling approach with the power to discriminate complex ecological relationships. We
recommend similar approaches in future studies to provide the necessary empirical evidence for a
complete understanding of the consequences of turbine avoidance by soaring birds.
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